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Abstract
The dual torus topology occupies a central role in the spinor, twistor and

quaternionic formulation. This topology appears to be ubiquitous in astrophysical and

cosmological phenomena and is predicted by the Uo bubble of the affine connection in

the Haramein-Rauscher solution to Einstein's field equations. The geometric structure
of the complexified Minkowski space is associated with the twistor algebra, spinor

calculus, and the SU, groups of the quatemionic formalism. Hence quantum theory and

relativity are related mathematically through the dual torus topology. Utilizing the
spinor approach, electromagnetic and gravitational metrics are mappable to the twistor
algebra, which corresponds to the complexified Minkowski space. Quaternion
transformations relate to spin and rotation corresponding to the twistor analysis.
Keywords: Quaternions, Spinors, Spacetime, Twistors

L. Introduction

In this paper we will present a formalism that uniquely relates electromagnetic and
gravitational fields. Through this formalism and the relationship of the spinor calculus
and the twistor algebra we can demonstrate the fundamental conditions of such a system
which accommodates macroscopic astrophysical phenomena as well as microscopic
quantum phenomena.

The generalized hyperdimensional Minkowski manifold has nonlocal as well as
anticipatory properties. We have examined elsewhere the topology of the torus

Tr = (Jr x Ur and the dual torus Zr x Zr related to astrophysical systems such as galactic

structures, black hole ergospheres, and supernovae phenomenon, etc. Here we diScuss
the 720 symmetry of the so-termed Dirac string trick within the context of the
relativistic form of the Dirac formalism and the relationship to the dual-torus topology.
Twistors and spinors are examined and are applicable to the quaternion formalism. The
quaternion formalism can be related to the hyperdimensional complexified Minkowski

space, Lie goups ^su,, as well as Riemannian topologies and the Dirac equation.

In Section 2.,we present the formalism for the role of the spinor calculus which is
utilized to relate the expression for the metric tensor to gravitational and
electromagnetic field components through the relationship of the twistor algebra and
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spinor calculus. The Minkowski space formalism consistent with this approach uniquely
relates to the twistors and, as we demonstrate in Section 3., to the dual torus topology.
In this section, we demonstrate the manner in which the approaches presented in this
paper relate to the current supersymmetry and GUT models as well as string theory. We
further elaborate on the syrnmetry principles of the complexification of Minkowski
space, twistors and their properties.

Some unique features of the torus topology and its associated vector space are given
in Section 4. A fundamental relationship between the complex Minkowski space, the
twistor algebra and quaternions are developed in Section 5. Of interest are the non-
Abelian nature of quaternions, the ,SU" groups, and quantum theory's relation to tori
and other topologies. The basic structures of these spaces demonstrate a set
connections between the dual torus topology and a fundamental structure
"spacetime" leading to the Haramein-Rauscher solution.

2. The Spinor Formalism and Unification, and the Relationship to
Twistors and Tori Topology

The approach to unification of the electromagnetic and gravitational fields was
developed by Kaluza [] and Klein [2] in the 1920s and their work was seriously
considered by Einstein in the 1930's. This five-dimensional geometry utilizes the spinor
calculus to account for the coupling of the electromagnetic field to the gravitational
field, in which the spinor is treated as a rolled up dimension rather than as the four
extended dimensions of the gravitational field. The concept of small rotational "extra
dimensions" is accepted in current ten and eleven dimensional supersyrnmebry models,
and the Kaluza-Klein Theory is treated as a subset of this supers)rynmetry, including the
grand unification theory (GUT).

The Kaluza-Klein Theory requires the periodicity of the five-dimensional spinor
fields to uniff electromagnetism and gravity based on the homomorphism between the
Lorentz group and the unimodular transformation of Maxwell's equations and the weak
Weyl limit of the gravitational field. A discussion of the Kaluza-Klein model and the
Rauscher [3] and Newman [5] and Hansen and Newmann complex eight-space is given
in reference [6]. In the approach of these later three references, the spinor calculus is
demonstrated to be mappable one-to-one with the twistor algebra of the complex eight-
space and, hence, the Penrose twistor [3].

The coupling of the electromagnetic field with the gravitational field in the Kaluza-
Klein may also yield a connection through the photon description of the twistor algebra.
The photon is the quanta of the electromagnetic field and the interaction mediation
between leptons, of which the electron is one. The five-dimensional spinor calculus has
been developed within the five-dimensional relativistic formalism 11,2,31. The spinor
calculus developed in the five-dimensional spinor formalism accounts for the coupling
of the electromagnetic field to the gravitational metric.

This approach is manifestly five-covariant in a special five-dimensional space. The
specific spin frames of reference of the five-dimensional Kaluza-Klein geomefiy
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reduces to the spinor formalism of curved spacetime. The theory of spinors in four-
dimensional space is based upon the transformation L' and the group of unimodular

transformation U, in SL(2.,C). Elsewhere we have related this formalism to the toroidal

space U, xU,l7l .

Unimodular action of the symplectic automorphism group SL(2',R) of the

Heisenberg two step nilpotent Lie group,Nhas the discrete subgroups SLQ,Z) of

SL(Z,R). The two-dimensional compact unit sphere:,S, (Riemannian sphere) and the

three-dimensional spherical component unit sphere can map as ,S, + Ra.

