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Algorithmic topology is the spanning of an algorithm on a topological structure. The 
common calculus with paper and pen shows that all the recursive functions can be 
spanned on Euclidean planes. It is known that two topological structures are identical if 
and only if cut-pasting operations don't need to transform one in the other. Dubois' 
third stage (identification of incursive algorithm last row and column respectively with 
its first row and column) gives to incursive algorithms a spanning only on a torus that 
can be transformed in Euclidean plane only by cut-pasting operations. Thus incursive 
algorithms couldn't reduce to recursive algorithms and Church's hypothesis couldn't be 
true. Now, observe the affinity between topologic cut-pasting operations, Dubois' third 
stage and quantum entanglement. This last one can be considered either two 
"entanglements" in incursive algorithms or a cut-pasting operation on Euclidean plane 
on which such an algorithm is spanned to transform such a plane in torus. Is quantum 
entanglement simply the inadequacy of algorithms that can be spanned only on 
Euclidean plains to represent quantum mechanics? The same question could have value 
for some complex biological systems. 

Keywords: algorithmic topology, incursive algorithm, entanglement, quantum 
mechanics, biological systems. 

1 Algorithmic Topology 

We follow Turing's classical approach to computation. 1 Let a finite symbol set {0, 
S1, ... , Sn} be an alphabet where to print 0 in a place means to cancel the symbol 
present in such place. Let a finite sequence of S,E{S1, • •• ,Sn} be an expression. Let a 
finite symbol set { q1, ... ,qm,qoJJ} be an internal state set where internal state q0ff means 
"stop". Let an expression in form q,S;

1 
... (S;h) ... S;k be a transitory achievement. Let 

S;1 • • • S;h . . . S;* be the immediate conclusion of q,S;1 • •• (S;h) .. . S;*. 

Consider transitory achievents as space points. We can define these four generic 
applied vector typologies: 

1 See Turing, I 950. 
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a
1V: q,S;1 ... S;JS;.)S;v ... S;k - qsS;1 ... S;JS;w)S;v . . . S;k 

a2v: q,S;1··•SiJS;.)S;v· ·•sik - q,S;1· · ·<S;.)S;.S;v··•sik 

a
3V: q,S;I .. . S;.(S;h)S;v ... S;k - qsS;I ... S;.S;.(S;). .. S;k 

a
4V: q,S;I ... S;.(S;.(Ea?))S;v· ·•sik - q,S;I ... S;.(S;.(Ea))S;v ... S;k, qS;I ... S;.(S;.(rta))S;v ... S;k 

Applied vector typologies a1V, a2V, a3V, permit us to define respective non-applied 
vector typologies: 

IV: q,S;hS;wqS 

2V: q,S;hLqs 

3V: q,S;hRqs 

4V: qraS;.q,q1 

these ones are a complete set of generic foundamental steps of Turing's computation. 
Consider now a vector set that contains an alone applied vector a;V o and such a 

vector ordered sequence ;iV1, . .. , ;Nn that ;N1 can immediately be applied after ;i-iV1_ 1 

and ;•Vn ends with q0.lf Not only a;Vo, ;1V1, .. . , ;.V,, is a generic form of any Turing's 
algorithm but also it is an oriented segment of broken line if we consider transitory 
achievents as space points. 

The described broken line segment is enough generic to span in an Euclidean 
space. We can conclude: 

Proposition 1.1: Any Turing's algorithm can be spanned in an Euclidean space. 

Standard results of computation theory permit us to put the following corollaries: 

Corollary 1.1.1: Any recursive.function can be spanned in an Euclidean space. 

Corollary 1.1.2: If Church's hypothesis (any computable function is recursive and 
vice versa) is true then any computable function can be spanned in an Euclidean space. 

The last corollary shows that Church's hypothesis is very strong. We should deduce 
that if we span an algorithm on a torus or on a hypersphere or on a Klein's bottle or on 
another topological structure that is not equivalent to an Euclidean space then the same 
algorithm could be spanned in an Euclidean space. As two topological structures are 
different only if cut-pasting operations are necessary to transform one in the other we 
can conclude that an algorithm should be invariant to cut-pasting operation in the space 
where they are spanned. We can put: 

Corollary 1.1.3: If Church's hypothesis is true then any given algorithm does not 
change if cut-pasting operation are done in the space where the given algorithm is 
spanned. 
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Corollary 1.1.3 has a conclusion very difficult to accept. Consider an algorithm a;V 0, 

