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A bstract 

This paper outlines four major topics of tantamount importance to computing 
anticipatory systems. Section 1 introduces the reader to several historical facts 
regarding Daniel Dubois' hyperincursive modeling approach and its relationship 
with Gerard Langlet's work and the author's conception of parity logic systems. 
It provides the connection of Dubois' hyperincursivity theory and fractal machi­
nes with parity logic engines, a special class of binary integro-differential cellular 
automata. Section 2 on modeling anticipatory systems recalls first the essence of 
Dubois' anticipatory systems approach by comparing briefly recursivity, incursi­
vity, and self-referentiality. Their impact on modeling cognitive anticipations is 
then discussed by rendering Piaget's recursive concept of anticipatory schemata 
into incursive schemata. Section 2 closes with an unresolved problem regarding 
anticipatory conflicts. Section 3 exhibits in a more formal way the difference bet­
ween recursivity and incursivity by explicating Dubois' most important digital 
equations, how they apply to hyperincursive fractal machines, and how they are 
related to parity logic engines. This includes self-organized processing of parity 
intergrals and differentials, self-organized development of binary transforms, and 
several group theoretic implications of transforming parity matrices generated 
with fractal machines or parity logic engines . Finally, in section 4, further per­
spectives are outlined for the advancement of anticipatory systems by considering 
causal predictor systems in terms of fuzzy cognitive maps . This includes the law 
of concomitant variation, non-Aristotelian causality, the relationship between 
fuzzy causality, fuzzy subsethood and fuzzy causal cross-impact analysis. 
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1 Introduction to Hyperincursive Computing and 
Hypercubical Calculus with Parity Logic 

Hyperincursivity is a central property of self-referential models and processes which 
are "running on beyond past and present states by including future states" according 
to x (t + 1) = F[ .. ., x(t - 1), x(t), x(t + 1), .. . ]. It comprises a new mathematical theory 
due to Daniel Dubois that extends conventional recursive processes (Rosen 1985) to 
inclusive recursion, henceforth incursion, thereby allowing to develop digital, analogue 
and hybrid models of anticipatory systems which may include themselves in a self­
referential manner (Dubois 1990, 1992, 1997, 1998; Dubois and Resconi 1992). 

Incursive and hyperincursive processes shed new light on the arrow of time, since 
they generate simultaneously Boolean antiderivatives and derivatives, hence binary in­
tegrals and differentials. Computational procedures of this sort permit internal and 
ex ternal times scales for considering past, present, and future state vectors. The com­
putational approach itself is based on Dubois' general non-linear and non-monotonous 
quadratic scalar function 

(1) 

with .r n = s1x 1 + s2x2 where x, µ,a E [0,1] and s,/3 E [-1,l]. From this function, 
a large set of other special functions are derivable, in particular all Boolean truth 
funct ional rules , including XOR, the eXclusive-OR rule with s1 = s2 = 1, µ = ~, a= 
0, and /3 = ~'thus 

y = 2x(l - x/2) (2) 

with l: = x1 + x2 (Dubois 1990) . Equation (2) is not only a fractal non-linear learning 
law that sol ves the XOR-problem through a single formal neuron as opposed to classical 
neural networks which require hidden units for solving it, but also a unive rsal fractal 
propagation law for artificially or naturally excitable media. 

A related hypercubical calculus approach is based on the generalized logical eXclu­
sive- OR operator for parity integration. This operator was first introduced in the 
programming language APL (Iverson 1962, 1979). It is based on the logical function 
··unequal" (x #- y) , which denotes XOR, and on the reduction operator "scan" (\), 
t hereby yielding the vectorial XOR-operator called Unequal-Scan ( #-\) in AP L. Gerard 
A. Langlet called this operator the binary vector integral 

(3) 

with X n and Xn+l being binary vectors in the Boolean hypercube 131. This alternative 
approach was Langlet 's choice in view of Dubois' foundational work and the work of 
Dubois and Resconi (Dubois 1990a, 1991, 1992; Dubois & Resconi 1992; Langlet 1991 , 
1992). In 1994, when I became involved with scientific modeling from scratch, I adopted 
Langlet 's approach with great enthusiasm, since it proved to be rather promising to 
algorithmic compression. Unfortunately, Langlet never informed me about the works of 
Dubois and Resconi (Dubois 1992; Dubois & Resconi 1992). I found out about this by 
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direct contact with D. Dubois regarding anticipatory aspects of fuzzy cognitive maps 
in spring 1999. In 1995. I concentrated my work on the mathematical foundations of 
crisp and fuzzy XOR, whereby it turned out that the Boolean XOR-operation and its 
generalized operators are special instances of the parity function, from which I derived 
the term parity logic. A parity logic system is straightforwardly defined by using the 
standard notation of set-theoretical predicates (Zaus 1999). 