It has been established that the five-dimensional 4-component spinor calculus is
related to the four-dimensional spinor formalism in order to account for the coupling of
the electromagnetic freld as a periodic five-dimensional spinor field to the curved space
of the gravitational Riemannian metric. We can utilize projection geometry to relate
five-dimensional spinor calculus to the four-dimensional twistor space.

An isomorphism between vectors vÊ and spinors y4' satisfies the condition

î A A '  
-  f t A A '

so that the spinor equivalent to a vector vl is
r*' =tf'vf

.  t / '  .

where rf, is a tensor. Therefore,

vf = rle, nu'

where yl isreal for îu'=z:il '.Thecovering map SL(Z,C) goesto o(1,3) byusing

the vector-spinor correspondence.
We present some of the properties and structure of this significant advancement in

developing a unified force theory for the electromagnetic and gravitational fields, which
we demonstrate are related to the twistor algebra and torus topology [7]. In addition to

the general coordinate transformations of the four coordinates xP , the preferred

coordinate system permits the group relation,
x '5 = x5 + f(xt ,xt ,xt  ,xn).

Using this condition and the five-dimensional cylindrical metric or

yields the form

dr' =(&t + y*&,Ï + gudxPdx'

where the second term is the usual four-space metric. The quantity Trs in the above

equation, transforms like a gauge [10, 11]

y'r, = lur-L (6)
ôxP

where the function / is introduced as an arbitrary function. Returning to our five-

dimensional metrical form in its five compact form and four- and five-dimensional form
gives,

Tpr=  8pr+TpsT,s '
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452 = y,odxidxk
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Proceeding from the metrical form in a"cylindncal" space, 6s2 =y,odridxr where
indices i, k ntn 1 to 5, we introduce the condition of cylindricity which can be
described in a coordinate system in which the y* are independent of xs or

ô / i !  =0 .
ôx" 

(8)

Kaluza and Klein assumed yu =l or the positive sign /ss > 0 for the condition of the
fifth dimension to ensure that the fifth dimension is metrically space-like. In geometric
terms, one can interpret xt as an angle variable, so that all values of xs differ by an
integral multiple of 2n conesponding to the same point of the five-dimensional space,
if the values of the .rr are the same. Greek indices p,v run from 1 to 4, and Latin
indices i, k ntn from 1 to 5 and for this specific case, each point of the five-dimensional
space passes exactly one geodesic curve which returns to the same point. In this case,
there always exists a perpendicular coordinate system in which yr, =l and

o!'! =o '
ù-

It follows from those properties Ihat gu, and y*

go, = Y,u then

Ttt  =lrru 'rrrru,

y" =-g'"ror.
(also see equation (7)) and

(e)

can be made analogous so that

(10a)

(10b)

(1  1 )

which is an invariant with respect to the "gauge transformation".
We now use the independence of y,o of x, or ô y,of ôxt = 0. The geodesics of the

metric in five-space can be interpreted by the expression

The gaugeJike form alone is analogous to the gauge group, which suggests the
identification of y o, with the electromagnetic potential, Q,. We can write an expression

for an antisyrnmetric tensor.
ô To, ô rus
a - - = I

ôxP ôx" 
J Pv

dxs &u

E*/r ,  d,  
=" (r2)

where C is a constant and s is a distance parameter. If we consider the generalized
five-dimensional curvature tensor, and using the form for f ,, we can express it in terms

of F,,, the electromagnetic field strength,

" tl6,tc -
I o' = 

1!-;t-t r'" ( l  3)

where J"l;" = 
,/^n 

where F is the quantized force introduced by Rauscher

353



î12, 13, 14] which relates to the driving force for the expansion of the universe.
Furthermore. this force term F' is utilized in the Haramein-Rauscher solution to
Einstein's field equations, which incorporates torque and Coriolis effects (see equations
(39) to @\ in reference [7]). In work in progress, it appears that the topology of the
fluid dynamics of the Haramein-Rauscher solution lead to a dual torus topology. Then
we can write,

(14)

The integration constant, above, can be identified as proportional to the ratio efm of

charge to mass of a particle traveling geodesics in the Kaluza-Klein space [3].
Under the specific conditions of the conformal mappings in the complex Minkowski

space, one can represent twistors in terms of spinors. The spinor is said to "represent"
the twistor. The twistor is described as a complex two-plane in the complex Minkowski
space (see Section 3 and see reference [3] and references on twistor theory and the
spinor calculus cited in this reference). Twistors and spinors can be easily related by the
general Lorer,itz conditions in such a manner as to retain the condition that all signals are
luminal in real four-space. The conformal invariance of the tensor field, which can be
Hermitian, can be defined in terms of twistors and these fields can be identified with
particles [5].

It is through the representation of spinors as twistors in complex Minkowski space
that we can relate the complex eight-space model to the Kaluza-Klein geometries and to
the grand unification or GUT theory. In the five-dimensional Kaluza-Klein geometries,

the extra dimension is considered to be a spatial rotational dimension in terms of T rs .

