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Neuronal schemes realizing operations with continuous quantities are presented. These 
schemes are based on an analog neuron as a "diode-like" summator of continuous 
quantities (spike frequencies). Analog (continuous) logic, non-linear feedback , and 
neuronal structures, which can realize the complex features of information filtration, are 
discussed. Special attention is paid to factorial switches and synthesis of neuronal 
structures. Neuronal structures processing n-dimensional continuous vectors by non­
linear feedbacks can realize the factorial switch, which stores and reproduces 
information about decreasing order of the components of the vectors. 
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l Introduction 

The nervous system of animals and especially of the man is a surprising creation of 
nature. According to the currently prevailing opinion, the functional organization of the 
nervous system is based on neural networks, transneuronal connections and specific 
properties of neurons and their contacts. The paradigm states that the functional role of 
neural networks is to identify the organism's environment, i.e. create and improve an 
informational model of the environment, make decisions according to the model, and 
control the organism's action as well as realize goal-oriented programs. 

Neurobiological experiments clearly show that neurons as non-linear summates 
(logical and algebraic) possess certain linear properties (Ratliff, 1965; Granit, 1966). In 
addition, there is substantial evidence that in biological networks there is strong feedback 
(by way of axon collaterals, interneurons, etc.), both between nearby neurons and between 
bigger structural units of the nervous system (ganglia, nuclei, cortical fields, etc.) 
(Poliakov, 1965). It has been emphasized that it is these feedback collaterals that grow and 
form new synaptic contacts during the life of an organism (Hubel, 1963). It has been 
pointed out that this feedback is non-linear, and its significance for the functional 
properties of the neuronal network has been considered (Gutman, 1984). 

Physicochemical and biological models of dynamical systems, their phase portraits 
clearly demonstrate the significance of non-linear feedback for a system and even for its 
functions. It is known that non-linear positive feedback in dynamical systems may induce 
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autogeneration, hystereses, bifurcations. All these effects are observed m 
neurophysiological experiments and may be explained by some theories (Barlow, 1969). 

More interesting and less investigated effects arise from non-linear feedback. The 
dynamical systems theory shows that positive feedback leads to unnecessary parasitic 
autogeneration, whereas negative feedback helps to stabilize the system. One of the best -
known examples of a system, which uses negative feedback, is the regulator. On the base 
of the regulator automatic regulation and control theory has been created (Grodins, 1963). 
Such systems and their functional organization are of great interest to biologists because 
regulation is one of the most prominent features of living organisms. Non-linear feedback 
(interaction) is fundamental to some mathematical models Jacob-Monod of cell 
morphogenesis-differentiation, which explain possible bifurcations in embryogenesis 
(Rosen, 1972). It has been suggested that the nervous system is the main system, which 
detennines the organism's regulator-like properties. Therefore, it can be assumed that it is 
the negative neuronal feedback that fonns these regulator-like properties. 

These properties of non-linear feedback, in the context of the purpose of the 
nervous system, call attention to a statement by the creator of biometrics, mathematician R. 
Fischer, in which he proposed that dynamical systems with non-linear feedback might 
identify an object, or create a model of the object (according to 3fiKxocpcp, 1975). This 
means that non-linear neuronal feedback may be one of the most important mechanisms in 
brain functional organization and functioning. Therefore, it makes sense to fonnulate a 
purpose and find a way to synthesize appropriate functions, i.e., a neuronal structure which 
would generate the needed phase portrait. One should explore the potential of negative 
neuronal feedback and create a basic memory-endowed network, a continuous neuronal 
factorial bifurcate, which would be able to remember the pennutation that arranges the 
positive continuous components of an input vector in increasing order. 

There are some neural network models with non-linear feedback, which endows 
with new specific features: to separate and pass on only the highest value out of several 
parallel inputs (the maximum filter) ; to fonn differentially selective neuronal structures 
according to their thresholds and neurons selective to the intensity of the input signal 
(Kirvelis, 1967-1998; Dubois, 1999). 

Therefore, understanding of the synthesis of neuronal structures could explain not 
only neurobiological facts but also would help create more effective technology for 
information processing. 

