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Described is a "neural" operating system based on Holographic/Quantum Neural 
Technology (HNeT). The core of the HNeT technology applies Hilbert space operations 
in both the updating of cortical memory and generation of response recall, similar in 
form to the QM wave function. Within HNeT, information is represented by sets of 
complex scalars, leading to a natural predilection towards frequency domain 
representations of stimuli. Conversion of real valued information sets to frequency 
domain representation leads to a number of desirable qualities, such as 
orthogonalization of highly asymmetric or non-orthogonal pattern sets, a distributed 
representation of information, as well as an effective means for data reduction (i.e. 
Fourier quantiz.ation). Higher order frequency domain representations facilitate 
extraction of invariants that define discriminating features, often intractable using 
conventional pattern classification methods. This is performed utilizing a form of neural 
plasticity that scans the set of higher order harmonics for discovery of such invariants. 
One of the most salient operational aspects of holographic/ quantum neural technology 
is the reduction in computational complexity over more traditional neural networks 
(NN). For instance, HNeT requires only binary cell structures in quite advanced 
application areas. Holographic/quantum neural technology also provides a dramatic 
increase in speed of learning and learning accuracy over traditional NN methods. The 
HNeT process facilitates real-time learning, in which large data sets may be learned to 
high accuracies following one training epoch. 
The HNeT core processes have been extended considerably over the past few years to 
incorporate a number of auxiliary features . These features include application of higher 
order combinatorics for pre-process of input stimuli, the application and advanced 
control of neural plasticity, the use of cell assemblies that facilitate "super-cell" 
structures similar in form to neo-cortical assemblies, and unsupervised learning 
structures that facilitate hyperincursive and spatio-temporal learning paradigms, among 
others. Current work is directed towards structures that facilitate temporal accumulation 
of spatial patterns at the preprocess level, prior to entry into cortical cell structures. 
These accumulative structures possess certain analogous features to the thalamus, 
permitting synthetic neural systems to learn spatio-temporal patterns such as speech. 
The HNeT system is biologically motivated, possessing an application programming 
interface (API) that allows the user to allocate specific cell types based on the granule, 
pyramidal, stellate, and Purkinje cells of the cerebellum and neo-cortex. This operating 

International Journal of Computing Anticipatory Systems, Volume 7, 2000 
Edited by D. M. Dubois, CHAOS, Liege, Belgium, ISSN 1373-5411 ISBN 2-9600179-9-4 



system permits the user to flexibly configure cell assemblies, and build cortical 
structures comprised of anywhere from 2 to several thousand cells. 
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1 Basic Concepts 

The operation basis of HNeT presents a fundamental diversion from the standard 
connectionist models in the Artificial Neural System (ANS) field. Within the 
holographic/quantum neural model, the neuron cell follows a non-connectionist model 
whereby learning and subsequent recall of stimulus-response associations are performed 
within a single cortical cell. In effect, the operational features exhibited by the 
connectionist neural network is condensed into a single holographic/quantum neuron 
cell, and in virtually all cases the speed of learning and recall accuracy for this cell is 
dramatically improved over traditional neural network models. 
The mathematical basis for HNeT permits such stimulus-response patterns to be learned 
or "mapped" within a matrix of complex scalars. The complex scalars stored within 
this matrix are referred to as the cell' s cortical memory elements. The number of 
complex scalars contained within the matrix may be no larger than the number of fields 
within a single stimulus pattern. However, many associative stimulus-response patterns 
or "memories" may be stored onto the identically same matrix. This mechanism for 
holographic storage displays a capacity to achieve very high information densities, due 
to the fact that large numbers of associative patterns are superimposed. This aspect of 
superimposing associative information is referred to periodically as enfolding [I]. In 
addition to the aspect of enfolding, large numbers of associative patterns may be 
learned over a single training exposure (i.e. one epoch), providing the capability for 
"real-time" learning. The HNeT system generalizes in a manner that the mapping 
generated within the neuron cell achieves a smooth interpolation among all of the 
stimulus-response patterns learned by that cell. 
A quantum analogy is derived from the wave packet equation found in quantum 
mechanics [2]. The wave packet relates to the superposition of energy waves of slightly 
differing angular momentum. This superposition of harmonics defined by the wave 
packet produces an energy envelope illustrated below, and is applied within quantum 
mechanics to describe the state of a photon, electron, proton and other particles. 
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Fig. 1: Wave Packet Envelope for a Photon or Particle 

The wave packet equation is shown below in both the discrete summation and standard 
Dirac notation: 

'Px.t == 2: C ;e;(k;·' - ""i ) = (f I If/) integrated over wave number (ki) 
i 
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Operation of the holographic/quantum neuron cell within a (much simplified) linear 
framework follows a similar form as that shown above. Within the quantum neural 
context, the above inner product form describes the learning process that takes place 
within each cortical memory element Xn, of the neuron cell. Each neuron cell may 
possess many thousands of cortical memory elements. 

X -"~ ;(;,-o.,_,J_(s JR) · ed · () 
II - L..,, /'.,,_, r I e - II mtegrat over time I (2) 

where in this case S
11 

= {Ai,./ 11
"'' , ... }, R = {r,, e;;,, , .. . } 

The above operation superimposes or enfolds information pertaining to the complete set 
of stimulus-response patterns onto isolated complex scalars, each complex scalar 
representing a cortical memory element X. One cortical cell stores many scalars or 
cortical memory elements. For clarity, the S vector indicates the stimulus signal, and the 
R vector the response. The response recall process within holographic/ quantum neural 
cells follows a similar form, however, the inner product is performed over the cortical 
memory elements (indexed by n) rather than time. 

