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Abstract
class II mesoionic xanthines such as anhydro-(8-hydroxyalkyl-5-hydroxy-7-oxothia-
zolo[3,2-a]pyrimidinium hydroxides) ate unique, small atomic weight, stable crystalline
organic compounds that can be represented as a combination often different resonance
structures for each simple xanthine molecule. Each resonance structure contributes a
certain percentage to the total resonance of the molecule. This unique resonance
represents ten different quantum states of the entire molecule and can thus be exploited
as a potential substrate for a ten-qubit register. The number of possible superposition
states for such a register in a single molecule is potentially as high as 2' states or (in this
case where n = 10) 1,024 complex numbers. In solution the least-unit of this mesoionic
crystalline structure is scalable suggesting putative utility for bulk NMR quantum
computing. It will be shown that these ten-qubit registers are amenable to standard
Deutsch-Jozsa, Shor and Grover algorithms. Additionally, we attempt to formalize VO
techniques for our Class II mesoionic xanthines based on a coherent control RF process
of cumulative resonant interaction where by utilizing additional degrees of freedom
pertinent to a relativistic basis for the qbit (r-qbit) new HD commutation rules allow
decoherence to be ontologically overcome.
Keywords: Class II Mesoionic Xanthines, Resonance structures, Quantum computing,
NMR

1. Introduction

Mesoionic purinone analogs, a large and relatively new class of bicyclic
heteroaromatic compounds, whose ring systems possess æ-electron systems that are
isoelectronic with those of the various known purinones, have been synthesized and
characterized. over the last few decades [1-7]. Class I mesoionic analogs have been
classified and defined as being those that are derived from known five-membered
mesoionic ring systems. Class II mesoionic analogs are those that are derived from
known six-membered mesoionic ring systems. In 1996, Giandinoto, et.al [8] had
synthesized and characterized a number of novel Class II mesoionic xanthine
acyclonucleosides as potential anti-neoplastic and antiviral agents. Class I and Class II
mesoioic purinones have been formulated and examined from a quantum chemical
standpoint [9-10]. The generalized structural representation of mesoionic xanthine
acyclonucleosides is shown in Figure 1 below.
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In particular, the mesoionic xanthine acyclonucleosides where R': H are especially
useful since this moiety is ideal in giving the molecule a handle for attaching it to
metallic, organic, polymeric or serniconductor surfaces/substrates such as GaAs, GaN,
CdSe/ZnS. The definition of a mesoionic compound is a compound that cannot be
adequately represented by any single covalent or single dipolar resonance structure.
These Class II mesoionic xanthines, such as anhydro-(8-hydroxyalkyl-5-hydroxy-7-
oxothiazolof3,2a]pyrimidinium hydroxides) cannot be adequately represented by fewer
than ten different resonance contributors. Figure 2 illustrates these ten resonance forms
and all of their possible quantum inter-conversion states. Each resonance structure
shown in Figure 2 corresponds to an individual quantum state of the total molecule and
all ten are required to adequately represent the molecule in its totality of superpositional
quantum states. In quantum computing, there may be multiple quantum states in
superposition. In this particular case where there are ten qubits, the quantum state of
superposition would be the following orthonormal basis set

lV) = o,ln*rrr..*,) for all i:1-1,024 andfor all n:l-10 where x, is either 0 or l. (l)

More succinctly the above may be written:lp,)=Ëo,l;) where l;)is a shorthand
i=l

notation for an orthonormal basis set of indice 
" \i,i,ir...i,..'i,)whereN 

= 2' .

o
l l

\A|--'
o/-Y,\s,,r'

Ç"o*

Figure 1. Generalized structural representation of Class II mesoionic xanthine
acyclonucleosides. n : 1,2; R = H, CH:, CH:CHz,CaHs: R' = H, CH:

The Greek letters a, are referred to as the amplitudes of the register and are complex

numbers. In a lO-qubit register, there are therefore 2r0 or 1,024 complex numbers for

the total register. Since the probability ClVlt) of a quantum state or set of quantum

superpositional entangled stâtes must always be equal to one, the following relationship
for the coefficients of the quantum registers must also be true

t,024

Zoi =lv l '=t . (2)

For a 3-qubit register, there exists an 8-dimensional complex vector. For a l0-qubit
register there exists a l,O24-dimensional complex vector. In order to initialize this
vector space (register) for a quantum computer, an algorithm is necessary. In each step
of the algorithm, the vector space is modified by multiplying it with a unitary matrix,
which, by definition is a complex matrix.
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Figure 2. Resonance stabilization in Class II Mesoionic Xanthines

Some of the most important of these unitary transformations or "quantum gates" are
the following [11]:

HadamardGare: 
1*#tl ],) Identity matrix: t =.. = 

[i I
Pau,iX:ftl l)=o=* r*rv,ffl: ;) =o,=o,

CNOT Gate:

_ . 1oVt"-,
l t l l

^o-\fr-\1-.r'ê
R !4.