2 The Functional Characteristics of the Analog Neuron 

Neuromorphological studies show that the structural and functional element of the 
nervous system, the neuron, has a multitude of synaptic contacts with other neurons and 
one long process, the axon. The axon branches and impinges on neurons and other 
cells, making its synapses. This is how neuronal structure and neural networks are 
formed. Neurons come in different shapes but in most cases, they may be divided into 
"stellate" and "pyramidal" neurons. For the sake of simplicity we assume that our 
neurons (quasineurons) are summators with many functional inputs and one functional 
output (Fig. I) . 
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It is known from neurophysiological studies that neurons generate spikes, thus 
expressing their level of excitation. A non-excited or inhibited neuron is silent, whereas 
its excitation makes it generate neuronal spikes of different frequencies, the frequency 
being indicative of the level of the excitation. Due to the fact that spikes last for certain 
time and are subject to refractory effects, neurons have their maximal firing frequency 
X M. Generally, this frequency does not reach I OOO spikes/sec, although some small 
interneurons may fire at as many as ~ 1500 spikes/sec. It has been suggested that the 
firing frequencies may be summed with a positive(+) and a negative (-) signs, and also 
with different summations weights. Therefore, the quasineuron is considere.d to be a 
summator of continuous (analogous) inputs (spike frequencies) . It is able to weigh every 
synaptic input by a synaptic weight S, which may take on any value. Since synapses 
may be excitatory and inhibitory, the weights of excitatory synapses are often 
considered positive (+S), whereas the weights of inhibitory synapses are negative (-S). 

X1 ••• X; .•• Xn 

y y 

Figure 1: Stellate and pyramidal neurons schemes. 

Therefore, the static functional characteristics maybe described by a non 
linear equations for stellate 
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Their graphic representation is depicted in Fig. 2. It is easy to notice that this is a 
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"diode-like" non-linearity with saturation at XM (in the case when the sum of inputs 
exceeds the maximal frequency that the neuron may reach). 

In some cases it is important to take into account the absolute threshold of the 
neuron Q. Then the static function of neuron shifts to the right by the value of Q, or, 
alternatively, the X-axis moves to the left. In many cases it makes sense to consider 
the threshold to be zero, and introduce another inhibitory input from a neuron 
(pacemaker), which generates a stable maximal frequency XM, and whose action at 
the synapse with a certain weight S will ultimately determine the threshold Q=SXM. 

y 

0 Q 

Figure 2: The static functional characteristics of analog quasineurones. 

It is easy to find the condition under which the neuron is "unsaturable". This is the case 
when all the inhibitory inputs are silent, i.e., equal zero, and all the excitatory inputsj 
are carrying the XM frequencies . In this state of maximal excitation the neuron cannot 
reach and only approaches the saturated XM value. Then the following inequality must 
hold true: 

(3) 
j 

This means that the larger the number of excitatory synapses on a neuron, the 
ssmaller the weight of every synapse. If all the weights of the excitatory synapses are 
equal and their number ism, then S<l/m. Ifwe assume that neurons often react only to 
the difference between the inputs, i.e., they do not react when all the input frequencies 
are equal, we come to the conclusion that the sums of the excitatory Sj and inhibitory Si 
synaptic weights are equal, and their sum (taking into account the signs) is zero. That 
indicates that 

( 4) 

.I 

In some cases very strong inhibition is observed in pyramidal neurons. This effect has 
been ascribed to some somatic inputs Z1 and Z2 with big inhibitory synaptic weights 
(neuromorphologists relate it to the action of "basket" neurons). Such inhibitory 
synapses may realize logical prohibition operations, universal logical Pirs' s arrows 
(Dagger functions) or Shaffer' s functions . Such a pyramidal neuron sums up its input 
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signals and produces an output, which in this case is a logical operation. The pyramidal 
neuron becomes an algebraic/logical functional device. 

Considering dynamical properties of a neuron, it makes sense to characterize it 
as a first-order summate with a time constant T, describing the functioning of the neuron 
by a first-order differential equation 

dX " 
T. - = Ls . lf - x (7) 

dt ;~ 1 ' . ' 

In some cases in addition to the synaptic weight S;, every synapse may also be 
characterized by its time constant T;. 

Therefore, from the functional point of view, every neuron may be characterized 
as an inertial algebraic summate with a time constant T, n non-negative inputs 
(frequencies) with their synaptic weights S;, and the neuron's non-linear ("diode-like" ) 
characteristic N. Its output is also a spike frequency X, which may take on only non­
negative continuous values that ' s do not exceed X~1. In some cases the neuron may also 
be a logical summate. 

