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Abstract 

Fuzzy relational equations are without doubt the most important inverse problems 
arising from fuzzy set theory, and in particular from fuzzy relational calculus. In­
deed, the calculus of fuzzy relations is a powerful one, with applications in fuzzy 
control and fuzzy systems modelling in general, approximate reasoning, relational 
databases, clustering, etc. In this paper, fuzzy relational equations are approached 
from an order-theoretical point of view. It is shown how all inverse problems can be 
reduced to systems of polynomial lattice equations. The exposition is limited to the 
description of exact solutions of systems of sup-T equations, and analytical ways 
are presented for obtaining the complete solution set when working in a broad and 
interesting class of distributive lattices. 

Keywords: fuzzy relational equation, inverse problem, polynomial lattice equation, 
root system, triangular norm. 

1 Introduction 

Mathematical relations, just as human relations, are invaluable to any scientific re­
searcher. As Goguen (1967) writes, "Science is, in a sense, the discovery of relations 
between observables. Zadeh has shown the study of relations to be equivalent to the 
general study of systems (a system is a relation between an "input" and an "output" 
space) ." However, the typical behaviour of a mathematician to describe relationships 
in a black-or-white manner is not suitable for every-day problems. Fuzzy relations, 
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however , allow for a description of gradual relationships. Depending on the context, 
fuzzy relations can be interpreted in two ways: a disjunctive way, or a conjunctive 
way, see e.g. De Baets (1996) and Dubois and Prade (1992) . 

In the disjunctive interpretation, a fuzzy relation is considered as an elastic re­
striction on the more or less possible values of a couple of variables, each of which 
takes exactly one value in reality. In this interpretation, fuzzy relations are exten­
sively used for modelling systems of which the input-output behaviour is known 
only through linguistic descriptions. The basic operations on fuzzy relations are the 
direct image and t he composition. The generalized modus ponens and the generalized 
modus tollens, the key operations behind forward and backward chaining inference 
mechanisms in fuzzy rule-based systems, perfectly fit within t his disjunctive inter­
pretation and are immediate applications of the basic operations . The design and 
deployment of such systems require the solution of inverse problems connected with 
the basic operations: from known input-output behaviour a system model is built 
through the solution of fuzzy relational equations. 

The notion of mutually exclusive values is no longer present in the conjunctive 
interpretation. In a diagnostic problem, for instance, a single cause may lead to 
multiple defects. In a deciE:ion problem, alternatives are evaluated on a number 
of criteria, of which, of course, more than one may be satisfied. Although most 
attention has been directed towards the conjunctive interpretat ion, this disjunctive 
interpretation also has an incredible potential. The basic operations from the con­
junctive interpretation are still applicable in the disjunctive interpretation. However, 
Bandler and Kohout (1980a, 1980b) realized that in the conjunctive interpretation 
additional operations play an important role. The most important such operations 
are their tri.angular compositions. The contributions of Bandler and Kohout are, 
without doubt , among the most fundamental in the study of fuzzy relations. How­
ever , the solution of inverse problems related to these 'new' operations has received 
only little attention. 

In this paper, we present a uniform framework for solving the inverse problems 
arising in both interpretations. Remarkably, particular solutions in the disjunctive 
interpretation, for instance, can be described by means of operations from the con­
junctive one. This demonstrates that it is really opportune to treat these problems 
in one common framework. However, due to space limitations, only the inverse 
problems arising in the disjunctive interpretation will be discussed. This paper is 
organized as follows. In Section 2, we briefly introduce the reader to the basic oper­
ations of fuzzy relational calculus, followed by an identification of the corresponding 
inverse problems in Section 3. The most important fuzzy relational equations are 
related to systems of sup-T equations. Their solution procedures are explained in 
Sections 4 and 5. 
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2 Images and Compositions 

2.1 Relational Calculus and Boolean Equations 

In essence, there exist two basic types of operations in relational calculus: images 
and compositions. Consider a relation R from X to Y . The afterset xR of x EX is 
the subset of Y defined as xR = {y E Y I (:r, y) E R}. The foreset Ry of y E Y is 
the subset of X defined as Ry = {.r. EX I (.r., y) ER}. Given a subset A of X , the 
direct image R(A) , subdirect image R<J(A ) and superdirect image Re>(A) of A under 
R are the subsets of Y defined as: 

R(A ) = {y E Y I (:h E X )(.1: E A /\ (x, y ) E R)} 
= {y E Y I An Ry # 0} 

R<l( A ) = {y E y I (VT E X )(.T EA=> (:r:, y) ER)} 
= {y E y I As::; Ry} 

R (A) = {y E y I (V.T E X )((T. y) ER=> .?: EA)} 
= {y E y I Rys::; A}. 