J J J



f r o
Controlled-Phase: l6 1

I
l 0  0

Loo

Toffoli Gate: PhaseGate:*[ ;  
i )

ftcu,", ætl ":^)

( r  o )
t1l [o -r)=o"=o'

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 1

oo l
o  o l
t  o l
0 r l

1 0 0
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0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Since eot = -1 and 
"o% 

: i, th"n 
"'% 

= 
",6 

. Therefore, the % tut"is the square root of

the phase gate and the phase gate is consequently the square root of the Pauli-Z gate

since i = Gî . An operator or matrix is defined as being unitary if the following

operation is true: (J(J-t =1 . Also, if the complex conjugate transpose of a matrix

UT equals its inverse, (J-' , it is considered to be unitary. For example, the Hermitian

conjugate of a matrix I exhibits the following relationshi p: Ai = (O')' ,where ,4r is the

transpose of the matrix l. Suppose we take the following 3x3 matrix A (where some or
all of its elements are complex numbers) and perform the aforementioned operations.

( o' erz o,, )t ( o' ezr or, ) ( o'r, o' ,., o-r, )
tr '  =l o,, ' ,, o;;, o,'.1 | " I A' =('t '). =l o'r, e*r, o'rrl. (3)

l_ .  _ ,  1= lon  
ozz  ou l .  \  /  |  . . _  ._ l

(o' azz au ) \o', azs an ) \.o r Q zt o tt )

The matrixltis said to be self-adjoint or Hermitian conjugate. Each element of lT is
the complex conjugate of the transpose of ,4. As another example, let's take the Pauli-Y
gate and compute its Hermitian conjugate:

*, :(0 
-t) ' -f0 -^' l=r,. 

Likewise, forthephase gate s,=[1 9l =f1 o.]
o i  = [ r  

o J  
= [ r  

o  ) - " '  
'  ! ' r v ' ! r u v " v r  

\ o  i )  \ 0  
- i )

Notice that the Hermitian conjugate of the Pauli-Y gate is itself. However, the
Hermitian conjugate of the Phase gate S is not equal to itself. Both of these gates are
unitary since the transpose oftheir complex conjugates are equal to their inverses.

2. Tensor Products and Associated Operators

A tensor product is an operation of putting vector spaces together to form larger
vector spaces. This type of construction is absolutely essential to the understanding of
the quantum mechanics of multiparticle systems. Let V and Zbe Hilbert vector spaces
of dimension m and n respectively. Then V@W(read'V tensor W) is a mn-
dimensional vector Hilbert space [12]. The elements of V @W are linear combinations
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of tensor products l")elrl,) of elements lvl of V and lw) of W. Additionally, if l;) ana

lf) ut" orthonormal bases for the spaces V and W, tfren | ;) I I f) is a basis lor Y BW .

The common abbreviated notations for this type of operation are lv)lw),lv,wlorlvwl
for the tensor product l") e | rv) . Now suppose we introduce the operators I and B tbat
are linear operators on Zand l/respectively. We can now mathematically show that the
following is true: (,eOa)(lv)elra,))= elv)aalw). Subsequently, it may also be

/ \
shown that (l8B)l I",lr)el4) | = \a,dlv,)a Blr,l . The narural inner product of

\ r  , t  i

the spaces V and l/' on V @W may now be succinctly defined in terms of the following
equation:
/ \

I T*ln)*1.,),Tà, 1,,)s|.,) | = \-";r, (",1";X.,l''r) rhis well derined inner
\ r  J  )  ,

product can be shown in a more concrete manner and a less abstract manner as a matrix
or Kronecker product whereby ,4 is an m by n matrix and B is a p by q matrix as shown
below:

(tuB 4,8)
A8B=l : 

'.. 
: 

l.* 
this form, terms like ,4518 refer to pby q sub-matrices

\A^rB A_"8 )
whose entries are proportional to B with the proportionality constantA_,. As an
example, the tensor product of the Pauli matrices Xand l/is illustrated below:

fo o o-, . l
,*r=(0, 

1v)-10 0 t o l .  e close look at the 4x4
\ r r  0Y)  l0  

- i  o  o l
L r  0  0  0 l

matrix shows that the

product of the Pauli matrices X and, I is a compilation of two Pauli-I matrices that are
diagonalized from the upper right of the matrix to the lower left of the matrix with zeros
everywhere else. A useful notation for a vector space that is tensored to itself ir l,f)'o
where f r) is t"osot"d with itself fr times. For example, Iv)*' =lw)glvl. Additionally,

the Hadamard transform on n qubits, H*', may be expressed as:

H*, =+2(-r)",14(yl
"12'fr '  

'  '