R' = ns(s* )x) summed over cortical memory elements(n) (3) 

During the above recall operation, a new stimulus S* is transformed simultaneously 
through the stimulus-response memories enfolded within the cell ' s cortical memory 
elements. This aspect of intrinsic parallel computation is analogous to the concept of 
"quantum parallelism". 

1.1 Representation of Information 

Current theories in computational neural dynamics follow from an idea known as the 
Hebb hypothesis [3]. That is, growth or learning mechanisms within the neuron cell are 
activated through coincident stimulation at both sides of the synaptic connection made 
between two cells. Recent neural theory has elaborated on this, leading to the current 
profusion of gradient-descent type algorithms, whose core aspects are largely built upon 
the reaJ..:valued inner product. 
The holographic/quantum model described here presents a viewpoint that employs the 
mathematics of complex scalars in combination with a non-linear representation of 
stimulus information, plus a few other features. An element of information within the 
holographic/ quantum neural paradigm is represented by a complex scalar derived in 
most cases from a harmonic decomposition of the raw input pattern (i.e. Fourier, Gabor, 
wavelet). The processes outlined in this paper may be applied to input scalars of unit 
magnitude, although the process used within HNeT has been generalized to converge 
(learn) in an optimial manner for input scalars that vary from unity. 
Some aspects governing the intra-cellular transmission of signals between biological 
neuron cells lend support to the complex scalar representation for information. Figure 1 
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illustrates a cell in which multiple input lines receive pulse modulated signals, and a 
similarly pulse modulated signal delivers the cortical cell ' s response output. In a 
practical sense, pulsed biochemical signals could facilitate single line (micro-tubule) 
transmission of complex scalar quantities mediated by the frequency and amplitude of 
the pulse. Far more important however are the operational features observed within a 
simulated cortical cell when complex scalars are applied. 

Stimulus Signals 

LLlU Response Recall 

-1LJil 
illU 

Training Response 

_,U_U__l---~ 

Fig. 2: Block Diagram of a Cortical Cell 

The basic unit of information within the HNeT system may be represented by 
exponential form Ai/ 0

. Such quantities may be viewed to contain both a semantic 
content represented by the phase orientation ( {}'), and a level of confidence represented 
by magnitude (...t). In cases where a time to frequency transformation is applied as the 
preprocess operation, the phase angle orientation represents phase shift, and magnitude 
presents the power of the harmonic. In a similar vein, stimulus inputs of low power 
have less influence over the stimulus-response mappings learned by the cell, as well as 
less influence in the generation of the response signal during recall. 
In the following discussions a simplifying assumption is made, this being that all 
stimulus and response scalars have unit magnitude. The memory generated within the 
cell for such stimulus-response associations are built up from phase angle differences. 

For instance, one element of a stimulus may be represented by phase orientation e;o, 

and an associated response by orientation e;;, . The mathematical quantity that is 
generated for associating stimulus element j to response element k is obtained by the 

following phase conjugate operation s 1 · rk producing the phase angle difference: 

(4) 

The above quantity e;o,,_q may be said to represent an indissoluble "quanta" of 
information. This information quanta stores the portion of an associative mapping that 
is learned by one cortical memory element for one pattern, this cortical memory 
element connecting one field of the stimulus to one field of the response. The 
mathematical properties of these information quanta provide the basis for the 
superposition of a large amounts of stimulus-response information onto the same sets of 
complex scalars. Leaming capacity is largely based upon the number of cortical 

316 



r 

memory elements (i .e. complex scalars), and this learning capacity is directly 
proportional to the number of cortical memory elements stored within the cell. To 
provide a practical example, a cell with 100 memory elements is capable of learning 
and storing 100 stimulus-response associations derived from the Monte-Carlo method 
(and considerably more if the patterns reflect any coherent structure), 1000 memory 
elements can store 1000 stimulus-response patterns, and so on. 
The HNeT cell displays a further aspect in its ability to respond to the space of 
unknown or unlearned stimuli through generation of a low magnitude in the generated 
response. The concept of an enfolding of information, and the corresponding increase 
in information density within the cortical memory elements are supp0rted by rather 
fundamental properties that exist within the complex number domain. To illustrate, a 
complex scalar may define any point (A) in the Argand plane. This point may also 
describe any path from the complex origin to point A. However, the path actually 
encoded is given by: 

(5) 

The above scalar quantity defines one path within the set of all possible paths leading 
from the origin to point A. Within one cortical memory element of an HNeT cortical 
cell, each of the component scalars which define the encoded path leading to point A 
represent a single association "quanta" that has been learned in time. 