Definition 1.1: The quadruple (B1
, EB, EB'.=i X i Ex, ffil=i X i Ex) is called a finite 

Parity Logic System if. and only if, B1 is the Boolean hypercube {O , 1 }1 such that 

( i) elements x,y, w ,z E B1 are binary vectors of length l , the vertices of B1, 

(ii) x Qj y is the e)\clusive-OR operation. defined on vectors x,y in B1, where ffi is 

symmetric: x ffi y = y ffi x, 
associative: (x EB y) ffi z = x ffi (y EB z) . 

bisymmetric: (x tB y) 'f; (z 'f; w) = (x EB z) EB (y EB w). 

(iii) (ill' ) ( ) { 1 for an odd# of ls in x 
W i=l .r ; E x = :ri 4 1'2 EB · · · 4 :ri = O for an even # of ls in x 

(iv) (Efj ~=l x; Ex)= (x1 , (x1 ffi x2) , · · ·, (x1 EB X2 ffi · · · ffi x1)) = z E B1, where the 

resulting binary vector z = (z1 , z2, .. . , z1) is the parity integral of x E B1, whereas x is 
in turn the parity differential of z o. Section 3 will make this more transparent. 

Parity integration is thus an asymmetrical operator which preserves all structural pro­
perties of XOR. in particular the bisymmetry property which guarantees entropy pre­
serrntion for binary vectors x,y,z,w E B1

• Unlike Dubois ' propagated fractal object 
of equation (2), which is a numerical scalar function, this one in expression (4) below 
is a non-numerical operator and operates exclusively at a computer's binary proces­
sing level. It serves not only as a power tool for incursive or hyperincursive parity 
integration 

X n +l +--' EB:=l X; E X n E B1
, (4) 

but also as the main operator for B1 becoming a ,.computing space" in the spirit of 
h:onrad Zuse (Dubois 1997, Zuse 1969). In what follows we will relax our formal 
notation a bit by using the symbol P for parity integration and p-1 for its inverse, 
i.e. parity differentiation. So, P(x) = z and p-1 (z) = x are two central concepts in 
parity logic, and the pair P LS = \B1, P) turns out to be a nucleus for hypercubical 
calculus and hyperincursive computing. It implies a variety of parity logic engines, 
whose special nature depends on P's argµment. i.e. whether it is a binary vector, an 
array or hyperarray, whose entities are processed in parallel through P (Dubois 1997, 
Zaus 1999). 

Dubois' fundamental hyperincursivity theory, hyperincursive processes of Dubois 
and Resconi, and their binary integro-differential counterparts due to Langlet and 
myself share many computational procedures as based upon fractal machines and parity 
logic engines. Fusing and exploiting the power of both approaches is now our primary 
objective in order to advance anticipatory systems research. 
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2 Modeling Anticipatory Systems 

Let us first recall Dubois' hyperincursive modeling approach to anticipatory systems, 
before we discuss its connection with cognitive anticipations. Dubois extended Rosen's 
approach to anticipatory computing decisively as follows (Rosen 1985, Dubois 1998a, 
1998b ). If the future state of a system Sand the model Mat time t + !:::.t is a function 
F of this system S at time t and of the model M at a later time step t + !:::.t, then one 
obtains basically two fundamentally different relationships which, however, coincide in 
one functional term: 

!:::.S/ !:::.t = [S(t + !:::.t) - S(t)]/ !:::.t = F[S(t), M(t + !:::.t)] 
!:::.M/ !:::.t = [M(t + !:::.t - M(t)]/ !:::.t = F[S(t), M(t + !:::.t] 

(5) 

(fi) 

This looks strange at first glance, but if the model is the system itself, then M = S, 
and equations (6) and (7) reduce to 

t::.S/ !:::.t = [S(t + !:::.t) - S(t)]/ !:::.t = F[S(t), S(t + !:::.t)] (7) 

which is INclusively reC URSIVE, hence an incursive system. Incursivity holds when 
the future state of a system S( t + !:::.t) depends not only on past and present states, but 
also· on future state(s) of the system, hence on the sequence .. ., S(t - !:::.t), S(t), S(t + 
!:::.t), S(t + 21:::.t), .. ., which constitutes one of Dubois' central equations. 