3. Commutation Relatons for the Pauli Matrices

Two operators are said to commute with each other if and only if the commutator
between the two operators is equal to zero. For example the commutator of the Pauli-X
and Pauli- Y matrices is shown as follows [13]:
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tx,yt=n-o=(0, :lf: fl-f: llt ': 1l="fl 0.)=ziz (4)
[ r  oJ[ ,  0 )  ( r  Oru 0) \o -r)

Clearly, the Pauli-X and Y matrices are non-coûrmutative as is demonstrated above. If

the two operators A and B commute, I,l,A1=0 and are said to be simultaneously

diagonalizabte.T'bis occurs tf ond only if there exists an orthonormal basis set (i.e.,li))

that is some common orthonormal set of eigenvectors such that both A and B are
diagonal with respect to that basis set. This would be the case if

A=L,o,l4(; l ,r  = LA lù(; l  .
On the other hand, two operators are said to anti-commute if the following operation

is true: { .e,A\=AB+BA=0. A is said to ant i-commute with B i f  {A,B\=0. The

commutation relations for the Pauli matrices are: lX,Vl=2iZ , lV,Z1=2iX and

lZ,Xl=2iY . An elegant way of writing this is by using tJ;'e Levi-Civita anti-symmetric

permutation tensor (actually a pseudo-tensor), er.u on the three indices where €7,1 =0

except where €n3 = t2zr = t3rz =l and err, = t2r3 = €rtz = -1.

lo,,oof=2ifc,ro,. (5)

The quantum mechanical operators fo, m"j/-omentum are shown below [14]:
^  . -  ô  ^  . . ô  I  . *  ô  n _ ^  

^

p,=-ihâ) Pr=-,^ U, 
, P"=-rr;. The operator corïesponding to pi is

a -  (  a \ 2  ^  â z  ^  ^

p: =l -ih+ | = -h' j . with similar expressions for pj and, p! . The commutation- 
\ ox) ox-

relation for the positional vector i and its component linear momentum operator in its
f -  " l  

t r  ^ - r  r  ^  I
direction is: I i,p, l=l ,,-in!l=l in{,* | = fft . Likewise, the commutators for the

L - -J  L '  ô*J  L  ô*  I
positional vectors l, and Z and their corresponding component linear momentum

operators ( p in ttre same direction) are also equal to ih . However, the cornmutators of

the positional vectors in different directions from that of the momentum operators are,

of course, equal to zero (i.e.,l;,i,1=0, h,â-l =o,lr,i,1=0, etc.) and are thus
L  - l  L  _ l  L  r

commutative or said to commute with one another.
The classical mechanical angular-momentum L of a particle is described in the

following manner: r: ix + jy + kz where r is the vector from the origin to the
instantaneous position of the particle and x, y, and z are the instantaneous coordinates of
the particle. Therefore, the particle's angular-momentum Z with respect to the
coordinate origin is L:rxp, where Z is designated as the following determinant.

336



l ;  j  k l
t =1, y t l. therefore we have the classical mechanical component angular-

t t
lp, py p,l

momentum vectors: L, = !p" - zpr, L, = zp, - xp" and L" = xpy - !p,. TIte angular-
momentam vector I is perpendicular to the plane defined by the particle's position
vector r and its velocity vector v (i.e., p : mv). However, in the quantum mechanical
realm there are two types of angular-momentum: Orbital angalar-momentum which
results from the motion of a particle through space, and is an analog of the classical-
mechanical quantity L and spin angular-momentum which is an intrinsic property of
microscopic particles and which therefore has no classical-mechanical analog. The
quantum-mechanical operators for the components of Orbital angular-momentum are

designated as foltows: î,,=-,n(r!-r+l , î,=-,n(r!-r+),
\ oz oy) \ or oz)

/  ^  ^ \  
"  l ^ l  ^  ^  ^

î ,"=-inl-*-r!1. Rt.o, ,:=lÈl=î..L=ii* i ' ,*r:, . t  may now be shown"  \  ay "ô* )  |  |
that the following commutation relations between the x, y and z components of the

orbital angalar-momentumoperators are as followrr [1,, i" I = ih î,"and by performing
L  - t

two successive cyclic permutations on the coordinate indices we naturally obtain
l - "  " l  "  l - ^  ^ l  ^
I Lr,L, l= ih L, and I L,,L, l= ih L,. The components of orbital angular-momentum
L "  I  L  J
therefore are non-commutative. Alternatively, however, it may be demonstrated that the

total orbital angular-momentumi , commutes with each of its components as is shown:
I l  " l  I l  1  1  " l  I l  " l  I t  " l  I l  " l  I l  ^ l  l - a  " l
|  , ]  , t ,  l= l  I ) ,+ L' ,+ L:,L,  l=l  L ' , ,L, l+l  t ' , , i , l * l  t | , , i ,  |  =l  t ' , ,  i , l * l  4,L, l=
L J  L  J  L -  

-J  
L '  J  L  J  L '  J  L " ' - ]