The Hanson-Newman [6], Rauscher [3,4], and the later Haramein-Rauscher [7,8]
complex Minkowski space has introduced with it an angular momentum or helix or
spiral dimension called a twistor which is expressed in terms of spinors.

The spinor formalism was used by Dirac to define the SchrOdinger equation in a
relativistic invariant form so that the complex scalar time dependent field of
Schrôdinger is in terms of a two component spinor freld. Using this formalism Dirac
obtained a two-valued solution which predicted the observed electron and positron pair.
The spinor field or spinor variable, utilized in the Kaluza-Klein geometry, directly
relates to the spin degrees of freedom that are observed by the Zeeman effect in atomic
spectra. The spin degrees of freedom appear to be fundamental to quantum theory and
to relativity and are a good starting point to treat spin in a fundamental manner. The
Lorentz four-space representation of relativity can be reduced to the direct product of
two two-dimensional complex representations. The spinor variable is the most
fundamental representation of a relativistically invariant theory and spin degrees of
freedom may be formulated relativistically and, hence, also in a possible "quantum
gravity" picture which applies to the Dirac equation. This approach may be applicable
to the Penrose twistor.

We have introduced torque and Coriolis forces in Einstein's field equation to form an
expression for the spin driving forces that we observe in a vast variety of cosmological,
classical, and quantum domain phenomenon [7]. This approach appears to fit well with

E6,rG '
To' = 

l-;4 
Q,'
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the spinor approach in the Dirac formalism in the quantum domain, that is, that the
Lorentz conditions applied by Einstein in relativity may be the origin of the spinor and,
hence, be the fundamental theory that yields the spinor formalism and the role of spin in
physical phenomena [7]. Other implications of the relationship between the Penrose
twistor formalism and the complex Minkowski space, which includes anticipatory
systems and nonlocality, are given in references 123-271.

3. Penrose Twistor and Harmonic Tori Sequencing and Particle Spin

Interest in the twistor program has been in the form of quantizing gravity in order to
unify the physics of the micro- and macro-cosmos in l97l and 2005. Such a procedure
has been taken by Penrose, et al. and is based on the concept ofa more general theory
that has limits in the quantum theory and the relativistic theory [2.2,28].In addition,
there have been approaches to the underlying structure of spacetime in the quantum [17]
and structural regime [2]. A structured and/or quantized spacetime U2,28lmay allow a
formalism that unequally relates the electromagnetic fields with the gravitational metric
17-9,131. Feynman U9,291and Penrose graphs F7,30] may overcome the divergences
of such an approach. In order to translate the equations of motion and Lagrangians from
spinors to twistors, one can use the eigenfunctions of the Casimir operators of the Lie
algebra of U(2.,2) t301.

For the simplest case of a zero rest mass field (photon-like) for nf z spin for n i 0 ,
we can write

Y * 'Qn" ' *  =0 (15)
for A,. . . . ,N wri t tenintermsof N indices,andforN=l,wehavetheDiracequat ion
for massless particles. For a spin zero freld, we have the Klein-Gordon equation

Y M ' Y  * '  g = g (16)
and in equation ( 1 5) for n = 2 , we have the source-free Maxwell equation tr Fru = 0 for
spin I or u, fields, and for n = 4, we have the spin free Einstein field equations,
Ru,=O. The indices p and y run 0 to 3. For a system with charge, then

E Ft" - J p, - J,p, or this can be written u" y = J u andthen we can write
ôx, 

F

T"TL=1" '
oXu

(17)

In this section, we outline aprogram to relate the twistor topology to the spinor space
and specifically to the Dirac spinors. Both Fermi-Dirac and Bose-Einstein statistics are
considered. The relationship between twistor theory and the Dirac "string trick" model
leads a dual torus topology. This topology appears to have, as well, astrophysical
consequences such as the Haramein-Rauscher solution to Einstein's field equations and
observational data in supernovae dynamics, black hole ergospheres, galactic structures,
etc.

The Penrose spin approach is designed to facilitate the calculation of angular
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momentum states for SL(2). The spinor formalism, in the Dirac equation, established
spinors within quantum theory. The twistor formalisms are related to the structure of
spacetime and the relation of the spinors and twistors is also of interest because it

identifies a relationship between quantum mechanics and relativity fl7, 18,30, 3l].
Twistor theory has been related to conformal field theory and string theory [31].

Also, twistor theory has been related to quaternions and complex quaterionic manifolds

[32, 331. The projective twistor space, PT, corresponds to two copies of the associated

complex projective space of CP1 or CP3 xCP3 [31]. It is through the conformal

geometry of surfaces in ^Sa, utilizing the fact that CP3 is an ,S2 bundle over So, that
quaternions can be related to twistors [34].