S(t + !:::.t) = F[ ... , S(t - !:::.t , S(t), S(t + !:::.t), ... ] (8) 

To compare the fundamental differences between the recursive, incursive, and self­
referential approaches at a glance, where p refers to a command parameter. we obtain 
the following setup. 

1. Recursivity x(t + 1) = f((x(t) ,p] 
2. Incursivity x(t + 1) = f(x(t) ,x(t + l) ,p] 
3. Self-reference x(t + 1) = j[x(t) , f(x(t), x(t + l) ,p],p] 

The second and third expressions provide a first principles approach_ to a theoretically 
well-established framework of anticipatory and self-referential systems research. Dubois 
solved thus the old riddle of self-containment which - when viewed from a strictly 
recursive point of view - leads ultimately to an infinite regress. 

Minsky's famous "mind, matter and models" analysis collapsed precisely for this 
reason, because infinite recursion seemed to be an inescapable problem (Minsky 1982). 
The same holds for Piaget's theory of cognitive equilibration as based upon recursive 
coordinative interaction schemes (Piaget 1975). The way Heinz von Foerster modeled 
them through recursive computations (,,cognition computes its own cognitions in order 
to reach eigenvalues viz. equilibria") was valuable in as much as it demonstrated the 
limitations of recursive computations due to their restriction to past and present states, 
and due to their omission of the issue of self-referentiality (v. Foerster 1976). Piaget 's 
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three distinguished concepts of cognitive, organic, and morphogenetic anticipation re­
veal basically similar recursive drawbacks (Piaget 1974). However, Piaget's conjecture 
that anticipations emerge from recurrent and extrapolative schemata extensions, where 
the latter may create a virtual future within internal representations , makes it a via­
ble candidate for revising it from the hyperincursive point of view by eliminating the 
schema's atemporality. 

The following summary, extracted from his monograph entitled ,,Biologie et con­
naissance", recalls Piaget 's simplest model of how cognitive anticipations emerge1 :Sup­
pose a child aged 11-12 months pulls softly, but accidentally, a blanket (action A), 
thereby releasing a particular motion of some toy on that blanket (result B), thus 
A --+ B. According to Piaget, result B gets immediately connected with action A 
through feedback such that A becomes associated with B. In this way, an accidental 
act has become an elementary schema AB with two possible extensions. 

The first of which is called extrapolation by virtue of its forward direction into the 
future, and the second of which is called recurrence by virtue of its backward direction 
into the past. Extrapolation is based on a continuation of the resultant motion B 
to other positions B 2 or B3 such that each new result is connected with the initial 
act A through feedback. The recurrent part consists in recognizing that action A was 
triggered by certain clues -A2 and -A3 prior to action A. 

The total sequence -A3 --+ -A2 --+ A--+ B--+ B2 --+ B3 emerges thus incrementally 
through multiple recurrent feedback , according to Piaget, and constitutes fin;i,ll y a 
cognitive anticipation schema in terms of a network, in which each instance of the 
now cyclic sequence can be joined with each other such that the external time order 
A --+ B of action A and consequence B gets lifted to the extent that A is reachable 
from B or vice versa. Thus, the initially non-anticipatory schema AB becomes an 
anticipatory schema through its forward and backward - hence bidirectional - extension 
(see figure 1 below). From now on, the child is ready to transfer and use that schema 
mentally in new situations before these actually occur over time. Piaget concluded 
that a particular extension in one of both directions suffices already for anticipation, 
because the extension resolves the schema into its constituent parts of recurrences and 
extrapolations [Piaget 1974, pp. 197 - 199]. 

Piaget's above characterization of anticipatory schemata is based on the assumption 
that conservation of information acquired earlier in time results at all higher cognitive 
stages in a considerably widespread anticipatory response behavior. One of the main 
functions of knowledge consists therefore in enabling human individuals to predict. 
Piaget claimed that at none of these cognitive stages, including the top level of thinking, 
is a causa finalis a prerequisite for anticipation, because anticipations derive exclusively 
from information acquired in the past through inferential thought processes, multiple 
feedback, perceptual transfer or sensori-motor-coordinations. 

There are several aspects of Piaget's view which deserve a closer examination for 
epistemic and mathematical reasons. First, Piaget adopted an essentially non-finalistic, 

1 Piaget, J. 1967 Biologie et connaissance. Gallimard, Paris. We refer to its translation ,,Biologie 
und Erkenntnis", in particular §13, pp. 188-205 Fischer Verlag, Frankfurt/Main 1974. 
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if not anti-finalistic position. His rejection of a ,,causa finalis" as a prerequisite for 
anticipation is based partially on his rather doubtful complaints about the ,,ambiguous 
character of the concept ea us a finalis", and partially on traditional cybernetical reasons 
according to which any finalism has to be abandoned in favor of recursive feedback. 