Im 
A 

,..,... .. 
im • imaginary uis 

Fig. 3: Multiple Pathways Defining a Complex Scalar 

The notion of enfolding results practicably from the ability to effect a determinable 
change upon those information quanta which make up the aggregate scalar A. Within 
the complex number domain, a multiplication operation imparts a phase angle rotation 
on the aggregate scalar. Solution of(5) shows that the complex multiply induces also an 
equivalent rotation on the set of quanta from which the aggregate scalar A is comprised. 
This is illustrated simply by multiplying the above complex summation with some 
arbitrary scalar e;0 , resulting in the following mathematical equality: 

(6) 

or diagramatically: 
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rotated by 3 

Im 

Fig. 4: Phase Rotation within Component Vectors 

From an understanding of this fundamental aspect of rotational operators (i .e. the 
complex multiply), it is apparent that information can be manipulated and preserved 
within the aggregate complex scalars that comprise the cortical memory elements of a 
neuron cell. Such enfolded quanta, despite an apparent inaccessibility, may be modified 
in both their magnitude and phase allowing the embedded information (i.e. complex 
scalars shown on RHS of equation 5) to be manipulated in a deterministic manner. 
The fact that this information (i.e. the quanta) can be manipulated, leads to the concept 
that information may be superimposed or enfolded onto the cell ' s cortical memory 
elements. Within the context of neural or learning systems, the desired objective is the 
re-expression of stimulus-response associations stored within the cell ' s cortical 
memory. Following investigation of the holographic/ quantum neural process, one 
realizes that the characteristics of operation (e.g. learning, response recall, properties of 
generalization) are attributed to fundamental properties inherent within Hilbert space 
mathematics. 

1.2 Basic Learning 

The learning process, at the most fundamental level, is performed using a vector 
product operation over the stimulus and response arrays, then accumulating the result 
within the cortical memory elements [X]. A single memory element maps one stimulus 
element j to an associated response element k by performing the following complex 
multiply and accumulate, applying phase conjugation to the stimuli: 

(7) 

The above complex product may be rewritten using complex exponential notation: 

(8) 

One constructs a "neuron cell" using sets of stimulus and response elements extending 
over any given time frame, where the field index is indexed along the horizontal and 
time incremented along the vertical: 
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(I 0) 

The learning process for multiple patterns, as indicated above, may be represented in 
canonical form using the matrix operation: 

-T 
(X]+=[S] ·[R] (11) 

Assuming only one element in the response field (i.e. one axon for the cell), the 
resulting cortical memory array [X] is presented as follows: 

[X] ( 12) 

The basic learning process given by ( 11) collapses the time axis in the solution of [X] 
while retaining information content. Information stored within the cell is preserved in 
the sense that one may regenerate a prior learned response upon exposure of the 
associated stimulus pattern to [X]. It should also be noted that this response recall has a 
greater level of determinism than that produced for linear search methods. This is due to 
the fact that the HNeT neural cell produces both a confidence (level ofrecognition), as 
well as a response expressed through phase angle orientation. Information density 
within the cell increases in an information theoretic sense, in that the number of 
mathematical operations required to do a response recall (i.e. the number of complex 
multiply and accumulates or CMACs), as well as the number of cortical memory 
elements, remain fixed and independent from the number of stimulus-response patterns 
stored within the cell. 
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Each of the above complex valued cortical memory elements, i.e. xj e[X], have been 

generated from a set of stimulus-response associations represented in terms of phase 
angle differences (i.e. t/J, - O,.j ). Through the equality expressed in (6), any subsequent 

exposure to a prior learned stimulus pattern induces a rotation or realignment of the 
associated complex valued quanta to the phase angle orientation of the trained response. 
This coherent interference of the associated quanta across all cortical memory elements 
produces a dominant response, which again coincides with the associated response. A 
residual "error" is also produced resulting from the destructive interference of 
remaining association quanta stored within the cell, this residual attaining a minimum 
contribution for orthogonal or nearly orthogonal associative pattern sets. 
This basic learning method follows the principal of non-disturbance to a far higher 
degree than conventional neural methods, permitting large numbers of stimulus
response patterns to be learned on a low as one training epoch. Note that during 
response recall the initial stimulus patterns produce a relatively small recall error (10% 
or less of the analogue response range), again illustrating this principle of non
disturbance learning. Neural networks based on gradient descent methods exhibit far 
more limited non-disturbance learning capabilities, and very high numbers of training 
epochs are required (typically thousands to tens of thousands) to achieve learning 
convergence. In addition, at reasonably low pattern storage densities (i .e. 1000 patterns) 
gradient descent methods will break down (unable to produce measurable 
convergence). · 
The above presents the HNeT learning concept in its most primitive form . Aspects 
regarding the enhanced learning method employed within HNeT are summarized in a 
following section. This enhanced process operates in a manner whereby learning is 
influenced by prior learned memory, using an intracellular feedback mechanism to 
adjust the complex "weights". The enhanced learning process displays many additional 
capabilities, such as automatic control over attention, the capacity for reinforcement 
learning, increased storage densities, higher stability of operation, and a greater 
accuracy in the response recall. Further to this, non-linear aspects of the HNeT process 
are described. 

1.3 Response Recall 

Response recall operates in a manner whereby new stimulus patterns are transformed 
through the associative mappings stored (enfolded) within the cell's cortical memory 
[X]. During response recall, the transformation of new stimuli through each separate 
stimulus-response pattern learned by the cell is done in a concurrent or parallel manner. 
The following equations show the contribution of each prior learned stimulus-response 
pattern to the net response scalar R, issued during a response recall operation. In the 
event that the new stimulus pattern resembles one of the prior learned stimuli, 
associated information quanta undergo an alignment (become coherent or undergo 
constructive interference), and contribute the major portion of the generated response 
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recall R. The operation performed for response recall assuming one response field may 
be illustrated by the following matrix inner product: 

R = nsfsr ·[X] (13) 

where [Sf is the new stimulus field exposed to the neuron cell for issuance of a 

response recall. This input stimulus may be represented by the following vector: 