T "  ^ 1 "  " l - "  r l  l - ^  ^ l ^  ^ l - ^  ^ l  ^  ^  ^  ^    ^  ^  ^

I  Lr,L, lLr+ Lrl Lr,L, l+l L,,L, lL,+ L,l  L",L,l= - in L" Ly- ih Ly L,+ ih L, L,+ ih L" L,
L  J  L  J L  J  L  J

l - "  ^
I  L ' ,L , l=g  (6 )
L _

Likewise, of course, the total angular-momentum operator also commutes with its y

and z components Z, and L"and therefore the commutation relations between Ij and,
these components are also zero. Analogous to the aforementioned orbital angular-
momentum operators we also have the spîn angular-momentum operators
^ ^ ^ ^ ^

S2,,S",,Sr,,S, which are both linear and Hermitian [15]. S'? is the operator for the square
of the magnitude of the total spin angular-momentum of a particle. As before with the
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orbital angular-momentum, we have i'=i*tr.t". Also, as before, we have the

following similar commutation relations for the spin angular-momentum operators:
[ "  " l  ^  l - ^  " l  "  [ a  a l  1
I  E,S" l=ihS", I  S",S, l=rf tS, ana I  S,, .S, l=ihsr.  Addit ional ly,  the total  spin
L ' ' )  L ' _ J  L  I
angular-momentum operators have the following commutation relations:
f  n  ^ l  l - r  " l  f  "  " l
ls ' ,s,  l=ls ' ,ù l=ls ' ,s l=0.
L I  L  

- I  
L  I

4. Quantum Superposition and Quantum Probabilities of l0-Qubit
Mesoionic Registers

Quantum mechanically speaking, the ground and various excited state(s) of the
mesoionic xanthines represented in Figure 2 have the ability to exist in a total
superposition of ten different quantum states simultaneously. It is this feature of these
mesoionic xanthines that we attempt to exploit in terms of their utilization as potential
substrates for lO-qubit quantum computer registers. Each resonance structure depicted
in Fig. 2 is a distinct quantum state and can therefore be represented by a distinct

wavefunction pr,. We therefore have ten different wavefunctions that can exist in a

quantum superpositional and quantum entangled state that may be represented by the

following linear combination of wavefunctions: Y =Vr*Vz+./4+...+t//to. The state

Y is the maximally entangled quantum state of the molecule and is therefore the lowest
energy state or ground state of the molecule.

Each resonance structure depicted in Fig. 2has a certain probability associated with
that particular state. We determine these probabilities by utilizing a fundamental rule in
quantum chemistry. This rule basically states the following: The namber of possible
resonance inter-conversion states a particular resononce structure passesses is
directly proportional to the probability of that quantum state As a few examples,
using Fig. 2, let us first take a look at the most probable resonance structure which is

designated as Vs.
Resonance structure or quantum state 14, has a total of 8 possible resonance inter-

conversions. These eight inter-conversions of quantum state t//5 are with the following

quantum states: V,Vz,Vz,Vt,V6,V1,Vs,Ve. This is therefore the most probable

quantum state of the molecule. As another example, let us count the number of possible

inter-conversion states for tyr. This state inter-converts with Vz,Vq,Vs,V, or a total of

four quantum states. The list ofpossible inter-conversion states possible for each ofthe
ten quantum states is listed below:

V r = 4 ,  V z = 4 ,  V t = 5 ,  W q = 4 ,  V r = 8

V e = 4 ,  V t = 4 ,  V a : 4 ,  V s = 5 ,  V r c = 4
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The total number ofquantum resonance inter-conversions is therefore equal to 46. It is
now a rather trivial procedure to calculate the actual probabilities in terms of
coefficients of the individual quantum states. We simply take the above numbers for
each state and divide them by the total number of inter-conversion states. The following
probabilities are thus obtained:

2 2 _ . 2 2 2 5 2 2 2 4
d l  = - .  A :  = - .  A :  = - .  d :  - - -  d .  = - -'  23 '  "  23 '  '  46 '  '  23 '  '  23 '
^ .2  2  . 2  2  -2  2  2  5  2  2
A ;  = - .  d -  - - .  d :  = - .  A -  - - .  A :  -

23' 
*' - 

23' 23' 
*e - 

46' 
*ro - 

Â
We may now re-write the total wavefunctionY in the following manner:

2252422252v = ftvr * âr, * âr, * âr, * t r, * âr, * âr, * âr, * fr,n + ftv,',
where all of the coefficients of the individual wavefunctions add up to equal one. We
may also express the above wavefunction in our more familiar quantum computer form
as:

l* | = Z,[Trl t] +,ffiltl * ffi1ty *,%rt + . /tn1 ty +,ffilty *,[fi1 iy .

,%tt+.,[Tut+.e;ltt,>
or more succinctly as: lv) =it ,[fi1t) + 

/Ulty 
+ zffilil , where

l i |  = 
{ i , i r ,4. . . i , . . . i , \  and n =10 ;  N =1,024 .