Second, although Piaget emphasized that expectations determine the whole sensori­
motor organization, he disregarded any goal-directed implications of cognitive anti­
cipations. Abandoning finalism is therefore too simple, since teleology, the study of 
final causes, needs to be reexplicated in terms of teleomaticity and teleonomy, where 
,,causalized intentions" and ,,intentionalized causations" play a central role. In goal­
oriented perception and action, cognitive anticipations rest on anticipatory informa­
tion, i.e. on kinematical information that specifies kinetical or proprioceptive variables 
(Shaw & Kinsella-Shaw 1988; Runeson & Frykholm 1981; Zaus 1999). This is also 
evident from the intersensory size-weight illusion: If two stimuli viz. boxes A and B 
with identical weights W(A) = W(B) but different sizes S with S(A) ~ S(B) are first 
visually presented and then bimanually lifted, then stimulus A is judged lighter than 
B , i.e. W(A) < W(B) . Piaget referred to this illusion without recognizing that visually 
based kinematic information leads to an anticipatory bias which in turn ,,fools" the 
subject in comparing the weights of both stimuli, because less effort is anticipated for 
lift ing B although it actually required more effort, thereby inducing the illusion that 
H'( A) < W(B) (Woodworth & Schlosberg 1954). 

Third , Piaget argued that an anticipatory schema emerges recursively, and once 
established as an internal representation, it becomes atemporal, i.e. time has ceased to 
exist. The left diagram of figure 1 below illustrates Piaget's final anticipatory schema, 
in which each position is inferentially accessible from any other position. What remains 
is at most a spatial schema with interchangeable local contiguities. 

Fig. 1 Piaget 's original and revised anticipatory schema AB 

Fourth, Piaget 's reasoning conflicts with the nature of temporal associative me­
mories in general, and with goal-intended behavior in particular, since anticipatory 
information is defined kinematically as a temporal backflow of information from the 
target to the actor 's current state. As shown in the right diagram of figure 1, Action 
A may then trigger the internal future instance B3 with a temporal backflow of anti-
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cipatory information included in A----+ B3 ----+ B 2 ----+ B----+ A, because that's the way it 
was internalized through multiple feedback in accordance with Piaget: A +--- B, then 
A +--- B2 • and A +--- B3 , thereby admit ting a 3rd order anticipation A----+ B3 . 

In Piaget 's original view (left diagram of Fig. 1), the cyclic closure of schema AB 
consists in a network allowing forward-. backward- and cross-inferences th eoretically. 
But atemporality would exclude internal time scales, temporal backf!ow of anticipa­
tory information, and hyperincursiveness in terms of including past, present and future 
states for anticipating a future state (right diagram of Fig. 1 ). It would exclude also 
anticipatory scenarios which follow inverse paths by starting with the future and which 
work backwards to the present to discover what alternatives and actions are necessary 
to attain these fut~res. hence exploring the most efficient ,,causa finalis". In conclu­
sion , Pi a.get 's revised anticipatory schema admits not only mental associations from 
present to past or from past to present, but also mental associations from present to 
future or from future to present and past, whereby it becomes necessarily incursive or 
hyperincursive. 

An unresolved problem in recursive and incursive approaches are anticipatory con­
flict s, also related to Anochin 's functional systems and anticipatory reflect ions of real 
world events in human and animals , as depicted in figure 2 below (Anochin 1962). 

Fig. 2 Anochin's anticipatory reflection of future events 

At left a serial processing of external events (A, B , .. . , E) at different time intervals 
induces gradually a corresponding internal disposition (a, b, .. ., e), i.e. a stored memory 
sequence as based on many replications. The right part of figure 2 shows how an 
organism might anticipate a future event E when the present cue event A happens, 
since A triggers a future oriented propagation chain (a 1,b1+1 ,c1+2 ,d1+3 ,e1+4) with a. 
faster internal time scale than the real external time sea.le. In other words , the sequence 
<A, B , .. ., E >may take a. large amount in (external) physical time, but only a minimal 
fraction of internal time for processing <a, b, .. . , e > to anticipate event E . 