We can demonstrate a useful relationship between the complex eight-space and the
Penrose twistor topology; the twistor is derived from the imaginary part of the spinor
field. The Kerr Theorem results naturally from this approach in which twisting is shear
free in the timit of asymptotic flat space. The twistor is described as a two-plane in

complex Minkowski space, Ma. Twistors define the conformal invariance of the tensor
field, which can be identified with spin or spinless particles. For particles with a specific

intrinsic spin, s , we have Z"2o =2s, and for zero spin, such as the photon, Z"Zo =0

where 2o is the Hermitian conjugate of Zo , and Z" and Zo can be regarded as

canonical variables such as [ , p inthe quantum theory phase space analysis. The twist

free conditions, ZoZo, hold precisely when Z" is a null twistor. The upper case Latin
indices are used for spinors, and the Greek indices for twistors. The spinor field of a
fwistor is conformally invariant and independent of the choice of origin [35]. For the

spinor, the indexes A and A' take onvalues 1,2 (see references [17, l8]). V/ebriefly
follow along the lines of Hanson and Newman in the formalism relating the complex
Minkowski space to the twistor algebra [6].

Twistors and spinors are related by the general Lorentz conditions in such a manner
as to retain the fact that all signals are luminal in the real four-space, which does not

preclude superluminal signals in an ly'>4 dimensional space. The twistor Z" canbe

expressed in terms of a pair of spinors, aA and n",which are said to represent the

twistor. We write
y"  =(atA,ru, ) (18)

where olo =ire'7î,n,

Every twistor Z" is associated with a point in complex Minkowski space, which

yields an associated spinor, aA, fr,t,. The spinor is associated with a tensor which can

be Hermitian or not. The spinor can be written equivalently as a bivector forming

antisymmetry. In terms of spinors an and rn, ,they are said to represent the twistor Z"

as Zo =(r",ro) (see equation (18)). [n terms of components of the twistor space in

Hermitian form, ç for rp*' = g/A, we have,

q (2" zo) = zY * zYj * zlz' * z! z'

3s6

(1e)



where the a index runs 0 to 3. The components of Z"
identifiable with a pair of spinors, ao and n,, , so that

c 0 ' = Z l  ,  r o , = 2 2 ,  T r ,  = 7 3

so that we have

ZZu = poio + p'7r+nolto * o,,|rt' .

are Z ' ,2r ,22,23 and are

(20)

(2r)
Note that the spinor ar' is the more general case of pn . This approach ensures that the
transformations on the spin space preserve the linear transformations on twistor space,
which preserves the Hermitian form,rp .

The underlying concept of twistor theory is that of conformal invariance or the
invariance of certain fields under different scalings of the metrie guu. Related to the
Kerr theorem, for asymptotic shear-free null flat space, the analytic functions in the
complex space of twistors may be considered a twisting of shear-free geodesics. In
certain specific cases, shear inclusive geodesics can be accommodated. We consider the
shear modulus W and a spacetime torque term rp, as the source of the shear inclusive
geodesics in the stress energy tensor of Einstein's field equation in reference [7].

Twistors are formally connected to the topology of certain surfaces in complex
Minkowski space Mo. This space, the complex space C4, is the cover space of Àa , the
four dimensional Riemannian space. On the Riemann surface, one can interpret spinors
as roots of the conformal tangent plane of a Riemann surface into R3. This approach is
significant because it ensures the diffeomorphism of the manifold. Complexification is
formulated as Zp =xï+xh, which constitutes the complexification of the
Minkowski space, M4. The usual form Minkowski space is a submanifold of complex
Minkowski space. Twistors are spacetime structures in Minkowski space, which is
based upon the representation of twistors in terms of a pair of spinors as we have shown
14, 2ll. Twistors provide a unique formulation of complexification. The interpretation
of twistors in terms of asymptotic continuation accommodate curved spacetime. One
feature of this approach to quantum theory in twistor space leads to a quantum gravity
theory [21].

This spinor representation of a twistor makes it possible to interpret a twistor as a
two-plane in complex Minkowski space, Mn. Then we can relate aA and tu, so that

€^' i" a solution as

at" = i€-'ns, (22)
for the position vector 6*' in the complex Minkowski space. We can also consider the
relationship of ZM' and no'to a complex position vector as

z A A ' _ É A A ' + o A E A ' , (23)
where an is avariable spinor. Just as in the conformal group on Minkowski space, spin
space forms a two-valued representation of the Lorentz group.Note that SU, is the four

357



value covering group of C (1, 2) , the conformal group of Minkowski space. The element

of a four dimensional space can be carried over to the complex eight-space.

For spin, n the Dirac spinor space is a covering group of ^sQ where this

cohomology theory will allow us to admit spin structure and can be related to theSt/,

Lie group. Now let us consider the spin conditions associated with the Dirac equation

and further formulate the manner in which the Dirac "string trick" relates to the electron
path on the double torus topologY.

(r\ fo)
For a spin, s = fi particle the spin vector u(p) is written 

"t [O.,| ""0 [.rJ 
for spin up

and spin down and p is momentum. For a particle with mass we have for c *1,

(-,r"o"!* B*,'),y =o
( o r r )

for the time independent equation, and we can divide Eq. Q$by ihc and have,

( , 3-*t:'], =o
[ ' , ô t o  

h  Ï

(24)

(2s)

where fr. =mclh and yr=ihcdp where indices p run 0 to 3. The dependentDirac

equation is given as,
/  ^  \  . ^

| - in"o,+ + p^"' lv * i4 = o .
[  " ô " u  ï  f i A l

The solution to the Dirac equation is in terms of spin u(p) as

v' ="bb;(p.r- Eù (27)

the Dirac spin matrices To = ihcao. The spinor calculus is related to the twistor algebra,

which relates a trJvo-space to an associated complex eight-space (see references [37,
381).