[ ]
• • •ff. • ·o; • ·o; 

S = [ A:1 e' , A:2 e' , A:3 e' , . . . . ] (14) 

The normalization coefficient (0,) in (13) is generally some function of the stimulus 
field. Stable convergence characteristics are produced even when applying the 
following simple relation: 

1 
Q S = M 

:E ..i; 
j;l 

(15) 

The ability to enfold information may be illustrated by numerically deconvolving the 
vector components (i.e. quanta) embedded within the generated response values [R] in 
equation (13). Each generated response term is separated into constituent parts, 
whereby each part results from a stimulus [S]* transformation through one of the 
stimulus-response patterns previously learned by the cell (stored in [X]). Combining 

(14) for the new stimulus [sr, (12) for the cortical memory, and the response recall 

transform (13), the following solution for the generated response is obtained: 

M • IN 

R = n. """' 1• i01 """' 1 i ( h - 01.r) 
~"s £...., ""'1 e £...., ""'1.r Yr e (16) 

j;J T;t1 

Solution of the generated response R may be rewritten in the following equivalent form: 

(17) 

The above separates the generated response into components that are summed over time 
( T = t1 ~ t N ) . Each of these response components corresponds to the response recall 
for a new stimulus field [S]* as mapped through some previous stimulus-response 
association or "memory" learned at time t. These stimulus-response memories are 
indexed by time t1 ~ t N illustrated by matrices (9) and (10). Rewriting (17) into a 

form where each of these constituent response vectors are expressed overT = t1 ~ t N is 
shown as follows: 

(18) 
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A, is the magnitude or confidence level for one component of the generate response, 

and !;, is the associated phase angle. Each separate component (A,e;;-,) again 

corresponds to the response produced from a new stimulus [ sr transformed through 

one stimulus-response memory learned at time t. These component terms are given by 
the following relation, where for example the response contribution is evaluated for a 
stimulus-response learned at f} : 

(19) 

Following from ( 19), the magnitude and phase of each of these component terms in R 
may be evaluated directly given the set of stimulus-response associations learned, thus: 

(20) 

(21) 

Each of the terms on the RHS of(l8) contain a magnitude or confidence proportional to 
the proximity of the new stimulus pattern [S]* to the stimulus pattern learned at time t. 
In other words, the prior learned stimulus patterns displaying the greatest similarity to 
the new input pattern [Sl* produce the more dominant response magnitude as measured 
by At · Figure 6 illustrates a vector summation of these response components, 
indicating the relative dominance of each. Referring back to the rotational 
transformation occurring on complex multiply operations presented earlier, the 
holographic/ quantum neural process relies on the property whereby a subset of the 
association quanta (as contained within A,e;'- for T = t1 in Figure 5) become aligned 
along the phase angle orientation corresponding to the associated response. This 
coherence, or constructive interference, results in generation of the dominant response. 
Conversely, the remaining terms in (18), and generated from a stimulus transform 
through disassociated memories (those learned at T =,/ fJ), produce a far smaller 
contribution do to non-coherence, or destructive interference. These disassociated 
response terms (i.e., for T =,/ t 1) follow a path characteristic of a random walk. The net 
contribution of the disassociated response terms produce a small residual error in the 
overall response recall (i.e. <Perr)· The above random walk characteristics exhibited for 
the disassociated stimulus patterns, occur for data sets in which the phase orientations 
are reasonably uniform about 27t (i.e. symmetric or orthogonal). This important aspect 
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of symmetry is discussed in further detail below. It is this random walk characteristic 
for disassociated response components that establishes the condition where multiple 
stimulus-response patterns may be enfolded onto, and subsequently recalled from; the 
neuron cell's cortical memory. 

Fig 5: Summation of Convolved Response Terms 

A simple limit theorem may be constructed to evaluate the properties observed for the 
holographic/quantum neural method by observing asymptotic conditions, as a stimulus 
input pattern approaches a prior learned stimulus loci. We may apply a limit value 
argument using a random error factor E, . This error factor diminishes as the 
information elements within the new stimulus field [.)1* approach a stimulus pattern 
that was learned at time t1. Establishing the following numerical relationship for each 
element within the stimulus pattern: 

/ fl; = e i\01' 1 +E, l over stimulus elements./ = 1 to N (22) 

where E , is the random error quantity. As the phase elements within the stimulus field 
[S]* tend toward the stimulus pattern learned at f] E,~ 0.0 over all k. Substituting (22) 
into the magnitude and phase relationships for the response, (20) and (21 ), we find that: 

,. 
LA:AJ,, 

A,, ~ r,, -'1'-· =~\.-- (23) 

L A: 
J= l 

assuming unit confidence values, i.e. A:, A-1_,
1
,y,

1 
~1.0 over all j , then A,

1 
~1. 0 . 

Similarly, for the generated phase angle orientation, the approach r;, ~ efJ; is observed 
I I 

following a reduction of E, . 