3 Reciprocal neurons 

An additional parallel may compensate for the non-linearity of a neuron 

X 1 ... . X; . . .... X. 
Y+ 

---_){_1\l _ -------------------

Y. Y+ " 
+L:S, ·X, 

i= l 

n 

-""S·X 
,L... ' ' 

X1 ••• X; .. X. 

i=1 

Y. 

Figure 3: Reciprocal neurons as sum mat or of frequencies. 

which has exactly the same absolute values of its synaptic weights, but the signs of 
these weights are reversed. Such a pair of neurons satisfies the condition of "non-
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saturability" and becomes a simple linear summator. Its diagram and functional 
properties are depicted in Fig. 3. 

4 Neuron with Feedback 

Generally, feedback may radically change the functional properties of a neuron. The 
feedback through an inhibitory synapse does not qualitatively change a neuron function 

X(t) 

" 

cr 

' ' ' ' 

y 

-...-
' ' 

0 

x 

Q 

Figure 4: Neuron with feedbacks and functional characteristics. 

and only decreases its steepness. In contrast, the feedback through an excitatory synapse 
makes this function steeper, and, because of the saturation effect, the neuron becomes a 
"yes-no" switch, or a hysteresis effect emerges, or it may even become a binary element 
with memory and an autogenerator (pacemaker) of the maximal frequency XM (Fig. 7). 
It is easy to show that the static transfer function of a neuron with linear feedback is 

Y=~-X (5) 
I +S0 ' 

where the positive sign in the denominator is the inhibitory feedback synapse and the 
negative sign is the excitatory synapse. In the latter case, it can be seen that, when So 
approaches I, the steepness of the neuron's function approaches infinity and, when it 
becomes I, the neuron becomes a "yes-no" switch. If the synaptic weight further 
increases, the steepness becomes negative and a hysteresis emerges. If the threshold Q 
is taken into consideration, the neuron becomes a two-state memory element, or a 
pacemaker. 

268 



Such feedback also changes the time constant T: 

T =_!j_ (6) 
1 ::i: S0 

It can be seen that in the case of the excitatol)' feedback (when the synaptic 
weight approaches 1), the neuron becomes an integrator (T approaches infinity), 
whereas an increase in the inhibitol)' synaptic weight, in contrast, improves the neuron's 
dynamical function (T decreases). 

5 Neuronal Analog Logic 

Analog neuronal summators with "diode-like" non-linearity can realize all operations of 
continuous or analog logic (Kirvelis, 1967). Neuronal schemes of the simplest analog 
logic functions are presented in Fig. 5. Here the logic operations: constant .CONST., 
reiteration .RE. and negation .NOT., realized as inversion are represented. 

Y=X-.RE.X 

Figure 5: Neural schemes ofanalog logic operations .CONST., .RE., .NOT .. 

Other important logical functions are the analog MAX{X1,X2} and 
MIN {Xi,X2} (Fig.6). 

Figure 6: Neural scheme of analog logic .OR and .AND. operations that 
correspond to MAX{X1,X2} and MIN{X1,X2} . 
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The universal logical logic functions Pirs' arrow (or Dagger function) and 
Sheffer's link can be easily realized as well (Fig. 7). 

PIRS arrow or DAGGER function 
Y = xM - x, -NIX1- x,} = xM- MAXIX • .X,} - x,.NOR.x, 
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SHAFFER function 
Y= xM- x, + N{X1 - X2} = xM - MIN {X1.X2} - x,.NAND.X2 

Figure 7: Universal neural schemes ofanalog logic. 

It is especially necessary to pay attention to restricted inputs Z, which have very big 
negative inhibitory weights. These inputs permit to realize complex logical operations 
on the base of the universal logical Dagger function. That is informational control. 
Inputs of this kind enable the filtration .EQ. (Fig. 8). 
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Figure 8: Neuronal schemes of analog logic. 
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In general 

LS; ·X;. ·· ···· .IF{LOGICFUNCTION} =.TRUE. 
.EQ.{ .. .Xi .. .x, .. . } = ;~ 1 

{

II 

0, ...... .. ... .... ..... .IF{LOGICFUNCT/ON} =.FALSE 

6 Neuronal Regulator 

(8) 