An example of the usefulness of spinors is in the Dirac equation. For example, we

have the Dirac spin mi 
( o o')

Itrices, ,, =l;, "t 

)= 
-, Ba* where terms such as yo\- yr)

come into the electroweak vector-axial vector formalism. The three Dirac spinors (also

called Pauli spin matrices) are given as

o- =lo tl.o =lo -1 
*a o. =11 o.l (28)- r  

l r  o l ' - ' l r  0 l  l0  - l l

and y, = iTo\rTzlz -- iy'yty'yt for 7o = B is given as,

(26)
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I
I

(2e)

(30)

Note that the Dirac spinors are the

(r  o o ol
l 0  1  0  0 lt '=lo o -r o I
(00  0  - r )

for trace trp = g, that is, Eq. (29) can be written as,
(r" o Ir r=F=lo _rr)

where we have the 2x2 spinmatrix 
", 

f, = l] I
l0 l l

standard generators of the Lie algebra of SUr.
The commutation relations of the Dirac spin matrices is given as

( , ,  , . )
l ru,r"  l  = ruf '  + Yor '  = iguu I (31)

(32)

(33)

(35)

and detlfr"=a"tllSr"l where g, is the metric tensor. The Dirac spin matrices come
into use in the electroweak vector-axial vector model as yo(I- yr) for y, as,

Ts = i ToTtlzh = i yo yt r'yt
where indices run 0 to 3.

We can also write,

/,,Ç',*u)= t rl:)G') "'^'
which expresses some of the properties of a five-dimensional space having To, Tr.Tz, Tz
and fs. Note that y, is associated with a five-dimensional metric tensor. This five-
dimensional space passes exactly one geodesic curve which returns to the same point
with a continuous direction. Note that this is a similar formalism to that of the Dirac
string trick 720" path which can be mapped to the surface of a double torus.

A connection can also be made to the electromagnetic potential; and the metric of the
Kaluza-Klein geometry. We can express Tr5 interms of a potential rpo so that

ros = JTi{o (34)

where *=8/F and where F ="7G or the quantized cosmological force [7,12,13]
(also see equation (1a)). Then we have a five-space vector as,

0
0
0
0
I
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Through this approach, we can relate covariance and gauge invariance l2ll.
Using Poisson's equation,

I
Y Q u = * n o P o

where again * =8"/F as above. The electromagnetic freld,Fu,, can be expressed as,

- ôeo ôtp,
r  = +- pv 

ôx" ôxp

(36)

(37)

which yields an interesting relation of the gravitational metric to the electromagnetic

field. Also the Lagrangian is given as I = 
\ O* Oo, so that L = tJ-i for the metric

g. Note L=IJC dr, where d" ,"pr"."rits a four space. Now let us retum to our

discussion of the twistor algebra and relate it to the spinor calculus. The Penrose twistor
space also yields a five-dimensional formalism as is also formulated by the Kaluza'
Klein theory.

Both projective and non-projective twistors are considered as images in a complex
Riemannian manifold in its strong conformal field condition. Duality, anallic
continuation, unitary and other symmetry principles can be incorporated by using
appropriate (Bose-Einstein or Fermi-Dirac) spin statistics in analogy to the Hartree-
Fock spaces or Fock space. Particles can be considered as states as the Fock space
elements or the "end" of each disconnected portion of the boundary of the manifold.

The quanta are associated with a quantum field of particles that carry both
momentum and energy. The total energy Hamiltonian can be defrned in terms of a

number of simple phonon states which can be expressed in terms of aj creation and a,

destruction operator states. Since all creation operators commute, these states are
completely symmetric and satisff Bose-Einstein statistics. Such phonon states, having a
defrnite number of phonons, are called Fock states, which is the vector sum of the

momentum of each of the photons in the state. The ground state lO) can be considered

the photon vacuum state or Fock state where the photorr is taken as a phonon state. The

creation and destruction operators commute as \a,,a)|= 6n,, for the delta function â,,,

t3el.
In this picture, we can consider an n -function as a "twistor wave" function for a state

of n -particles. Penrose [17] considers a set of r -massless particles as a first order

approximation. We form a series on a complex manifold as elements of the space C, as

-f ,  f , (r" \  f r(r" ,y"\  f r(r ' ,y",  xo\. . . (38)

which are, respectively, the 0ù function, l't function, 2nd function. and 3'd function, etc.

of the twistor space, which are also elements of C". We can also consider

fo, f, fr, -fr,.... asthefunctionsof severalnestedtwistorsinwhich /r isthecentral

term of the wave of the twistor space. We can say that these nested tori can act as a
recursive sequence. In work in progress we consider a recursive fractal function of

nested tori, that may be best expressed in fractal quaternions [15], to define the
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magnetohydrodynamic structure of spacetime at all scales (see reference [8] for related
worQ.