5. Projectors and Projection Operators

Let us examine the role of projectors and projection operators. A projection matrix P
is an n x n square matrix that gives a vector space projection from R'to a subspace Z
The columns ofP are the projections of the standard basis vectors and IZis the image of
P. Therefore, a squ€re matrix P is a projection matrix if and only if P2 = P . A
projection matrix P is orthogonal if and only if P = Pt .

Suppose ll is a ft-dimensional subspace of the d-dimensional vector space V. Using
the Gram-Schmidtprocedwe, it is possible to construct an orthonormal basis lt),...,1a)
for V such that lt),...,|f) is an orthonormal basis for W. We may represent this
definition mathematically by stating that the projector P is the projector onto the

subspace l|t wingthe following equation [16]: P = Ilà(;l . It can easily be shown that

this definition is independent of the orthonormal basis lt),...,|f) used for W. lt can

further be shown ttrat lv)(vl is Hermitian for any vector lv) and so P is Hermitian,

PÎ =P. We may now refer to P as the vector space onto which P is a projector. The

(8)

(e)
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orthogonal complement of P is the operator Q:I-P. The operator Q is therefore a

projector onto the vector space spanned by l/c+t),...1d)which we also refer to as the

orthogonal complement of P, and may denote by Q.

6. Density Measurement Operator and Ensembles of Quantum States

Thus far, we have formulated our quantum mechanics using the concept or language
of state vectors. An alternative formalism that is mathematically equivalent to the state
vector approach is that of the density operator or density matrix. The density operator
approach provides a much more convenient way for representing some commonly
encountered scenarios within the framework of quantum mechanics. Suppose the

quantum system is in one of a number of quantum states ly,), where i is an index with

respective probabilities p,.We shall then catt {n,,lW,l\an ensemble of pure states.The

density operator for the system is defrned by the following equation [17]:
p=Zp,lV,l(V,1. As stated previously, the density operator is also known as the

density matrix. The two terms may be used interchangeably. All of the postulates of
quantum mechanics can be reformulated or expressed in terms of the density operator
language. Both the density operator language and the state vector language give the
exact same results, however the use of one over the other may make it easier to
approach problems from one point of view rather than the other. Suppose that the
evolution of a closed quantum system is described by the unitary operator U. If the

system was initially in the state ly,), with probabilityp, then after the evolution has

occurred the system will be in the state UIV) with probability p,. This is shown

mathematically below:
p =Z p,lv,Xt, la? p,u lvr,| (v,lu\ =u Pui . (10)

The measurement operators M- may also be described in terms of the density

operator language. If the initial state of a quantum system it ly,) then the probability of

getting a result m is: p(mli)=(v,lulu^lvr,l=t (ulu^lv,l(v,l), where we have

used the known relationship, 
"(tlv)(vl)=ZÇVlv)(vlil=(wlelv) 

where the end

result is that the operator is sandwiched between the two wavefunctions or quantum
states. The notation whereby the operator, usually the Hamiltonian, is sandwiched
between the two states is very common in quantum mechanics. Therefore, the
probability of obtaining result z is:

p (*) = 
| r (-lip = 7 p,tr (M iu ̂ lv,) (v,l) = n (ul u ̂  p) .

Suppose we wish to determine the density operator of the system after making the

measurement m.If the initial state was lf,) then the state after the measurement m is:
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lWl=--+yf=-. After the measurement that yields the result lz we have ant" t ,l\v'lu)u-lw,l
ensemble of states lfl)wittr respective probabilities n(il*) with the corresponding

density operator p.=Zp(4Qlvïl(vîl=To1,;,; 
Wffi. 

using the

following definitions for probability theory, p(il*\= 
p(^"r) - p(m-'i)-p' 

and with the' \ r '  p l m )  p ( m )
appropriate substitutions, we may further show that the following is true:

., _ç . u^lv,)(,tt,lM!, _ M-pM),
P.=) -P, - f f i :ù -=  o f f i r1 .  

We have thus proven that  the bas ic

postulates of quantum mechanics related to the unitary evolution and measurement can
be viewed in terms of the density operator formalism. Furthermore, a quantum system
whose state lZ)is known exactly is said to be in apure state (i.e,, p=lV)(WD. If the

state function is not known exactly, then the density operator p is said to be in a mixed
state which is simply a mixture of the different pure states in the ensemble for p. It may

also be easily shown that for a pure state ff(n'z) = I and for a mixed state tr(tr'z) < l .

Now suppose we have a quantum system in the state p,with a probability p,.The

system may therefore be described by the density matrix l,p,p,. This can be proven

by assuming thatp,arises from some ensemble or{pu,lrru)}pure srates (where i is fixed)

so that the probability for being in the state lrr)^ thus p,pr. The density matrix for this

system is thus: p=Zp,p,ilrr)(rrl=ln,e,, where the we have used the definition
U i

o,=l,nrlv)(rrl We conclude that pis therefore a mixture of the states p,with

probabilities p,.