Although Anochin 's conception looks incursive, it is in fact recursive for the follo­
wing reason. Suppose an event sequence < X, Y, Z > is usually followed by W, and 
another event sequence< U, Y, Z >by event V. To anticipate the consequences of Z, 
the organism needs to know what occurred two steps before Z. Anticipation requires 
in this case a third-order transition, because to decide between W and V the organism 
needs to know three preceeding instances of the sequence. This problem generalizes to 
competition among k-fold anticipations and is currently investigated with multisets in 
neural network modeling (Kanerva 1988; Gluck & Meyers 1997; Zaus 2000). 
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3 Hyperincursive Fractal Machines and their 
Relationship with Parity Logic Engines 

"There was a young lady named Bright, whose speed was faster than light; she went out 
one day. in a relative way, and returned the previous night " (A. H.R. Buller} . Things 
which are impossible in reality aren't necessarily impossible computationally. It's like 
using a Lamarckian algorithm to solve an optimization problem successfully. Nobody 
would reject that algorithm if it saves lifes or advances robotics. Consider now the 
following one-dimensional cellular automatons for generating Pascal 's triangle and its 
modulo 2 counterparts (Dubois 1997, 1998a) . Notice especially equation (11) which 
represents Dubois' incursive digital equation as compared with equation (10). 

[ )] . t = 0,1,2, ... X(n ,t +l) = X(n , t)+X(n - 1,t with 
n = 0, 1, 2, ... 

(9) 

t\n 0 1 2 3 4 
I= 1 0 0 0 
t = l 0 [] 

~ 
0 0 Example: X(2 , 2) = X(2 , 1) + X(l , 1) = 2 

t = 2 0 1 1 0 
t = 3 0 1 3 1 
t = .4 0 1 4 6 4 

Fig. 3 Recursive Generation of P ascal's t r iangle 

:\( [X( ) Y( d J . h t==0, 1, 2, .. . . n, t + 1) = . n , t + . · n - l , t) mo 2 wit 
n = 0, 1, 2, ... 

(10) 

t\n 0 1 2 3 4 
t = 1 Example: X(2, 2) = X(2, 1) Ell X( l , 1) = 0 
t = 1 0 [] 

~ 
0 0 

t = 2 0 1 1 0 The future state X(2, 2) at n = 2 and t = 2 depends 

t = 3 0 1 1 1 on present and past states (Recursivity) 

1=4 0 l 0 0 0 
Fig. 4 R ecursivity of Pascal's t riangle modulo 2 

X( ) [x( ) X( J 
t = 0, 1,2, .. . 

n , t + 1 = n , t + n - 1, t + 1) mod 2 with 
n = 0, 1, 2, ... 

( 11) 

t\n 0 2 3 4 
t= Example: X(2 , 2) = X(2 , l )EB X(l , 2) = 0 
I= 1 0 1 ~ 1 

t = 2 0 [] 1 0 The future state X(2 , 2) at n = 2 and t = 2 depends 

1=3 0 1 1 0 0 on past , present and future states (lncursiv ity ) 

t = 4 0 1 0 0 0 
Fig. 5 Incursiv ity of Pascal's triangle modulo 2 

Equation ( 11) regarding figure 5 is essentially the core of an integro-differentia l ce l­
lular a utomaton , a fractal machine whose existence was never mentioned before by 
Wolfram or other proponents of the theory of cellular automatons (Peitgen et al. 1992, 
Hameroff et al. 1993, Wolfram 1994). We expect a conceptual revision in that respect 
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- - - ~ - - - - --------

in Wolfram's forthcoming magnum opus entitled "The New Science of Complexity". 
While equation ( 11) centers upon temporal incursivity, it may be as well rewritten in 
terms of spatial incursivity by replacing time t by space s , which indeed resembles a 
Laplacien operator (Dubois 1998a): 

r( ) [X( ) X ) d ] . h s = 0, 1, 2, .. . X n,s + 1 = n,s + (n -1,s + 1 mo 2 wit · 
n = 0, 1, 2, ... 

(12) 

We may add another local rule as shown in equation (13) which exhibits the nature of 
parity differentiation, the inverse of parity integration. Unlike equation ( 10) , this one 
is going back to the past and reveals the higher ordered Boolean derivatives, where the 
result at t = -1 is the first parity differential of the leading argument at t = 0. 

( ) [ ( ) ( ) l 
. t=0,-1 , -2, .. . 