Memory obtained at lJ presents the most dominant response component generated from 
the new stimulus [S]*. Similarly, the generated response phase angle in the limit 
( E, ~ 0. 0 ) approaches the prior learned analog response value for the associative 
pattern learned at time t1 (i.e., efJ;,). The remainder of the component terms within the 

generated response (i.e. for T =j t1) characterizes a residual error, albeit deterministic 
( iflerr in Figure 5). The statistical variance on the magnitude for this error term is 
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proportional to the total number of distinct and separate stimulus-response patterns 
learned by the cell. It is this apparent "fuzziness" which places a limit on the number of 
associative patterns which may be learned for any given level of recall accuracy. One 
may provide an upper estimate of recall "error" given the Brownian movement 
characteristics for multidimensional coordinate systems. This error may be estimated 
from the average magnitude resulting from a sum of N random walks each of unit 

magnitude (producing .JN). Substituting this relationship into ( 18), one may obtain an 
estimate for the average error within the response recall assuming the characteristics of 
the random walk observed for near orthogonal data. Again, the characteristics required 
for random walk are met in the real world for cases in which the distribution of phase 
for each stimulus input field is reasonable uniform between 0 and 27t. A sum over the 
disassociated set of response components produce an average magnitude approaching: 

where: N is the number of stimulus-response patterns learned, 
M is the number of cortical memory elements within the cell, 
and r" A.;, ~ I. 0 over all j and t. 

(24) 

Fot purposes of evaluating general recall characteristics within the holographic/ 
quantum neural cell, one may derive an estimate for the average response recall error. 
This estimate assumes randomly generated phase angle orientations which, in one 
respect, have the advantage of producing highly symmetrical distributions. However, in 
another respect, random patterns may be used to evaluate the upper limit of storage 
capacity due to the fact that each pattern is functionally independent. In particular for 
stimulus patterns of low dimensionality, this forces the cell to learn a highly non-linear 
mapping topology. An upper limit on the recall error for one learning epoch may be 
approximated given the number of cortical memory elements of the neuron cell (M), 
and number of patterns learned (N): 

I -1( fN) 
<Perror ~ JLJ8 tan ~M (25) 

This residual response recall "error" is in fact deterministic, and increases in a square
root relation to the number of stimulus-response patterns learned. New stimulus 
patterns used in generation of response recall will invoke responses over the set of prior 
learned stimulus-response patterns, each of these component response terms (A, in 
equation 18) issuing a proportionate degree of dominance or confidence within the 
generated response. 
A series of enhancements on the basic learning procedure described in the previous 
section, are used within HNeT neuron cells to increase the recall accuracy well beyond 
that indicated by the error relation (25). For instance, one may eliminate the pattern 
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storage restriction by increasing the dimensionality (size) of the input stimulus field, 
through generation of unique higher order scalars or "combinatorics" as a preprocess 
operation. Employing this process to expand the number of stimulus fields, a raw input 
field of say 10 elements may be increased to tens of thousands of higher order terms. 
The number of potential higher order combinatorics increases as a factorial of the 
product order. Random statistical tests may be used to validate that the relationship 
between pattern storage capacity and the number of cortical memory elements (using 
combinatorics) remains directly proportional. 

1.4 Enhanced Learning 

The operational characteristics of the holographic/quantum neural method may be 
enhanced significantly when learning is a function of stimulus-response "memories" 
previously absorbed by the cell. For the basic learning process, learning progresses 
independently from knowledge already accumulated, and no control is afforded over 
attention. Attention refers to the influence that prior learned memory exerts on the 
learning of new stimulus-response associations. Within the basic learning process, 
learning is very much sub-optimal, in the sense that many similar stimulus-response 
associations will tend to globally distort the mappings generated within the neuron cell's 
cortical memory. These asymmetries effect cortical memory such that response recall 
will tend toward a heavily reinforced response action. This undesirable characteristic or 
limitation is eliminated within the enhanced learning process used by HNeT cells. 
Additionally, magnitudes of the cortical memory elements and the response recall 
values remain stable and bounded irrespective of the number of stimulus-response 
patterns that are learned. 
In application, the enhanced learning process incorporating attention, demonstrates the 
ability to construct a cell that generalizes to the point where it is capable of learning 
highly complex abstractions. An example of an abstraction is the visual concept of the 
human face. Through reinforcement learning, an HNeT neural cell with only a few 
hundred cortical memory elements is capable of learning many 1 Os of thousands of 
facial images, and generalizing to the point where a human face may be recognized as 
such, irrespective of ambient lighting, ethnicity, permutations in scale and rotation. In 
this respect, one can say that the cell has learned the "abstraction" of the visual form of 
the human face. A brief description of a face recognition system developed by AND is 
located at www.andcorporation. com/applications/htm. Another important aspect of the 
enhanced learning process is that, by contrast to the basic learning method, the 
enhanced process maps new stimulus exactly to the desired response on one learning 
exposure. In addition, the residual error within the response recall produced over large 
sets of stimulus-response patterns increases at a considerably slower rate than for the 
basic learning scheme. 
The enhanced learning process may be subdivided into three stages of operation. The 
initial stage executes a response recall operation whereby a new stimulus [S] is 
transformed through the cell's cortical memory. The second stage evaluates the 
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complex scalar difference (Rd;JJ) between the generated and desired response values for 
this new stimulus. The final step performs a basic learning operation whereby the new 
stimulus pattern is mapped to the above scalar difference. Computationally, the 
enhanced learning operation requires two complex multiply and accumulate operations 
(CMAC's) per cortical memory element. By contrast, the basic learning process and the 
response recall operations require only one CMAC operation per cortical memory 
element. In this respect, both the learning and recall operations display high 
computational efficiency, requiring few and quite simple numeric operations per 
"synaptic connection". The operational steps for the enhanced learning process are 
illustrated below: 

1) Process a stimulus pattern through the neuron cell to produce a response recall 
value R', i.e.: 