Similarly, given a second relation S from Y to Z , the (roun d) composition R o S , 
subcomposition R <J S and supercomposition R 1> S of R and S are the relations from 
X to Z defined as: 

R o S= {(.r.,z) EX x Z I (:Jy E Y)((x, y) ER /\ (y,z) ES)} 
= {(.r.,z) EX x Z 1."f:R n Sz # 0} 

R<iS= { (x.z) EX x Z I (Vy E Y)((:r, y) ER=> (y,z) ES)} 
= { (.r. ,z) EX x Z I .r,R s::; Sz} 

Rr>S= { (x,z) EX x Z I (Vy E Y )((y,z) ES=> (x, y) ER)} 
= {(.r. , z) EX x Z I Sz s::; :rR}. 

Strictly speaking, for the sub- and superdirect images , and t he sub- and super­
compositions, one should also take into account some non-emptiness conditions , see 
De Baets and Kerre (1993). In the context of relational equations, however , the 
above formulations are more suitable. Sub- and supercompositions of relations have 
been studied extensively by Baudler and Kohout (1980a, 1980b) under the name 
triangle relational products. 

It is now not difficult to imagine what types of inverse problems one can consider: 

(i) image equations, i.e. equations of the type R(A) = B , R<J(A) = B or ~(A)= 
B in the unknown set A or in the unknown relation R ; 

(ii) composition equations, i. e. equations of the type Ro S = T , R <JS = T or 
R 1> S = T in the unknown relation R or in the unknown relation S. 
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Identifying sets and relations with their characteristic mapping, these inverse prob­
lems, called relational equations, can be translated into Boolean equations (see e.g. 
Rudeanu (1974)). Note that the characteristic mapping XA of a crisp subset A of X 
is defined by 

XA ( x) = { 
0
1 , if 1; E A 

elsewhere 

2.2 Fuzzy Relational Calculus 

The above images and compositions are extended to fuzzy relations in a by now 
traditional manner: supremum and infimum are playing the role of the existential 
and universal quantifiers and a conjunctor and implicator are modelling pointwise 
intersection and inclusion. The most natural mathematical framework for dealing 
with these operations is without doubt the lattice-theoretic one (see e.g. Birkhoff 
(1967), Davey and Priestley (1990)). Hence, we will work with so-called L-fuzzy 
relations, not to artificially increase the level of mathematical abstractness , but 
because lattice theory provides the proper framework for formulating and solving 
fuzzy relational equations. 

Consider a complete lattice (L , :::;) with smallest element 0 and greatest ele­
me~t 1. Denote the meet and join operation by ~ and '--". An £-fuzzy set A in a 
universe X is simply an X ----> L mapping; an £-fuzzy relation R from X to Y is an 
X x Y ----> L mapping, see Goguen (1967). From here on, we will omit the prefix 
L if no confusion can occur. The binary Boolean logical operations /\ and ---->, for 
instance, can be extended in the following obvious way: 

(i) a conjunctor C is a binary operation on L with order-preserving partial map­
pings such that C(O, 1) = C(l , 0) = 0 and C(l , 1) = 1: 

(ii) an implicator I is a binary operation on L with order-reversing first partial 
mappings and order-preserving second partial mappings such that I(O , 1) 
I(l, 0) = 0 and I(l, 1) = 1. 

Obviously, additional properties can be imposed on these operators. For instance, if 
a conjunctor is also required to be commutative, associative and to have 1 as neutral 
element, then we are in the setting of t.-norms, see De Cooman and Kerre (1994) and 
Schweizer and Sklar (1983) . For the sake of simplicity and in view of their familiarity 
to the reader, we will mainly restrict. to t.-norms from here on. Most results , however, 
can be stated much more generally. The three most important continuous t-norms 
on the real unit interval are the minimum operator Jvf, the (algebraic) product P 
and the Lukasiewicz t-norm W defined by W(:i:, y) = max(x + y - 1, 0) . 