Here we point out to the properties of an inertial (T large) pyramidal neuron with 
feedback through two complementary non-inertial (T< To) neurons which together carry 
out the difference Z=Xo-X= N{Xo-X}+N{X-Xo} . Here Xo is a constant, X(t) is the 
neuron's reaction, and N is a non-linearity indicating the polarity of the difference. In 
the case of negative feedback, the first neuron acts through an excitatory synapse, and 
the second one through an inhibitory synapse (Fig. 10). This scheme models a classical 
neuronal regulator which stabilizes X, i.e., it tries to maintain X(t)=Xo constant. The 
solution of the function Z=F(X), intersecting the X-axis at a negative angle at point Xo, 
shows the pyramidal neuron ' s stable state in a "potential pit". By reversing the signs of 
the synaptic connections, we could get a dynamical system with the opposite effect, i.e., 
a non-stable "potential hill" state. In the latter case, Z(X) would intersect the X-axis at a 
positive angle. That would correspond to positive feedback . 
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Figure 9: Neural regulator and functional characteristics. 

271 



The described neuronal structure gives us insight into a one-dimensional neuronal 
network with more complicated dynamical characteristics, where the feedback non­
linear function Z=H(X) has many real solutions (Fig. 10). 

U(t) 

z 
Z=H(X) 

H(X) 

0 

X(t) 

t 
POWER 

l 
dX 

T-=s U (t) - X + s Z, dt I 0 

Z = H(X ). 

Figure 10: One-dimentional neural network with non-linear feedback 
and functional characteristics. 

x 

x 

Some of these roots, at which the X-axis is crossed at a negative angle, will form stable 
states ("potential pits") of this dynamical system. The others, at which the function 
intersects the X-axis at a positive angle, will form unstable states ("potential hills"). In 
such a way, one can synthesize a dynamical system with a desired phase relief, portrait, 
dissipation, or Liapunoff's function. 
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Take, for instance, H(X)=So(Xo l-X)(X-Xo2)(Xo3-X)(X-Xo4)(Xo5-X). This fifth 
order polynomial forms three "potential pits" and two "potential hills" in the feedback 
(Fig.12). A neuronal structure, realizing a third-order polynomial feedback and having 
two "potential pits" and "a hill" in between at desired values of X, can be made of three 
neuronal pairs, calculating differences. If their outputs are fed into the appropriate 
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Figure 11: One-dimentional neuronal structure realizing non-linear 
system with two "potentials pits" and a hill" . 
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neuronal structures passing on the minimal value, and one of which gives excitatory and 
the other inhibitory feedback effects, one gets a function made of broken lines, which 
approximates a third-order polynomial (Fig. 11). 

7 Multidimensional Neural Net Structure with Non-Linear Feedback 

The main feature of neuronal structures is parallel information processing of signal 

NON-LINEAR NEURONAL FEEDBACKS 
~-----------------, 

' \ 
I 
I 
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Z1 I 
I 
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' / -----------------~ 

Figure 12: Two-dimentional neural swich with two "potential pits" . 
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vectors. Therefore, it is important to understand the possibility of synthesizing a 
neuronal structure with desired properties and required multidimensional phase portrait. 
This can be realized by using a few or many simultaneously functioning pyramidal 
neurons with appropriate nonlinear negative feedback connections. The negative 
feedback keeps in check the basic structure elements, pyramidal neurons in this case, 
not allowing them to reach the saturation limit and, when they get to a certain point of 
excitation, pushes the system to a level of excitation which is less than XM. When the 
level of excitation is low, positive feedback may come into action, too. 

U1 ....•• U1 ••..••• U. 

• • • . . . 

X1 . . . ... .. Xi ••••.• X. 

NON-LINEAR NEURONAL FEEDBACK 
---------------------~ 

/ ' 
/ ' I \ 

\ 
I 
I 
I 
I 
I 

r-~~..._~~~ ....... ~~~~ ...... ~~-.1 

NEURAL NET of ANALOG LOGIC i 
MIN{ ..... MAX{ .. . ... }} i 

._.....,....-~~..-~~~~...-~~-r-~-'I 

'----------------------/ 

I 
I 
I 
I 
I 
I 
I 
I 
I 

. I 
I 

/ 

Figure 13: Multidimensional neural swiching net. 