;,v 1, •.• Jv1,_ . . . , ;•Vn _that is spanned on an Euclidean space. T_o realize our_purposes 
revrite a'Vo, 11V1, ... , ';VJ, . .. , '•Vn in form a'Vo - 11V1 - ... - ';VJ - ... - '•Vn. Now 
do a cut-pasting operation that provokes the overlapping of places of ;1V1 and of;.Vn on 
the space where a'Vo - 11V1 - . . . - ';V1 - . .. - '•Vn is spanned. We obtain: 

Before of cut-pasting operation: a;Vo - i,v I - ••• - ;Ni - .. . - i.v n 

- -
After cut-pasting operation: i 

Observe that our cut-pasting operation implies a mathematical "entanglement" between 
; 1V1 and ;.Vn. An important consequence is algorithm temporal order. "a;Vo - ;1V1 -
. .. - ;N1 - ... - ;•Vn" defines clearly that ;.Vn is future and dependent as regard ;,v 1 

but not vice versa. Instead " 

a jv 
0 - i, •• v 

l,n 

i 
- - i;v . 

J 

! " shows clearly that 

-
;,V1 anticipates and depends from _ successive (future) ;•Vn. The creation of a 
mathematical entanglement between ',VI and '.V n by_ a cut-pasting operation on span 
space has given anticipatory properties to algorithm a'Vo - ',V 1 - ... - 'N1 - ... -
;.Vn. But, for Church's hypothesis, no relevant changements are happens because also 

- - - i;v . 
J 

i ! " can be spanned in an Euclidean space, i.e. the 

- -same topological structure ofa;Vo - ;,v 1 - • • • -;Ni - . . . - ;•Vn. We can conclude: 

Corollary 1.1.4: If Church 's hypothesis is true then there are not anticipatory 
mathematics that are not reducible to non-anticipatory mathematics. 

Observe also that a;Vo - ;1V1 - ... - ;Ni - . . . - ;•Vn stops by q0ff in ;•Vn that 

- i, .• v 
l ,n - - i;v. 

J 

cannot be applied in " i ! ". To end this last one we 

- -can adopt the fourth. stage of Dubois' incursive algorithms only:2 the considered 
algorithm stops when '.Vn is equal to 11 V1, i.e. when 11V 1 assumes the same value twice. 
However, we can have that ;,v I assumes the same value twice consecutively or 
periodically. The second case our cut-pasting operation on the span space transforms an 
algorithm with an alone achievement in an algorithm with more achievement 
contemporary. We can write: 

2 See Dubois and Resconi, 1992, p. 13. 
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Corollary 1.1.5: If Church 's hypothesis an algorithm with more achievents is 
reducible to an algorithm with an alone achievement. Thus Church's hypothesis should 
be rejected 

To redefine a new concept of computable function we propose this procedure to 
build all the computable function as a work hypothesis: 

l)Put standard zero-function. 

2) Put standard projection-function. 

3) Put standard successor-function. 

4) Put standard substitution to obtain new functions from other ones. 

5) Put standard recursion to to obtain new functions from other ones. 

6) Put Euclidean space as default span space of the functions. 

7) Put cut-pasting operations on span space of a function to obtain new functions 

Observe that the steps 6) and 7) of previous procedure are operation of change of 
topological structure where the involved function is spanned. Thus we cannot study 
more an algorithm without considering the topological structure on which it is spanned. 
Classical computation theory becomes insufficient and a new study matter needs: 

Algorithmic topology: it considers any algorithm always spanned on a topological 
structure (the Euclidean space as default) and it studies as algorithms change when 
their span topological structures change. 

We can consider algorithmic topology a developent of computative topology.3 

2 Mathematical Entanglement 

Let mathematical entanglement be the overlapping of two steps in a given algorithm 
after an operation of cut-pasting on the span topologic structure of the given algorithm. 

A practical example of mathematical entanglement is Dubois' third stage4 in an 
in cursive function. 5 Given the square calculus net of the considered in cursive function, 

3 See Grappone, 2009. 
4 See Dubois and Resconi, 1992, p. 12, 
5 Jn 1997, Daniel M. Dubois defined incursion and hyperincursion as follows: "The computation is incursive , for inclusive 
recursion, in the sense that an automaton is computed at fu ture time I+ I as a function of its neighboring automata at the present 
and/or past time steps but also at future time t+ I . The hyperincursion is an incursion when several values can be generated for 
each time step. External incursive inputs cannot be transformed to recursion. This is really a practical example of the final cause of 
Aristotle. Internal incursive inputs defined at the future time can be transformed to recursive inputs by self-reference definin g then 
a self-referential system. A particular case of self-reference with the fractal machine shows a non-deterministic hyperincursive 
field . The concepts of incursion and hyperincursion can be related to the theory of hyper-sets where a set includes itself. Secondly, 
the incursion is applied to generate fractals with different scaling symmetries. This is used to generate the same fractal at different 
scales like the box counting method/or computing a fractal dimension. The simulation of fractals with an initial condition given by 
pictures is shown to be a process similar to a hologram . Interference of the pictures with some symmetry gives rise to complex 
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k Xo,J X0,2 Xo,n-1 Xo ,n 