(26) 

2) A complex scalar difference Rdiff between the above generated response and the 
desired response R for this current stimulus-response association is evaluated, as 
follows: 

Rdiff = R- R' (27) 

3) Cortical memory is updated using the new stimulus [S] and the above difference 
scalar. The result of the following matrix product operation is added into the existing 
cortical memory; this operation follows the canonical form presented in (13): 

[x ]+ = [sf . Rdiff (28) 

This process yields the learning process whereby a new stimulus pattern is mapped 
exactly to the desired response (R) following one learning exposure, and irrespective of 
prior learned memory. A general formulation for this learning procedure may be derived 
by combining steps (26) to (28), neglecting cross product terms in the matrix solution: 

[X]= [S]T ·(R-ns[S]-[x]) (29) 

or re-expressing in an approximate form: 

[x]+ = [S]T. R-[H]· [x] (30) 

basic enhancement 
encoding term 

where [H] represents a Hermitian expansion of [S], that is: 
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[H]= _!_[S]T · [S] (31) 
c 

The optimal mapping is achieved at the point where [X) converges to a stable locus 
defined at: 

[ x] = (nt . [ x ]basic (32) 

where ( X]ba•ic is the correlation set produced within the basic learning scheme presented 

by ( 11 ). A nearly precise mapping over large sets of stimulus-response patterns may be 
achieved with relatively few reinforcement learning trials, using the enhanced learning 
process as presented by (29). This matrix solution presents a general form of the 
iterative learning process and represents one reinforcement learning trial over the entire 
suite of stimulus-response associations contained in [S] and [R]. For cases where the 
stimulus patterns are symmetric and the number of patterns learned is equivalent to the 
number of cortical memory elements stored by the cell, the analog error produced 
during response recall achieves low values (i.e. 4-6% absolute analog scale) following 
two to three reinforcement learning trials. For lower pattern storage densities, or sets of 
patterns which embody some degree of similarity in structure (i .e. patterns that are not 
random), the response recall error may be significantly less than that estimated by (25). 

1.5 Higher Order Systems 

Conventional ANS models are restricted in terms of the numbers of stimulus-response 
associations that may be learned, due primarily to a functionally linear basis of 
operation. Within the holographic/ quantum neural process, limitations on the storage 
density are overcome through a preprocessing operation involving the generation of 
higher order products from the stimulus basis set [S) . The response recall error 
relationship presented in equation (25) remains valid for the situation where the 
stimulus field is expanded to a higher dimensionality using higher order combinatorics. 
These higher order products must however form unique sets. Within this context, 
"unique sets" are defined as the set of all possible combinations derived from the input 
basis, providing that no two product sets contain the same group of basis elements. An 
input field expanded to 4th order products, for example, may be generated by the 
following product solution for a higher order term k: 

(33) 

where j(J.k) is some arbitrary function which selects the input element as a function of k 
and the index to the cortical cell synapse j. 
The above product operation performs a cumulative phase rotation over the stimulus 
basis elements, and evaluates a net confidence level for the result. The evaluation of 
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confidence levels for these higher order terms maintains a congruency with probability 
theory. In addition, individual A.e;0terms used in the above product (i.e., over k = 1 to 4) 
may be conjugated to increase the number of unique terms attainable for a specific 
product order. Such combinatorics are illustrated within the basic learning and response 
recall operation producing the following sigma-pi forms: 

Basic learning: 

.V K " ;; rr 1 -;o,,..,, 
x j = £..., r,e ' /!, f(J .k )e . J (34) 

t=l k=l 

Response recall : 

(35) 

Reiterating, the number of complex elements within the above product terms (K) 
defines the order of the product. The response recall error characteristic for any set of 
complex product terms of order >= I follows the relationship defined in (25) provided 
that the product set forms unique combinatorics. The limit imposed by this uniqueness 
cri~erion establishes an upper limit for the total number of higher order terms that may 
be generated for a given basis set and product order. The number of unique higher order 
terms can be extremely large given a basis stimulus set of modest size. 
As an example, Table I lists the number of unique product sets given stimulus signals 
of varying sizes. Consider the situation involving a stimulus signal containing 20 
degrees of freedom (20 elements). Expanding this basis set up to 8th order products 
yields greater than I x I 0 6 product combinatorics, allowing a proportional number of 
distinct and separate (Monte-Carlo based) stimulus-response patterns to be learned. 
One million associative patterns stored within a single cell, and confined within a state 
space bound by 20 degrees of freedom, defines a system that is not limited in any 
respect by linear non-separability concerns, permitting single cortical cells to learn 
highly complex (non-linear) stimulus-response environments. 

Table 1: Number of Combinatorics as Function of the Product Order 

Stimulus Size Order of Product Expansion 

1 3 5 7 10 
I 1 1 1 1 I 
5 5 35 126 330 1001 
10 10 220 2,002 11,440 92,378 
15 15 680 1,628 116,280 1,961 ,256 
20 20 1,540 42,504 657,800 20,030,010 
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The HNeT Application Development System allows one to control the statistical nature 
of higher order product generation. Two options regarding the composition of complex 
conjugates are provided, and the user may specify the order of terms generated. In 
addition to this, one has the ability to specify the spin number for higher order products, 
evaluated as follows: 

spin number= non-conjugated basis elements - conjugated basis elements 

Applying these features, one may adjust the mapping density within the cell to suit 
requirements of the application. On the other hand, one requires a more complete 
knowledge of these features, as arbitrary specification of the higher order product 
expansion may not result in the desired generalization or interpolation. Neural 
plasticity provides a method by which more appropriate (or optimal) higher order 
combinatorics are selected by the cell in an automated manner, prodJJcing in most cases 
a dramatic improvement in learning and generalization. 