X n, t - 1 = X n, t + 1 + X n - 1, t + 1 mod 2 with n = O, l, 2, .. . (13) 

t\n 0 2 3 4 
t = Example: X(2, - 2) = X(2, -1) $ X(l , -1) = 0 

t = -1 0 [] 

~ 
0 0 

The past state X(2 , -2) at n = 2 and t = - 2 de-
t = -2 0 1 1 0 pends here on present and future states , a typical 
t = -3 0 1 1 1 form of inverse incursivity 
t = - 4 0 I 0 0 0 

Fig. 6 Iterat ive parity differentials modulo 2 

A closer examination of equations (11) and (13) shows that we obtain their joint result s 
by means of self-generat ing Boolean sequences through Dubois' fractal machine as 
based upon equation (11), or equivalently through iterated parity integration P ;1(x) of 
the argument x(t - 4) = 1 0 0 0 alone, subject to a parity logic engine (PLE): 

x(t-4)= (1 0 0 0) l PLE-Stages Explanation: Notice that x (t) depends 
x(t - 3) = (1 1 1 I ) = P(x(t - 4)) on past states x(t) = P(x(t - 1)) or on 
x(t - 2) = (1 0 1 0 ) = P (x(t - 3)) future states x (t) = P(x(t + 3)) . Next , 
x(t - 1) = (1 1 0 0 ) = P(x (t - 2)) x(t) is the parity integral P(x(t - 1)) 
x(t) = (I 0 0 0 ) = P(x (t - 1)) and the parity differential p-1(x(t)). 
x(t + 1) = (1 1 1 I ) = P(x(t)) The integration process generates impli-

x(t + 2) = (1 0 1 0) = P(x (t + 1)) citly three transforms indicated by the 

x(t+3)= (1 1 0 0) = P(x(t + 2)) bold printed trigonal transforms (Dubois 

x(t+4) = (1 0 0 0) = P (x (t + 3)) 1992; Langlet 1992; Zaus 1999). 

Fig. 7 Compatibility of Fracta l Machines with Parity Logic E ngines 

More specifically, x (t) is both a binary integral and differential, it is an integro­
different ial entity. The top-down-process involves iterated parity integration P(x) 
with a positive time arrow, whereas the bottom-up-process involves parity differen­
tiation p - 1(x) with a negative time arrow, whereby parity logic engines or fractal 
machines become t ime reversible autonomous automatons. Thus, future states exist 

197 



I 

I 

I 

I 

I 

I 

I 

already in present and past states, as conjectured for anticipatory computing in fields 
as diverse as cellular, cognitive, organic or morphogenetic processes with synchronous 
and asynchronous viz. heterosynchronous development. For details in these respects 
the reader is referred to Dubois (1991, 1992, 1997, 1998a), Dubois & Resconi (1992), 
Langlet (1991, 1992, 1994, 1995), and Zaus (1994, 1996, 1999). 

Of tantamount importance is the fact that iterated parity integration generates 
automatically transforms and transformation matrices for any binary vectors x E 8 1 

whose length l is a power of 2. So far, a total of about 30 transforms have been 
identified, including Dubois transforms, Shegalkin transforms, and Langlet transforms. 2 

In what follows we restrict ourselves to some group theoretic implications. Let 
t he elementary bit ,,l" be a unique precursor, then by XORing ,,l" with itself via 
1 tti 1 = 0 yields what ,, l " is not itself, hence ,,O". Through concatenation, we obtain 
the elementary sequence (10). Subjecting (10) to iterated parity integration P;1(10) 
generates what Langlet christened the 2-geniton Q = G~) (Langlet 1992). Next, a 
clockwise rotation of Q around its barycenter by 90°, or equivalently, by introducing 
three involutive reflection operations vdh , generate 

g = G~) --t v(Q) = (~~) --t d(9) = (~D --t h(Q) = G~) , 

hence a four-group of transformation operators with Q, its vertical ( v ), diagonal ( d), 
and horizontal ( h) reflections. This four-group is related in binary algebra to the 
Kleinian 4-group, as depicted in figure 8. 

h 

I Involution I Commutativity I 

v 

d d 
v 

v2 =I dhv = vdh 
h2 =I vh = hv = d 
d'l. =I vd = dv = h 
dhv =I hd = dh = v 

h vdh =I 

Fig. 8 The geniton 9 and its 4-group of transformations 

Notice that 9v = G~) is self-inverse, i.e. (~!f 1 = (~!), and that its square (~~) 2 
= 

(~~) = 9u, hence the unit matrix of Q. The structure (9v,9u, P) constitute a 
switching group, since P[(~~)] = (~~) and P[(~~)] = (~!), respectively. This pro­
ves again that parity integration P is a fundamental operator for reversible computing 
in celluar automatons . In particular, the relationships demonstrated above hold for 
any order of upscaled genitons, i.e. for n x n parity matrices called paritons (Dubois 
1991 , 1992; Langlet 1992; Zaus 1999) . The geniton 9v, also called S-matrix in binary 
computing (Iverson 1962) , plays a central role in binary signal analysis (Shegalkin po­
lynomials and transforms). Its impact on the binary counterpart of Fourier transforms 
is discussed in Zaus (1999), to which the reader is referred for more details . 