I XJ ,O X t , I Xt ,2 Xt ,n-1 Xt ,n 

I X2 0 X21 X22 X2n-l X2n 

Xn-1 ,0 Xn-1 I Xn-1 ,2 Xn-1 ,n-l Xn-1 ,n 

Xn ,O Xn I Xn,2 Xn ,n-1 Xn,n 

the first row is identified with the last row and the first column is identified with the last 
column, i.e. we put an entanglement either between first and last row or between first 
and last column. Algorithmic topology shows easily that this double entanglement 
transforms of a part of an Euclidean plain in a torus by a double cut-pasting operation. 

Fig. 1. Span space of the incursivefunctions. 

Another practical example of mathematical entanglement are hyper-incursive 
functions. 5 They can be viewed as systems of in cursive functions with many-torus span 
topological structure that in some cases becomes an hyper-spherical structure. 

Fig. 2. Span space of some hyper-incursive functions. 

patlerns. This method is also used to generate fractal interlacing. Thirdly, it is shown that fractals can also be generated from 
digital diffusion and wave equations, that is to say from the modulo N of their finite difference equations with integer coefficients ." 
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Observe that our work hypothesis implies that mathematical entanglement occurs in 
algorithms if and only if they cannot be spanned in an Euclidean space and it suppose 
cut-pasting operations always on the span space. 

Observe also that an algorithm that is spanned in an Euclidean plain has a standard 
time sequence. Cut-pasting operations that provoke mathematical entanglements 
increase calculus anticipation too by creations of loops that are similar to Dubois' third 
stage and they can provoke achievement indetermination because such loops can be 
stopped only by Dubois' fourth stage (the repetition twice of the same result ends the 
algorithm). This stopping form can give the periodic repetition of an achievement 
sequence instead of an alone achievement. Thus the result is indetermined among the 
element of achievement sequence. Also, hyper-incursive function can give an achievent 
undefined among more values and with a frequence distribution of these values too. 

We can conclude by emphasizing the strict relation that there is among cut-pasting 
operations on algorithm span space, mathematical entanglement, algorithm anticipation, 
indetermination of some achievements among more values with or without a frequence 
distribution. 

3 Quantum Mechanics and Algorithmic Topology 

Quantum mechanics differs from classical mechanics principally for the following 
phenomena too: quantum entanglement and indetermination of some achievement 
among more values with a frequence distribution. 

Algorithmic topology can represent either entanglement or achievement 
indetermination with frequence distribution by opportune cut-pasting operation in 
algorithm span space. In other terms, classical mechanics can be transformed in 
quantum mechanics by cut-pasting operations on span spaces of its algorithms: 
quantum mechanics should be "strange" as regard classical mechanics only because the 
span spaces of their algorithms are not Euclidean spaces. 

Algorithmic topology approach permits us to reveal another aspect of quantum 
mechanics: its anticipatory nature.6 We have seen in the previous paragraph in fact as 
the entanglement and achievements indetermination are strictly linked with the 
anticipatory algorithms in Dubois' sense. To give some examples on quantum 
mechanics formulation in terms of hyper-incursive function could be useful. 

Consider Godel's function: 7 J3(xi,x2 ,xJ = re(l + (x3 + 1) · x2 ,x1) where re(xi,x2 ) is the 
remainder of x2 divided by x1• It has a very interesting property: for every natural 
number sequence k0 ,kw··,k., there are such two natural numbers b, c that 

6 See Dubois, 2008. 
7 See Mendelson, 1964,Propositions 3.21, 3.22 
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{3(b,c,i) = k;. Thus, if we have any net note with two inputs and two outputs in an 
incursive algorithm then we can always represent it by Godel's function in this way: 

j -

! 
/3( a, b, i) 

{3(c,d,j) 

! 

Fig. 3. Representation of any node in incursive net by Godel 's function 

We can simplify the previous representation of node immediately in this way: 

i 

! 

j - (: !) - h; 

! 
k; 

Fig. 4. Simplified representation of any node in incursive net by Godel 's function 

In this way, any incursive net can be represented by a third order tensor, e.g.: 

(all 
CJI 

h11) 
d11 

(a12 
C12 

q2) 
d12 

( aln 
Cln 

qn) 
din 

( 021 
C21 

bi1) 
d21 

( 022 
C22 

bi2) 
d22 

( a2n 
C2n 

bin) 
d2. 