7. Time Evolution of the State-Function of a Closed Quantum System

The time evolution of a state function is given by the well known Schrôdinger
d lw \

equation, ,rT = ulVl where 11 is the Hamiltonian of the closed system [18]. Due

to the fact the Hamiltonian is a Hermitian operator, it has a spectral decomposition:
n =lnlD)(nl which includes the eigenvalues E and their corresponding

eigenvectors lf). fne states lE)are referred to as the energl eigenstates or as
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stationary states, and E is the energy of of the state lE). The lowest energy is known as

the ground state energl and the corresponding energy eigenstate is known asthe ground

state. The energy eingenstates lf')are known as stationary states since their only change

intime is to acquire an overall numerical factor, lf)-t e\-iEt/h) lf).4 simple example

would be to consider a single qubit having the following Hamiltonian, H =hoX ,
where at=2nf and/is the frequency of the particle or photon. The energy eigenstates

of this Hamiltonian ur" lO)!t) with corresponding energies hat and -ha.Theground
'rl2

state is therefore -hf and the ground state energy is -ha or -hf . The solution to the

Schrôdinger equation utilizing the unitary operator Uis shown below:
f -is(r, -r, )l | -iq\tr-\)1

l v ( , , ) |= "1  
n  ) lw( , , ) l=u( t , , t , l l v ( t ' ) ) ,  where  u( t , ,4 )=eL h  ) '  ( l l )

Furthermore, it may be shown that any unitary operator U can be expressed in the

compact form U = e'* for any Hermitian operator K.

8. Quantum Simulations of llamiltonians

Quantum simulations have largely concentrated on simulating Hamiltonians that are
sums of local interactions. However, this is not a fundamental requirement! Efficient
quantum simulations are possible even for Hamiltonians which act non-trivially on all
parts of a large quantum system. Suppose we have the Hamiltonian:

H=Zt@22@...8z,which acts on an n-qubit system. We may apply a Hermitian

phase shift e-'* to the system if the parity of the n-qubits in the computational basis set

is even. If odd, the phase shift is eto'. We may therefore efficiently simulate any

Hamiltonian of the form: n = &!<ol,where of,o,is a Pauli matrix or the identity acting

on the ftû-qubit, with c(k).ià,r,r,rldesignating one of the matrices {t,X,r,Z\.
There are a couple ofuseful algebraic facts regarding the various quantum gates such as
the Hadamard gate (11) and the various Pauli, phase and nl9-gates. The Hadamard gate
g =(X +Z)lJi and the phase-gate S = T2 . The T-gate or rcl8-gate is called such

since it contains e'''''appeaiHg on its diagonals U9l: T ="*''("-'o't ,f,-1. ,o, u' 
(. o 

"t''o )

single qubit-vector statelrf)=alO)+Alt) parameterized by two complex numbers

satisffing the relationshiplal' +lîl' =1, the state may be visualized as a point (0,g)on

the unit sphere where ,="o"(e/r\and b:"' '"n(0/r). rrti. is known as the Bloch
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sphere representation and the vector (cospsind,singsinÎ,cosd) is known as the Bloch
vector. The value for q can be taken as a real number since the overall phase of the state
is unobservable. Additionally, upon exponentiation, the Pauli matrices give rise to a
very useful class of unitary matrices known as rotation operators about the x, y and z
axes, defined by the equations below:

R,(0)= s ' ioxtz

Rr(e)= e-ioY/2

o)
eiet2 )

9. Initialization of Mesoionic Xanthine Registers

The mesoionic xanthine molecule, as depicted in Fig. 2, represents a molecule that is
in a quantum superposition of at least ten distinct and unique quantum states. An
efficient scheme for initializing quantum registers with an arbitrary superposed state,
without the introduction of additional qubits (Ventura & Martinez 1999 [20]) has been
developed by Long & Sun [21]. This scheme begins with the state 10...0)and is then

transformed to a general superposed state of the following rorm: llr) =lo,l;). rn trris

particular case, N=1,024and lù is the shorthand notation for 
=tTe 

busis set

{i,i,ir...i,...i,}where n =lo1zN and where l.denotes the two possible states (0 or l) of

the/h-qubit. The following diagram will illustrate this concept more easily:
o -+ {ooo...ooo}
t -+ {ooo...oor}
2 -+ {oo0...olo}
3 -+ {ooo...roo}

N-l -+ { t  t  t , . . . t  t  t }

(ed)
= 

"or91-r, ingx =l 
cos- -'srnt 

I
2 2  |  . .  e  0  |

[-rsrn- "ot, )
(ed )
I  cos-  -s ln-  |

="o.91-r rnLy=l - - "  2  " " '2  
|

2  2  |  e  e l
(tt"t "o"t )

(r2)

R,(e)= e-iezt2 - 
"o"91 

-rrinTt =("-'r''