We are now ready to introduce the basic operations of fuzzy relational calculus. 
Consider a fuzzy relation R from X to Y . The afterset .i:R of .7: E X is the fuzzy 
set in Y defined by .i:R(y) = R(x, y). The foreset Ry of y E Y is the fuzzy set in X 
defined by Ry(x) = R(x, y) . Let C be a conjunctor and I be an implicator. Given 
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a fuzzy set A in X, the direct image R(A), subdirect image R<l(A) and superdirect 
image Ri,(A) of A under R are the fuzzy sets in Y defined by: 

R(A)(y) = supC(A(x), R(.T, y)) 
xEX 

R<l(A)(y) = inf I(A(.T), R(x, y)) 
xEX 

Ri, (A)(y) = inf I (R(.T, y) , A(x)) . 
xEX 

Given a second fuzzy relation S from Y to Z , the (round) composition R o S, sub­
composition R <l S and supercomposition R 1> S of R and S are the fuzzy relations 
from X to Z defined by: 

Ro S(x, z) = supC(R(x, y) , S(y, z)) 
yEY 

R <l S(x, z) = inf I(R(x, y) , S(y, z)) 
yEY 

R 1> S(x, z) = inf I (S(y, z), R(x, y)). 
yEY 

For an in-depth study of these operations and their applications, we refer to De Baets 
and Kerre (1995). 

3 Types of Inverse Problems 

As in the Boolean case, we can consider the following types of inverse problems: 

(i) image equations, i.e. equations of the type R(A) = B , R<l(A) = B or .Ri,(A) = 
B in the unknown fuzzy set A or in the unknown fuzzy relation R ; 

(ii) composition equations, i.e. equations of the type Ro S = T , R <l S = T or 
R1> S = T in the unknown fuzzy relation R or in the unknown fuzzy relation S. 

These inverse problems are what one usually calls fuzzy relation( al) equations. They 
can all be formulated as systems of particular lattice equations. Consider a binary 
operator 0 on L with monotone partial mappings, then we can distinguish the 
following four basic types of equations, given a family (a;);EJ in Land bin L: 

<> left sup-0 equation: supO(x;, a;)= b; 
iEJ 

<> right sup-0 equation: sup 0( a;, x;) = b; 
iEJ 

· <> left inf-0 equation: ~~j O(x;, a;) = b; 

<> right inf-0 equation: inf O(a;, x;) = b. 
iEJ 
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These equations can be considered as polynomial lattice equations. Finite index 
sets will be denoted In , containing the first n integers. A first observation is that, 
due to the monotonicity of the operator 0 , the solution set of any of the above 
equations is order convex, i.e. if (x;);EJ and (zi)iEI are two solutions of one of the 
above equations, then so is (Yi)iEJ , whenever xi :S Yi :S zi , for any i EI. This allows 
us to focus on extremal solutions, i.e . maximal (greatest) and minimal (smallest) 
solutions. In case of a commutative operator 0 , there is, of course, no need to talk 
about left or right equations. 

Let us consider the image equations R(A) = B and composition equations 
RoS = T: 

0 the equat ion R(A) =Bin the unknown fuzzy relation R, called image equation 
of type 1, is equivalent to a family of independent sup-C equations in the 
foresets Ry, y E Y: 

supC(A(x), Ry(x)) = B(y); 
xEX 

0 the equation R(A) =Bin the unknown fuzzy set A, called image equation of 
type 2, is equivalent to a system of sup-C equations, y E Y: 

supC(A(x) , R(x, y)) = B(y); 
xEX 

0 the composition equation Ro S = T in the unknown fuzzy relation R or S 
can be reformulated as a system of image equations of type 1 or as a family of 
independent image equations of type 2. 