2 A comprehensive overview of these transforms is in preparation for the 4th International Confe­
rence on Computing Anticipatory Systems, CASYS '2000 (Zaus 1999, 2000a). 
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4 Fuzzy Logic and Non-Aristotelian Causality 

A fuzzy set A is a set whose members a1 , ... , a1 E A belong to A with membership 
degrees o:; E 11 =[O,1] 1, where 11 is the !-dimensional unit hypercube. In hypercubical 
calculus, every set is therefore a fuzzy set, because crisp conventional sets are just 
degenerate fuzzy sets located as Boolean vectors at the vertices of [O, l ]1, whereas 
proper fuzzy set reside as fuzzy unit or fit-vectors (o:1 , ... , 0:1) E [O, 1]1 inside the unit 
hypercube. Fractal machines and parity logic engines operate in hypercubes , and so 
do causal predictor systems in terms of fuzzy cognitive maps (FCMs). 

This section outlines a non-Aristotelian concept of causality called fuzzy causality, 
derived from hypercubical calculus in neural network theory and fuzzy logic (Koska 
1986, 1988, 1992, 1997; Zaus 1999, 1999a). The mathematical backbone of fuzzy 
causality is the law of concomitant variation (Koska 1988) . In particular, let (C, e) be 
a causal concept algebra for causal concepts C; with i = 1, 2, ... , n, and a fuzzy causal 
edge function e: C x C---+ [-1 , l] such that e;j(C;, Cj) E [-1, 1], where [-1, 1] denotes 
the bipola.r unit interval. The law of concomitant variation states how the causal edge 
weights e;j between causal concepts C; and Cj change over time. 

. · · dC;(x;) dCj(xi) 
e;j =-e;j +C;(x;)Cj(Xj) =-e;j+ di dt ; 

e;j ( t + 1) = e;j ( t) + e;j 

(14) 

(15) 

Thus , multiplying the derivatives of C; and Cii and upgrading this product with a 
causal decay factor - e;j , we obtain the new causal edge weight e;1(t + 1) at time 
(t + 1). The decay factor forces zero causality between unchanging concepts, because 
no changes imply no causal impact. To provide a simple but instructive example, we 
obtain the following FCM as displayed in figure 9 below. 

C. (. ) _ dCi(xi) 
1 X 1 - dt 

C1 Take a break 

+x-=­
-x+=-

C. ( . ) _ dC'2(x2) 
2 X2 - dt 

Exhaustion 

C. ( ) _ dC3(x3) 
3 X3 - dt 

Fig. 9 Sign rule and Concomitant Variation in FCMs 

A decisive property of the law of concomitant variation is that we can model conco­
mitancy by products of differentials C;Cj, and change over time through derivatives. 
Concomitant variation drives consequently the dynamics in the entire causal network. 
The sign rule in figure 9 indicates, that negative causality is coupled with negative 
differential products, and positive causality correspondingly with positive differential 
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products. For example, an increasing break ( +) causes a decrease of exhaustion ( - ) , 
hence negative causality, while a decreased break ( - ) causes increased exhaustion ( + ), 
again negative causality. Contrary, an increase in exhaustion ( +) causes an increase in 
reaction time ( + ), hence positive causality, while a decrease in exhaustion ( - ) causes a 
decrease in reaction time ( - ), again positive causality. Aristotelian causality concepts 
are subject to classical logic, i.e. bivalent logic (including probability theory, where the 
laws of bivalent logic and set theory are simply maintained). 

Non-Aristotelian causality concepts, however, are subject to many-valued logic, 
i.e. fuzzy logic. Here, causal edge functions e;j are many-valued in a partially ordered 
set P of linguistic variables, or infinitely valued in either the bipolar unit interval 
[-1 , l] or in the unit interval [O, l]. Using the causal edge function e ;,j : C x C--+ [O , l] 
requires that we convert negative causality into positive causality by using dis-concepts 
like ,,instability" instead of ,,stability" . Fuzzy subsethood S(A, B) , the degree(A C 11) 
to which fuzzy set A is contained in fuzzy set B , underscores non-Aristotelian causali ty, 
because the fuzzy causal edge function e : C x C --+ [O , l] is representable by fuzzy 
su bsethood: 

(16) 

where µF( 2c1)(C;) denotes the membership degree of fuzzy causal concept C; in fuzzy 
causal concept Cj's fuzzy powerset , hence the degree of subsethood S( C; c Ci ). 