Considering the simplest case, suppose we have a two-dimensional structure with two 
inputs (U1 and U2) to two pyramidal neurons N, which in turn have two outputs (X1 and 
X2) with such intemeuronal feedback that it creates a desired phase relief (portrait). For 
instance, this system may have two "potential pits" positioned symmetrically with 
respect to the line X1=X2, in the sectors X1>X2 and X1>X2, and on neither of the 
coordinate axes (Fig. 12). It would be an "on-off'' switch, which could remember the 
state of the vector U, by which component of the vector was bigger. This property 
emerges in the interneuronal network composed of two parts functioning in parallel; the 
first part realizes the nonlinear algebraic equation Z+=+So*N[XM-(X1+X2)], 
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Z = S1*N[(X1+X2)-XM], and the second one realizes the disjunctive (connected by the 
analog logical operation .OR.or V) expression Z=So*{N[N(X1-X2)-I/2*XM] .OR 
N[l/2XM-N(X1-X2)] .OR N[l/2XM-N(X2-X1)] .OR.N[N(XrX1)-I/2XM]}. 

These in non-linear equations, embedded in neural networks, not unlikely as in 
the case of the regulator, "push" the state of pyramidal neuron excitation towards one of 
the points of intersection between the lines X1+X2=XM, X2=X1+112*XM, 
X1=X2+1/2*XM. i.e., towards one of the two possible states: either X1>X2, or X2>X1 . 
Such a nine-neuron dynamical system with non-linear feedback has a phase portrait 
with two "potential pits". 

Likewise, one can synthesize a three-dimensional, four-dimensional, and, in the 
general case, n-dimensional switch, which would remember one of the n! symmetric 
states of an n-dimensional input vector. Such a structure would be made of n pyramidal 
neurons, and 3n+2 interneurons, realizing n+l intersecting hyperplanes. One 
hyperplane would divide the hypercube of the phase space by a diagonal hyperplane 
perpendicular to the hyperline "all equal", i.e., X1=X2= . .. =Xi= ... X.,. All the other 
n*(n-1) hyperplanes, parallel to the hyperline "all equal" and moved to every coordinate 
axis, which would be away from them by k*XM, (k<I) in the positive direction. That 
would create n! absolutely symmetrical intersection points, n! "potential pits", in then­
dimensional space, every of which would indicate a certain permutation of the vector U 
components (arrangement in increasing order). Depending on the values of the U 
components, the intemeurons (acting by way of feedback) would push the system into 
one of these "pits". The general diagram of such a neuronal structure is shown in Fig.13 . 

Figure 14: Three-dimensional cube representing factorial states. 

The transition to the vector form allows us to understand opportunities of 
synthesis of multidimensional neuronal structures. Such structures form potential holes 
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not at the tops of the multidimensional cube, but in any place inside the cube. The 
analog logic allows us to form complex physical surfaces with many potential holes and 
barriers in the desirable places inside the cube. Thus, it is possible to synthesize various 
neuronal triggers, qualifiers, filters and any structures processing information. For 
example, the 3-dimensional cube is presented in Fig. 14. 

It is easy to see that similar methods may be used to synthesize n-dimensional 
dynamical structures with a rather complex phase portraits. We can call them factorial 
switches. If the binary logic is used to analyze the states of a neural net, then n neurons 
can have 2n states, whereas the factorial logic of analog neurons can see as many as 
M=2n * n! states. Every hyperquandrant of the phasic space can haven! stable states. It 
can be attained by virtue of the feedback non-linearity of analog interneurons. 

Conclusions 

• Neuronal investigations need interpretation of neuron as analogue "diode-like" 
summator of continuous quantities (spike frequencies), different from the present 
binary formal neuron explanations on the basis of threshold logic; 

• The concept of an analogue (continuos) logic presented in this paper can be useful in 
joining together binary and analogue or fuzzy neural logic nets in a purposively 
functioning neural schemes (in a point of view of informational transformations and 
control); 

• Dynamical systems with a non-linear neuronal feedback based on analogue logic 
structures may generate the needed phase portrait and find a way to synthesize the 
appropriate functions; 

• 1ireuron nets with analogue structures of a non-linear neuronal feedback can 
synthesize an n-dimensional factorial switch, which would remember one of the n! 
symmetric states of n-dimensional input vectors. 
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