(13)
l =
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The above diagram therefore illustrates tnat lVl is a general quantum superposition of N

basis states and each basis state is a product state of n qubits. The initialization scheme
involves only two types of unitary transformations or gate operations. The first gate

operation is a single bit rotationu,, %[:l=[:îl :Ïilt:]. rhis rotation dirrers
L. I lsind -cosdlll I

from an ordinary rotation because it is an ordinary rotation only for ttre lO)tit Uut

interjects a minus sign for ttre lt)Uit. The operation thus converts a qubit in the state

lO)to a superposition of the two state (cosd,sind)and a qubit in the l1)state to the

superposition of the two state (sind,-cosd). Wnen 0=0, the state l0)remains

unchanged but converts the sign of state 11)(i."., Pauli-Z gate). When e=f,, U, is

simply reduced to the Hadamard-Walsh transformation. When e =l{eO" rotation), it

acts as the NOT operation (Pauli-X, o" ) by changing l0) . 11) *d 11) to I O) '

The second type of gate operation is known as the controlled"-operation. This operation
is constructed from a string of Ë controlling qubits as shown below:

The squares represent the controlling qubits{r,,i2,...ik\and the circle is a unitary

operation on the target qubit representing an angle of rotation. The uniqueness and
pov/er of this operation is that it is a conditional one that is activated only when the

controlling qubits hold the respective values indicated in the squares. Controlledr-
operations may be constructed using O(#) standard 1- and 2-bit gate operations l22\ln
order to more easily see how these operations are performed we may take a look at the

simple example of a two qubit system.

loo)+ J6lt+,it1oo1*,fif *pff lro; operation l.) Single bit rotationa, ,

+lo)["*lo)+"0,11;]+lt)[aol0)*q,lt)] operation 2.) Two controlledr-operations

u"r,, ( i :  0, l) .  = aoo 100)+ao, lot)+o,o l to)+a', l t t)

The single bit rotation qis equal totan-r

operations in matrix form as well:

mhf . we may now represent the
ï1"*1" *loo,l'
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[ - - - - g t -  - : - ] : g - " ]  [  o , o  o , ,  f

uoz,o=l Jl"-l'+l%,1' Jl"*l'*l"o,l' |;u",.,=l Jl*.|' +lo,,l' Jl*.I' *b,,1' 
| ,,0,

t - L -L l  l a "  - L l

LJl"*l' *loo,l' Jl"*l' *lo,l' j LJ o,ol' +lo,,l' Jl*,;'*lq,l'l
The situation becomes even more interesting when using a larger register such as a 3-

qubit register having 8 basis states:
l. Starting from the state lOO0), a single bit rotation is operated on the l't-qubit with the

angle dt=tan-../% transforming the initialized state
T l"*ol' *lo*,1' *loo,ol' *loo,,l'

IOOO) to the state

ffi;oooy*ffi;rool.
2. Then, two controlledl-rotations with angles

[_-- ' ,  - ,  F- t r , t*
tan-'./Jlwlj.l%uf and tan-r /la"ol. 

+la"'1, 
operate on the 2nd-qubit. The resulting

ï1"*ol'*lo*,1' ïlo,*l'*lo,o,'
superposed state vector therefore becomes:

Ji"*;lt+-, f-; oool * ffi * p- [ 1 o r o; *,f ',* f +* f ; r ooy * J['* [ * p- [ ; r r ol
i. ninally, 4 controlled2-unitary transformations operate on the 3'd-qubit to generate the
superposed state:
ao* 1000)+aoo, l00t)+oo,o loto)+q* l loo)+a0,, lot  t )+a,0, l tor)+a,,0lr  ro)+d,, , l t  t  r ) .
These 4 controlled2-unitary transformations are:

f o* om, f [--=--g,-- -=---fu- I

|  /o*l '+1",,1' /o*l '+lo,., l '  l  r ,  _l {1". ' .1-+loo"l- { l"o'ol '+loo,, l '  Iu"r'oo =l 
o'*, I 

"43'0' -l.-:-6- 
-.---4r- |

l/",,1'+lo..,l ' /ooool'+lo*,1'j !Jloo,ol'+loo,,l ' J",ol'*l"o,,l ' l_
tLL l

l -  - - - - - - j t l t - - l  I  t i  r z  t  r z  h , ,  | ' ,  I

tr -lJiilTk'f Jilf*|*J- | ,",.,, -l\/1""'l +la"'l rila"ol +la"'l 
IUc3'ro=|  

" i " .  
;^^

LJI+,,1'*;",,,;' {lo,,l'+lo,o,l'l L{la,'ol' +la,,,l' Jlq'.1'*lq,,l'J

For notation purposes we use an o'angle" to label a controlledfr-operation. If the
coefficients are all real, it reduces to an ordinary rotation angle. The notations ofangles
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of the controlledt-rotations, the first subscript designates the target qubit order number
and the subscripts following the comma designate the quantum states of the controlling

qubits. For example,3 in dr,r, refers to the target qubit and the subscripts (11 inar,,,)

refer to the controlling qubits. In the initialization, operations for the first n - I qubits are

controlled rotations where each rotation depends only on a single real parameter. The
rotation angles take on the following general expressions. In the first qubit there is a 1-

qubit rotation. The rotation angle is: dr = tan-' In the 2nd-qubit, there

controlledr -rotations :are

dz'o = tan-r

two

aîdd,2.t = tan-'