Definition 4.1: Let C; and C1 be fuzzy concepts , and let Q;, Qj, Q'f , Qj be their asso­
ciated quantity and dis-quantity sets , where Qc denotes the complement of Q. Then 

C; causes Ci iff Q; c Qi and Qi c Qj 
C; causally decreases Cj iff Q; c Qj and Qi c Qi o 

This is the simplest version of fuzzy causality, but complex enough to challenge the 
reader 's imagination , because it requires thinking in terms of fuzzy subsethood in 
the unit hypercube [O , l] n. To see how definition 5.1 applies to medical cross-impact 
analysis , let C1 be the causal concept ,,diabetic retinopathy", which intersects as a fuzzy 
modifier set the fuzzy union of its quantity set Q1 = ,,treatment" and its dis-quantity 
set Qf = ,,untreatment". Next, let C2 be the causal concept ,,retina state", which 
intersects as a fuzzy modifier set the fuzzy union of its quantity set Q2 = ,,destruction" 
and its dis-quantity set Q2 = ,,preservation". Then by definition 5.1 we get 

U ntreatment n Diabetes c Destruction n Retina State 

Treatment n Diabetes c Preservation n Retina State 

(17) 

(18) 

So untreated diabetic retinopathy causes retina destruction (D), hence blindness 
(B) , and treated diabetic retinopathy causes retina preservation. The in- or decreased 
causal relationship is representable by the corresponding inclusion of intersections, 
as shown in figure 9 below. Notice also that the causal relationship reflects positive 
concomitant variation such that causal strengths are determined by the product of 
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differentials, provided both fuzzy causal concepts C1 and C2 are measureable with 
respect to appropriate (dis- )quantity sets . The central message of this example is at 
least threefold: ( 1) Fuzzy causality e1,2 : C1 -+ C2 is representable by fuzzy subsethood 
S(C1 , C2 ) , (2) from fuzzy subsethood we may derive Bayes' theorem P (C2 I C1 ) = 
S(C1 , C2 ) , thereby reducing probability to subsethood, and (3) by virtue of clause 
(2) fuzzy subsethood, and thus non-Aristotelian causality, qualifies as a predictor in 
modern cross-impact analysis (Kosko 1992, Zaus 1999, Zaus 2000b). 

Untreated (QD Destruction ( Q~D 

Diabetes (C1) Retina (C2) 

Treated (Qi) Preservation ( Q2) 

Fig. 10 Non-Aristotelian causality as a fuzzy predictor 

Fuzzy causality in terms of e;i( C;, Ci ) takes spatio-temporal, time associative, and 
anticipatory behavior into account . Why anticipatory behavior? Because an FCM 
is a forward chaining inference engine, and a forward chain is a prediction of effects 
given the respective causes in the FCM's causal web network. Even simple FCMs with 
cri sp causal concept nodes and fuzzy causal edges are predictor systems, since they 
predict limit cycles, hence fixed points in terms of single events, or oscillatory states 
with alternating events, or periodical states with reoccurring event sequences , or even 
chaotic states with aperiodical event sequences (Kosko 1997; Zaus 1999). 

Forward chaining inference engines like FCMs answer ,,what happens, if ... ?" que­
stions , and these questions are always directed at the future. Now, if a causal edge 
e;i ( C;, Ci ) is representable by fuzzy subsethood S( C; , Ci ), and in fact it is, then the 
present cause C; is contained in the future , i.e. in Ci to some degree. This partial con­
tainment is impossible in Aristotelian causality concepts, because the law of excluded 
middle states that every set either is or is not a subset of every other set . Moreo­
ver, the classical probability term P(B I D) , the probability of blindness (B ) given 
diabetic retinopathy (D), represents only the degree of correlation between diabetes 
and blindness, whereas fuzzy subsethood represents P(B I D) = S(D , B) as well as the 
causal relationsship S(D, B) = e : D-+ B . Finally, diabetes retinopathy and blindness 
are matters of degree, and so is their causal relationship, but these matters of degree 
are infinitely-valued, thus neither bivalent nor probabilistic, hence non-Aristotelian, 
respectively. The idea of non-Aristotelian systems goes back to Korzybski (1994) . 

In conclusion, the law of concomitant variation and fuzzy causality extend the four 
Aristotelian causality concepts fundamentally, because they provide a causation-based 
hypercubical calculus inside the unit hypercube 11 = [O, l ]1, where causal concepts and 
relations are turned into a computational algebra that expands the laws of Aristotelian 
classical bivalent logic and modern probability theory (Kosko 1997; Zaus 1999) . 
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