Penrose [17, l8] suggests that, to a first approximation, 1{ corresponds to the
amplitude of a massless, spin 1 particle, f, to a lepton spin Yz particle, and l, to
Hadron particle states, and f to higher energy and exotic Hadron particle states. Mass
results from the breaking of conformal invariances for f, for n = 2 or greater, similar to
the ,s-metric approach [a0]. The harmonic functions/] form a harmonic sequence,
where f, for n =2 form the Fermion states, and f, for n = 3 form the Hadron twistor
states. Essentially, in the twistor space, we have a center state fo around which

fr, .fr,... occur. Each of these sequences of waves forms a torus, hence, f, nd -f,
form a double nested tori set consistent with both spin I and spinYzparticle states where
all n states are elements of the twistor, z , as n e z .

In the specific case of a massless particle with spin for l, the two-surface in
complex Minkowski space conesponding to the twistor represents the center of mass of
the system so that the surface does not intersect the real Minkowski space. This reflects
the system's intrinsic spin. We see an analogy to the triple tori Calabi-Yau string theory
[41]. The higher order f may describe higher order string modes or oscillations of

Zo2o =0 or fo. This occurs for the case using -fr, .f, and, f, and, hence, all known
particle states.

We can consider the topology of three Penrose projective twistor states which are
PT , PT* , and PT-. The PI* , and, PT- are meant to represent the domain of pT
where we denote these two states in which (-1,1) are elements of /where s is small.
We denote two line elements which are denoted in terms of twistors as a surface on the
sphere ,S3 as P?1 which corresponds to 2."1=O *rd 4" 1=O for t=I-e

, t

forPT*, and PZ- gives t--L-s=e -7. These two branches corespond to a
trans formation matrix,

( to t r )

l0 I  0 ' l
I t  0  1  0 l
[o tor )

(3e)

This gives us a translation formulation for vectors into the states of spinors in terms of
/ , in terms of the spinors
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which is Zi and, t - +1 since s is small. Then in terms of twistors,

îù^ = a)^ a 
"2na 

-ôf:
2 ^ R

do-
(4r)

for î", = tîu, where a and n are orthogonal spinors. The term 
"6* * is small'  

ôao

compared to aA and nn since s is small. The unit spinors or vectors are îon and ftu,

for both A,B :1,2 .

The projective twistor space, PZ , corresponds to two copies of CP3, which has an

associated complex projective space. The PZ space is the space which yields the torus

topology of the Riemann surface of genus g = 1. The genus I topology contains one

"hole" or singularity, genus 2, two holes, etc. The two-hole system is a continuous
manifold which can represent two connected tori or a double torus producing an

equatorial planar membrane. This topology is related to the high-energy plasma

dynamics found around black hole ergospheres and their equatorial accretion disks. It is,

as well, observed in stars, and gas and dust circulation within galactic disks and halos.

Observation of double tori topology at the cosmological level may, as well, be evidence

of a structured polarized vacuum interacting with the high energy plasma dynamics at
these scales [8].

4. Some Considerations of the Uniqueness of Vector Space and Torus
Topologies

We explore some unique features of the torus topology and their possible vector

spaces. We consider the relationship between the I = (Jrx(J, group and the 52 group.

An example of the n - dimensional manifold, which is not a product of n -one-

dimensional manifolds, is given by the sphere S". When one deals with two or more

real or complex variables, there is usually a manifold, M , onwhich these functions are

definable. We explore some of the unique surface features of the torus topology and

compare them to the Euclidian spherical topology. The surface of a sphere of unit radius

in three-dimensional Euclidian space , ,S', can be triangulated on the boundary of a

tetrahedron. For the torus, Z, its triangulation, K, consists of seven O-simplexes and

fourteen 2-simplexes. The contractable one-dimensional sub-polyhedron of K contains
all vertices ofK. The two generators commute so that the torus group is generated by

the two commuting generators - Z @ Z (see Section 5).
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Themanifold 7" is the n- dimensionaltorus. I f  n=2,thenT2 =,SIxSt def inesa
torus. The torus is a subset of R3, where R is the topology on the real numbers. The
sets X and I' are called the topological space. If X is a set as a discrete topology, then
Ycan be a collection of all subsets ofx, i.e., the set 2'. Any finite or infinite
subcollection {Z"l otthe Xo has the property thatwZo,eY, or the union of Zo,are

elements of r. The torus is a subset of R3 , and 12 = .sr x sr is the cartesian product of
two subsets of .R2 so that it is at least a subset of R2 x R2 =,Ra . The torus, which is in
.R3 , is not flat, but the torus sr x sr in Àa can be considered flat. Interestingly, the
topology of the two tori are the same, which has to do with the precise definition of
flatness and curvature.

The definition of curvahre depends on the specification of a Riemannian metric [42].
Once we specify the Riemannian metric as we have done in reference [7], then we can
define our flabress of T2 . This entails the specification of the metric gp, or ?r, which

allows us to speciff the restrictions that the points in R3 lie on the torus. Then, with
respect to the metric 4u,(whichis the distortion of the metrical space resulting from our
torque termr'in the stress energy tensor of the field equations), we have a curved

space torus. For Z2=.9rx.ir, which defines two points (.r,y) and (*',y'\ in T2,the

difference is expressed u, (r - *')' *(J - y')'lÇ br theusual gr,. For this metric ?n2

is flat and does not lie on R3. The reason for this condition is that for a two-
dimensional, compact, connected surface to lie in .R3, it must have at least one non-zero
curvature.