( anl 
Cnl 

bn1) 
dnl 

( an2 
cn2 

bn2) 
dn2 

( ann 
cnn 

bnn) 
dnn 

Fig. 5. Representation of any incursive net 

Thus we can always build the third order tensor that represents a bigness that is 
indeterminated among some values that appears all ones with the same frequence. 

To represent a bigness that is indeterminated among some values that have got 
distinct frequences we has to use hyper-incursive functions. 
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Let Po,Pw·· ,Pm be parameters. Thus we can represent a hyper-incursive function by 
a third order tensorial function: 

011(Po,Pi, .. ,,pm) q,(Po,ft, ... ,pm) a12(Po,Pi, .. ,,p) q1(Po, Pll' 00 ,Pm) a,n(Po,Pw .. ,Pm) qJpo,Pw .. ,Pm) 

C11(Po,Pi, .. ,,pm) d11(Po,fi, ... ,pm) c,iPo,Pi, .. ,,pm) d,i(Po, Pi, .. ,,pm) c,JPo,Pi, .. ,,pm) d,iPo, ft, ... ,pm) 

( a,(p,,p,,, .. ,p .) ~.~ •• P,, .. ,,p,) 01ho,Pi , .. ,,pm) ~(Po,fi, ... ,pm) 01n (Po ,P,, ... ,pm) ~n(Po,Pi, .. ,,pm) 

ciPo, PP"''Pm) d1, (Po ,p, , ... ,pm) C1ilPo,P,, ... ,pm) dn(Po ,Pi, .. ,,pm) C1iPo,fi, ... ,pm) d1nlPo, Pi , .. ,,pm) 

ani(po ,Pi, .. ,,pm) h)Po,Pi, .. ,,pm) 0n1(Po,fi, .. . ,pm) bniPo,P,, ... ,pm) aM(Po,Pi, .. ,,pm) bM(Po,Pi, .. ,,pm) 

cn,(Po,fi, ... ,pm) d)Po,fi, ... ,pm) cnilPo,Pi, .. ,, pm) dni(Po,Pi, .. ,,pm) cM(Po,Pi , .. ,,pm) dM(Po,P,, .. . ,pm) 

Fig. 6. Representation of any hyper-incursive net 

Every value assegnation to p 0 ,PJ,. ··,Pm defines an incursive net and a set of 
achievements. As the same achievement can appear for distinct value assegnations to 
p0 ,Pi,· ··,Pm an opportune set of such assignations can give a set of achievements with 
the wanted frequence. In other terms, any undetermined quantum bigness that has a 
given frequence distribution on a value set can be represented by a hyper-incursive 
function . 

Precisely, let I be an opportune starting input vector, let P be an opportune parameter 
matrix and let ~ be an opportune hyper-incursive net. Thus Q(I, P) can represent an 
indetermined quantum bigness with a frequence distribution on a value set. 

As incursive and hyper-incursive functions permit us to represent directly either 
quantum entanglement or quantum indetermination and so the whole quantum 
mechanics we can conclude that quantum mechanics is anticipatory in Dubois' sense 
and can be entirely obtained by cut-pasting operations on Euclidean algorithm span 
space. 

In other terms, the spanning of ordinary algorithms on opportune non-Euclidean 
topological structure eliminates every strangenes of quantum mechanics. 

3 Histochemistry: Biological Anticipation of Algorithmic Topology 

Histochemistry is the branch of histology that deals with the identification of 
chemical components in cells and tissues. It has introduced the importance of 
localization for biochemical reation that often change meaning with their place. 
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Some examples can clarify: 

Fig. 6. Acetilcholinesterase activity with localization 

The previous figure shows not only the presence of acetylcholine decomposition 
by acetilcholinesterase but also where such reaction happens. The biochemical reaction 
has to be integrated in a topological structure. 
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Fig. 7. lodomelatonin-binding with localization 
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4 Matte Blanco Tridim Structure: Psychological Anticipation of 
Algorithmic Topology 

Matte Blanco8 affirms that the structure tridim is the 
representation of objects of the unconscious that, for him, have a 
greater number of dimensions in the Mad aware thought that 
Blanco considers three-dimensional. The condensations and the 
displacements of meaning that Freud described for first are 
examples of structures tridim. 

A 

B C 

A B C A 

Fig. 7. Representation of a two-dimension object in one dimension 

Observe as the representation of a two-dimension object in 
one dimension provokes an entanglement between the two 
extreme points of the line segment. Freud describes such 
psychical entanglements as condensations and displacements. 

' See Matte Blanco, 
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