1.6 The Commutative Property of Cells 

Holographic/quantum neural cells display a commutative aspect when connected into 
multi-cellular structures (i.e. cell assemblies). This refers to a characteristic whereby the 
storage capacity for stimulus-response patterns increase in proportion to the number of 
cortical memory elements stored within all cells connected together to form an 
assembly. Such cells when connected together, operate in a similar manner to single 
cortical cells possessing the sum total of all memory elements over the cell assembly. 
This concept may be illustrated by the following equality, considering [X]r as the 
cortical memory values stored within each cell (r) and [S]r the stimuli processed 
through each of those memory elements: 

N 

[xJ ·[SJ = ~]x], ·[S], (36) 

The above primed sets represent the appended set of cortical memory elements and 
stimulus signals over a group of cells indexed by I to N. Such sets may be represented 
as a collection of the linear matrices used to evaluate each cell independently i.e. 

(X]' = {(X)1,(X)2 ,(X)3 , ..... ,(X)N} (37) 

[s]' = {[sJ1,[S]2,[SL, ..... ,[S]N} 

This property is utilized in the HNeT system for the neo-cortical assembly, allocated 
using the AllocStellateCell and AllocPyramidalCell functions. This cell assembly is 
comprised of multiple stellate cells with output connections into one pyramidal cell. 
The stellate cell stores cortical memory, while the pyramidal cell does not. The 
pyramidal cell however, permits the outputs across the multiple stellate cells to be 
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summed in a manner that the commutative property is observed. The cell assembly 
formed by the combination of stellate and pyramidal cells is illustrated below: 

StellateCell 

rs1 1{ 
R1~ 

~dil 

[SJ2{ 

(S]3{ R~ 

~dif 

Fig. 6: Illustration of a Cell Assembly Based on the Neo-Cortical Model 

This property is unique to the holographic/quantum neural model and permits one to 
construct assemblies that are effectively unrestricted in terms of their mapping 
(learning) densities. This aspect of operation also has some interesting implications for 
cell structures that resemble biological constructions. For instance in the human neo
cortex, cell assemblies similar to Figure 7 are observed in which several stellate cells 
relay signals via axonal processes into the synaptic spines of a pyramidal cell. 

Fig 7: Illustration of a Biological Stellate\Pyramidal Cell Assembly 

Current estimates regarding the synaptic populations of neuron cells indicate that 
stellates have typically from 10,000 to 50,000 synaptic connections along their 
dendrites. A pyramidal cell may receive a proportionately large number of axonal 
inputs from stellate cells. If one applies the holographic/quantum model to these 
structural aspects, there exists the capability for neo-cortical based assemblies to learn 
and recall several hundred million stimulus-response associations (memories). 
Practicably, these assembly structures have the ability to learn or enfold such quantities 
of associative patterns that could represent an organisms life span, applying single 
epoch training (i.e. real time learning). 
The actual connective structures observed in biological systems are far more complex 
than the supervised feed-forward structures described previously. These biological 
structures possess a high degree of interaction among pyramidal chains, often displaying 
an extensive degree of collateralization along cell axons. It is suspected that recurrent 
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(hyperincursive) structures exist in the dense inter-connectivity among actual biological 
assemblies, providing the basis for unsupervised cognitive based operation. 
Hyperincursive in this context refers to assembly structures which exhibit recurrent data 
flow via the environment, and illustrate a self-referential aspect. An example of 
hyperincursive feedback is provided by Hofstadter [4] through the simple experiment of 
aiming a camera at a monitor to which it is connected. Other examples of 
hyperincursion for generating fractals in automota are provided by Dubois (5]. The 
HNeT system allows the user to structure multiple pyramidal chains in a rather flexible 
manner that permits both collateralization and hyperincursive data flow for modeling 
and simulation of more elaborate cell assembly structures. 

2 The Biological Model 

Neural networks attempt to construct information processing systems based on known 
features within neurobiology. Little is currently understood regarding the mechanisms 
of information processing within neuron cells. Some aspects with respect to the 
morphology of various neurological cell types (i.e. their structure), inter-connectivity, as 
well as aspects concerning signal transmission may however be measured and observed. 
The following provides an structural overview of cell assembly construction in the 
cerebellum [6], with analogies to the holographic/quantum process. 
The cerebellum is associated principally with motor coordination and is believed to 
perform a fundamental role in postural control and integration of movement. It's 
general structure consists of an external layer of gray matter in which the cell bodies 
and synaptic areas of the neuron cells are located. This cortical region surrounds a core 
of white matter which contains, again, efferent (outgoing) and afferent (incoming) 
signal tracts. The gray matter within the cerebellum may be divided into separate layers. 
These are: the outmost molecular layer, Purkinje layer and the granule layer. Several 
distinct cell types and cell assembly structures exist within the cortical region. The 
most predominant cell types are the Purkinje and granule cells. As opposed to the three 
layer structure of the neo-cortex, the cerebellum in based on a two layer structure 
(granule~Purkinje ). The arrangement of these cells within the various cortical regions 
is illustrated in Figure 9, and the general features of cerebellar neuron cells are 
discussed below. 