In defining a vector space on a sphere ,S2, or torus I, we consider a simple
observation of a two dimensional surface in l?3 . For example, a disk *' + yt < a' for
z = 0 has a top side and a bottom side, or a sphere 52 has an inside and an outside, as
does the torus 12. These two-sided surfaces are defined as orientable since we can use
their two-sided properties to define directions or orientations of vectors projected from
their surfaces in R3. Hence, we have two normals at each point, an inward, or outward
pointing normal vector â .

If we consider outward normal vectors only, i.e., one-sided or top-sided vector affays
at each point, then for short vectors, in analogy to a "crerv cut" in a Euclidian space, no
division or part will occur in ,S2 space. However, in a curvilinear vector space where
the normal vectors are long and curved on a ^s2 spherical space, a non-uniformity or
"part" will occur in this vector space ofan 52 space. In the case oftop-sided vectors,
normal to a torus, both short and long vectors will not have a "part'or discontinuity in
vector curvature because the "hairs" can be "combed" along the tori space continuously.
These normals can be curved in this topological space. It is clear that all non-normal
vectors to a sphere, either short or long, will have a"parto', but those which lie on the
surface of a torus will not require a "part'' but may be more densely packed at the
curved surface of the inner ring of the torus as compared to the outer ring of the torus.

363



That is, the vector density is greater in the inner surface ofthe "hole" genus g = 1 than

in the outer region of the torus topology; clearly, particle density can change. Hence, we

are guaranteed, in general, a diffeomorphic manifold for a torus in curved space, but not

in general, for a spherical topology. Therefore, for any non-Euclidian space,
diffeomorphism holds for the torus topology.

5. Quaternions, Groups, and Allowable Spatial Structures

The complexified rotational dimensionality of quaternions may be the most
appropriate approach to the description of twistor space in the context of a fundamental
rotational force embedded in the structure of spacetime itself - spacetime torque [7]. We
explore some of their interesting and related properties in this section.

5.1 Quaternion Formalism and Simple Topological Spaces

The quatemion group is isomorphic to the group with elements l'-t,-i,i,k,-k,

and i2 = j2 =k2 =-! and ij =k, jk=i,lci=j. These properties operate similar to

complex numbers where t = Æ and i = -1' In the case of the quaterrrions, l, j, k can

represent orthogonal dimensions in three-space. The isomorphism condition states that

the gfoup elements of two groups can have a one-to-one correspondence, which is
preserved under combinations of elements. Then one can construct a group table as a

square array; this is only necessary for higher order groups. Quatemion groups have

S(J, or SU, subgroups and can be related to O, + .

Synnmetric groups such as the quatemion group, which is a two-dimensional
unimodular unitary group, are simply reducible $oups. Following Hamilton, we

identi$ Euclidian four-space with the space of quaternions so that

U :{p+ xi+ yi+ zkJ where p,xp,!,2 e Ào are elements of the Riemannian space

R4 . The Euclidian three-space is the subset of imaginary quaternion,

H,,={xi+yi+zk} where x,y,z e R3 (seeSect ion3).

5.2 Quaternions and Quantum Theory

The key is that the Dirac string trick represents the properties of the symmetric group

which is S[.I, . The SU, is isomorphic with the unit length of the quaternion in four-

dimensional space. Quaternions, constructed by Hamilton, can represent rotations in
three-space, which can be performed without matrices. They also obey non-Abelian
algebra. Furthermore, correspondence of quaternions can be made to vectors and

tensors. Quaternions are a viable algebra for understanding rotations in three- and four-
dimensional space. Due to symmetry considerations in the Dirac electron theory, a720o
twist is required for the electron to return to the exact same quatemion state, where a

360o rotation will not and must be doubled.
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Quaternions are a complex number system with properties similar to the Rauscher
[a] and Newman [5] complex eight-space. In the usual notation, we start from any
complexnumber, a+ib where a andb arereal,where axl=a and fâ isimaginary.
The quaternion is written as I +ia+ jb +Ëc where t,a,b, and. c are real and they are
multiples of a real unit I and imaginary units i,7, and k . The following conditions,

and

also

and

which yields a set of recursive relationships.
Quaternions also have multiplicative properties similar to the complex Minkowski

eight-space. Let w=t*ia+ jb+kc ,then the conjugate of w is w and is given as

i = t - ia - jb - kc, and the modulus is given us, .i, or,

vtil, = t2+a2 + b2 + c2 . (43)
In fact, quaternions contain all the properties of complex numbers except for

commutivity and thus comprise a non-Abelian algebra such as in the quantum theory.
Note that we have used a slightly different notation from Hamilton; that is, we write
ia, jb,etc., instead of ai,bj, etc. Quaternions are comprehensively explored by L.H.
Kauffrnan. (see references [5, 43]).