Lrn...,.looro ,.1''

Inu ,.lo*ou ,.1 ffiÂ' 
In general' in theT''h-

qubit, there are 2i-t controlled'-t-rotations, with each of them havingT - I controlling

qubits labele dasirir...i,-r. The rotation angle in thejft-qubit(i + n) is given by:

d , , ,  ,  = tan - r (  l 5 )

For the last qubit, whereT = n wehave 2"-t controlled'-runitary transformations where:

uo,.r,r.-,*,

If Ao and A, are real, the operation is simply a rotation and the angle is given by:

dn.i,"r-.i,-,= tan-lt'+l (16)
\4)

We are now ready to initialize quantum superposition registers of three different types

starting from the statel0...0) :

l. The evenly distributed state lZ)=Il4 is the most common state in quantum

computing. The Hadamard-Walsh gate operation on each qubit generates this form of

superposition from the statel0...0). tn this particular case, all of the rotation angles are

I .meach qubit, the controlling qubits use up all possible combinations and therefore
/ 4

the 2i-t controlled Hadamard-Wash gate operations are reduced to a single Hadamard-
rWalsh transformation in theT'm-qubit.

4l '* le, l '
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2.The Greenberger-Horne-Zeilinger or GHZ state is the maximally entangled state with
1

the superpositionf(lo...o)tlt...t)). Suppose we would like to transform the state
\ l Z '

IOOOO) to the state I

'12
(IOOOO)+ltttt)). The circuit below shows this

diagrammatically:

Figure 3. Quantum Circuit forthe GHZ state

The rotation in the l'Lqubit is the Hadamard-V/alsh transformation. There are fwo
controlled operationsar,o = 0 in the 2od-qubit that are equal to the identity operation and

so does nothing to the qubit. Howeverar, r=| conesponds to the CNOT operation, so

effectively, there is only one controlled-NoT gate in the 2nd-qubit. There are four gate

operations in the 3d-qubit. or.rr=T is the llf)-CNOf gate andar,*is the identity

operation. dt,or and dt,ro are undetermined angles equal to I Upon closer
0 ^

examination, however, these angles are equal to 0 and are therefore equal to the identity
operation. Therefore, the only gate operation in the 3d-qubit is the ltt)-CNOf
operation. Similarly, there is only the lttt)-cNor operation in the 4ù-qubit. Should
the circuit contain more than four qubits, the same analysis applies until the last qubit.

For the last qubit, the rotation is either Lfor the.t"t" 
f 

(lo...o)+lr...r)) o, *+for the

.t"t" 
f (0...0) - 1r... r)) .

3. In the Grover search algorithm [23], the state vector is built up in a two-dimensional
space spanned by the so-called "marked" state lr) and the "rest" state lc) = f,_,1;). et
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any step in the search, the state vector has the no.-lrf)= sindlr)+cosdlc). In order to

initialize such a superposed state, we let le) =ltrir...i,)be the marked state. We may now

construct the state lrz)fro-lo...O). rne

are at = sindand a, = cosd/JF{ for

amplitudes a, of the basis states lVl =Lt,lil

i + r . According to the following 
"o,iu,iorr,

f""=lt*

angle

where Or =

here

-col

- 1

- 0

l (u -zl** e.Xtt  - l )sin'd
r,={f f i . rnthekù-qubit ,al

the

ak,4,ir... iu-,

10. Conclusions

A viable organic molecule, a Class II Mesoionic Xanthine, has been introduced as a
potential l0-qubit register substrate for scalable quantum computing. We have shown
that the ground state of this xanthine molecule exists in a superposition of ten unique
wavefunctions. These unique wavefunctions can form the basis of lO-qubit registers for
quantum computation. Additionally a formalism was devised whereby these registers
may be efficiently initialized, subsequently read into and transformed via standard
unitary algorithms. We propose that polar solutions of the mesoionic xanthines or small
crystalline quantum dots may be suitable for VO techniques. Furthermore, these
solutions or quantum dots may be RF laser pulsed at a certain set of frequencies to
produce a cumulative resonant interaction within the xanthines to exploit higher degrees
of freedom resulting from new higher dimensional (HD) commutation rules. Relaxation
of the numerous excited states via these HD commutation rules are putatively a vehicle
to ontologically overcome the decoherence problem associated with QC applications

[2a]. This ability overcomes the major obstacle for bulk quantum computing.
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