2.1 Purkinje Cell 

This is the principal cell of the cerebellum. The Purkinje cell body is located in the 
Purkinje layer between the molecular layer and granule layers. Dendrites from this cell 
course through the full extent of the molecular layer to synapse with axons of primarily 
granule cells. The structure of the Purkinje's dendritic processes are highly elaborate, 
with extensive arborization and many dendritic spines located along the course of these 
processes. The Purkinje cell possesses up to 150,000 synaptic spines. Each Purkinje 
cell possesses one axon, which courses down through the white matter to deep 
cerebellar nuclei. These cerebellar nuclei are believed to operate in some part as relay 

331 



stations, propagating signals to cell structures within the brain stem and thalamus. It is 
estimated that there are approximately 15 Million Purkinje cells in the human 
cerebellum. 

---===t--
( 

! 
! 
I 

Fig 8: Structure of the Purkinje and Granule Cell 

2.2 Granule Cell 

Like the granule cells of the cerebral cortex, these cells are very small in comparison to 
the Purkinje cells but are far more numerous. It is estimated that approximately 2 x 10 ' 

granule cells exist within the cerebellum. Granule cells predominate in the lowest 
cortical layer of the cerebellum, named the granular layer. These cells have from three 
to five dendrites which establish contact with climbing fibers (afferent signals) relaying 
input signals from the brain stem and cerebral cortex. The axon from the granule cell 
courses vertically through the Purkinje layer and arborizes forming many collateral 
branches within the more superficial molecular layer. These collaterals run parallel to 
the cerebellar surface and establish contact with up to 500 Purkinje cells. The axonal 
collateral originating from a granule cell will come in contact with a Purkinje cell 
generally only once. A single Purkinje cell however, can receive up to 150,000 synaptic 
inputs from the granule layer. 

2.3 General Structure of the Cerebellum 

A simplified schematic of the cerebellum is presented in Figure 9. Afferent signals are 
received from the climbing fiber system relaying signals from the mid brain, thalamus 
and cerebral cortex. These climbing fibers establish synaptic contact primarily with 
granule cells. Each climbing fiber will synapse with between 20 and 40 granule cells. 
In response to these signals, the granule cells integrate these afferent inputs propagating 
a signal via axonal processes to Purkinje cells. Signals from the granule layer establish 
synaptic connections on the Purkinje cell's dendritic processes located within the 
molecular layer. The Purkinje cells themselves have axonal processes which form the 
only efferent (outgoing signal) from the cerebellum. 
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Fig 9: Neural Pathways within the Cerebellwn 

Structure at the granule layer is again highly indicative of the preprocessing required to 
perform a signal expansion through generation of higher order scalars. Granule cells 
display the appropriate placement and structure for this operation. Third to fifth order 
product terms as indicated from the dendritic structure of actual granule cells are quite 
sufficient to integrate and expand the incoming signals to provide densities in the 
millions of patterns, and a non-linear mapping capability. The cell assembly 
constructed from the granule and Purkinje cell types establish the cerebellar model 
within the HNeT Application Development System: 

stimulus input 

rece tor A 

receptor 

training re sponse input 

generated response 
output stored in axons 

D 

Fig. 10: The Cerebellar Model 

One may use the cerebellar model to construct quite simple assemblies consisting of 
only four cells. Despite the simpler structure, cerebellar assemblies may also be 
configured for real time learning of large numbers of stimulus-response patterns ( i.e. 
>> several thousands). The above cerebellar structure forms the basis for the HNeT SL 
(supervised learning) Platform. 

3 The HNeT Library 
The HNeT2000 Application Development System is based on a 32 bit Windows 95, 98, 
2000, and NT dynamic link library (DLL). This DLL permits multi-process and multi-

333 



threaded operation. The HNeT library uses familiar concepts such as handles and 
objects; the objects consist of cells and assemblies. The cell and assembly objects are 
assigned handles by the HNeT kernel, and each object type has a number of associated 
properties. These properties may be read by the user, and many of these properties may 
be modified following initial allocation of the cell assembly. The HNeT library 
functions that are used to allocate cells (AllocxxxCell) return cell handles. The 
properties associated with a cell may be accessed and modified using a reference to the 
cell handle. The synaptic connections made between cells, and thus the signal flow, is 
established by passing cell handles into the parameter list of the function used to 
allocate the cell. The following code segment, using five function calls, allocates a cell 
assembly consisting of four cells. 
A = AllocReceptorCell(20. 1 ); 
B = AllocReceptorCell(1. 1); 
C = AllocGranuleCell(SOO, ALL. DEFAULT. A); 
D = AllocPurkinjeCell(1 . C. A) ; 
AssemblyHandle = EndAssemblyCode() ; 

The above code allocates the cell assembly illustrated above in Figure 10. The first 
receptor cell receives the stimulus signals from the host application, and is assigned 
handle A. The above code allocates a granule cell that receives its input signal from the 
receptor cell (by referencing handle A). The granule cell is used to performs an 
expansion of the stimulus signal stored by receptor cell A, using product combinatorics. 
Subsequently, the Purkinje cell reads its input from the granule cell (by referencing 
handle C). The Purkinje cell also reads a training response signal from the second 
receptor cell (referenced by handle B). 

A summary list of HNeT DLL functions are provided at www. 
andcorporation.com/hnetapi.htm. Summary performance specifications for the HNeT 
process start at www.andcornoration.com/perfonnancel .htm 
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