If I = 0, then we have a pure imaginary quatemion or
u = i a + j b + k c

j k = - k j = i

k i = - i k =  j

i j = - j i = k

i t = j ' = k 2 = - l

ijk = -1

i ' =  j ' = k t  = i j k = - l

ut  =-b,  +b,  +cr)

@2a)
(42b)

@2c)

(42d)

@2e)

(42f)

@aa)

(44b)

(4s)

and then

and are of a unit length
a 2  + b 2  + c 2  = l

so that n2 = -1. Also for two pure imaginary quatemions
u v = - u . v + u x v  ( 4 6 )

as the dot and cross product of vector-like quantities in tlree-space. The addition of the
scalar component connotes a coordinate in the fourth dimension and hence we see the
analogy of quaternions to the four-dimensional Minkowski space, where I is time, and
4 correspondsto x,b to y,and c to z.Whatisuniquethenaboutthequaternionic
"space" is that we have, for example, the permutation relations from equations (42a) to
(42f), and thus quatemions form a non-Euclidian set with the properties for pure
quaternions uv in equation (46). We can form a set of pure quaternions on a two
dimensional sphere of -1 in each of the three quaternion directions i, j, k. Note that the
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complex Minkowski space is formed by one imaginary component i, multiplied by

x,y1 arLd z.Nowconsider A and B realnumbersand a isaunit lengthof apure

quatemion, then u2 = -l and the pOwers of A+ Bu occupy the same form aS powers of

complex numbers. That is, rz is indistinguishable from any other rl- 1 = i .

Let us now relate the quaternions to a complex numberZ =A+uBwhich we can

write as Z =cos? +Rsind or, in general,
Zn = R" cos(nd)+-R' sin(n7)u. (47)

We can proceed with mapping of the n'h roots of the quaternions. Consider a space of

N+1 dimensions in which we represent N+1 space in the form of A+Bu, where I

is a scalar and B is a real number. Now a is a limit vector in an N-space represented

as .l?N which is a Euclidian N - space. The vector-like quantity z belongs to the unit

sphere ,SN-r about the origin RN and is taken to have squares equal to minus one' or

tr' = -I for all vectors ^!"-t . In general, zv is not defined in a higher dimensional
geometry such as the eight-dimensional Minkowski space of Rauscher [4] and Newman

[5]. We can, however, create power maps of the form Z' +K where K is a vector in

RN*t and Z = A+ Bu for u2 = -l for all uin ,SN{. }Vith this approach, we can form

classes of hypercomplex iterative processes with incursion in any arbitrary dimensional
space. This is the key to Kauffman's ability to relate the hypercomplex interactions

formed from quaternions to define higher dimensional fractal sets [43]. In particular, he

utilizes this method to explore higher dimensional Mandelbrot and Julia sets. We have

explored the use of fractals in describing physical phenomena [44].
One of the basic principles of the quaternion twist holds for the Dirac string trick for

720o degree rotation. A half cycle of twist, or 360 degrees, is expressed in terms of
quatemions as ijk = -l . To return to *1, another twist through 360o must occur. Spin

must involve a preferred geometry in space [a3]. The geometry of a preferred direction
can be constructed by the magnitude of total electron transfer. The Penrose spin

approach is utilized to calculate angular momentum andSLQ) '

In terms of complex analysis involving quaternions, a single 180 degree tum is an

instance of i = GT where i2 = -l and represents a 360 degree right- or left-handed

tum. The case for i3 =-i is a non-trivial rotation and io =1 returns the rotation of the

electron and observer to their original states, through the 720 degree rotation - hence,
the interpretation of the quatemionic formalism of one square root of -1 for every

direction in three-dimensional space.
We can consider the movement of the electron on the bounded space of a double

torus stacked in such a way to have contiguous surfaces at the equatorial plane [7]. In

order for the electron to pass through a 720 degree rotation and return the spin and

chirality to its original state, the electron path must be different than that of a sphere. A

double torus is a likely topology and may result from a fundamental torquing force and

Coriolis effect on the spacetime manifold of a polarized vacuum.
ln quantum theory, the symmetry group is the SU, group rather than the three-

dimensional space rotation group such as Os*. The SU, group is isomorphic with the
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quaternions of unit length in four-dimensional space. In references 144,4sj, the group
theoretic approach that relates spinors, twistors, and quaternions is detailed. A spinor is
a vector in two complex variables. Antisymmetric conditions lead to the second twist
involving the quaternions to create the cycle of the electron to its original state. The
antisymmetric conditions utilizing spin calculations can be conducted with Clebsch-
Gordan coefficients, 3j and 6j symbols and other components of angular momenhrm
[46]. Through these means, one can calculate the correct spin interactions involving
multi-particle quaternion states. We will not pursue this further here but it is a work in
progress [44]. Suffice it to say that the iterative properties, formulated here, have a
variety of applications such as scalable inclusive relations from the quantum domain to
astrophysical and cosmological systems [28].

6. Conclusion

We have demonstrated a unique relationship of the dual torus topology to the spinor
calculus, twistor algebra and the quatemionic formalism. This topology appears to be
ubiquitous in Nature and may result from spacetime torque and Coriolis forces
generating spin/rotation at all scales, from galactic and stellar objects, supernovae, to
the weather patterns in the Earth's atmosphere, and may even be a key to defining an
electron's path. The tori form appears to also occupy a role in unification models
through the Ë, group utilized in supersymmetry models.
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