Of course, the same observations hold for the other images and compositions. 
In this paper we will only deal with sup-T equations, with Tat-norm, and the 

above corresponding fuzzy relational equations. Note that the associativity of the 
t.-norm T plays no role, while the commutativity is only imposed for reducing the 
number of residual operators associated with it (see Section 4). It would therefore be 
sufficient to consider a t-seminorm, see De Cooman and Kerre (1994). Our treatment 
of fuzzy relational equations is built up in the following way: we will gradually 
impose conditions on the t-norm involved and restrict the class of lattices considered, 
in order to go from a description of the greatest solution, and necessary and sufficient 
solvability conditions, to a full description of the solution set. Conditions imposed on 
the t-norm are typically continuity conditions, or in the lattice-theoretic framework, 
morphism. conditions. Recall that an L ---+ L mapping is called a sup-morphism (in/­
morphism) if for any non-empty subset A of L it holds that f (sup A) = sup J(A) 
(J(inf A) = inf J(A)). A mapping is called a homomorphism if it is both a sup-­
morphism and an inf-morphism. For instance, in the more familiar case of the 
unit interval, sup-morphims, resp. inf-morphisms, are nothing else but increasing 
left-continuous, resp. right-continuous, mappings. 
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4 Sup-T Equations 

4.1 The Equation T (a , :r) = b 

The most basic equation we consider is the equation T (a, x) =bin t he unknown .T, 

with T at-norm on a complete lattice (L, :S:). In order to describe the solut ion set 
of this equation, we associate to a given t-norm T two binary operators Ty and Ly 
on L , called residual operators, defined by 

Ty (:r,y) = sup{z E L I T (:i:, z) :S: y} 

Ly(.T, y) = inf{z E L J T (.7:, z ) 2 y}. 

The first operator is called the rf.sidual im.plicator of T and satisfies (V(.7:, y) E L2 ) 

(:i· :S: y:::;. Ty (.1:, y) = 1), the second one has no particular interpretation . 
Since the solution set of the equation T (a., :i:) = b can be seen as the intersection 

of thf' solution sets of the inequalit if's T (a. , .T) :S: band T (a. ,:r: ) 2 b, we start by 
investigating the latter . 

On a complete lattice. Thf' following obsPrvations hold true: 

0 If t he partial mapping T (a , ·) is a sup-morphism, then the solut ion set of t he 
inequality T (a. , .<:) :S: bis giVPn by [0,Iy (a, b)J. 

0 If t he partial mapping T (a. , ·) is an inf-morphism, then the solut ion set of the 
inequality T (a, x) 2 bis given by 

{ 
[Ly ( a, b), l] , if b :S: a 

0 , elsewhere 

0 If the partial mapping T ( a. , ·) is a homomorphism, then the solution set of the 
equation T (a., x) =bis given by 

{ 
[Ly(a. b),Ty (a., b)J , ifbErng(T (a.,· )); 

0 , elsewhere 

if t he partial mapping T ( a. , ·) is a maximally surjective homomorphism (i.e. if 
rng(T( a , ·)) = [O, a.]) , then the solution set of the equation T (a., .<:) = bis given 
by 

{ 
[.Cy (a., b), Ty (a., b)J , if b :S: a. 

0 , elsewhere 

On the real unit interval. A t-norm T on [O, l] is continuous if and only if 
all of its partial mappings are homomorphisms. Moreover , the partial mappings 
of a continuous t-norm Ton [O, 1] are maximally surjective. Hence, if T(a. , ·) is 
continuous, then the solution set of the equation T ( a., .T) = b is given by 

{ 
[Ly(a,b), Iy(a ,b)] , if b :S: a. 

0 , elsewhere 

Therefore, a necessary and sufficient solvabilitv condition is given by b :S: a. 
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4.2 Greatest Solution - Solvability Conditions 

Let (ai)iEI be an arbitrary family in L and b E L , then we want to determine the 
solut ion set of the equation 

supT(ai,x;) = b 
iEl 

in the family of unknowns (.-r;)iE I in L. The families (a;)iE I and (xi)iE I can be seen 
as L-fuzzy sets in the index set I. The problem can therefore be reformulated as 
follows. Given A E :FL(I) (with :FL(I) the set of L-fuzzy sets in I) and b E L , 
determine the solut ion set of the equation 

sup T (A(i) , X (i)) = b (1) 
iEI 

in the unknown L-fuzzy set X in I . 
Recall that (:FL(I) , <; ) is a complete lattice, with order relation <; (inclusion) 

defined by 
A<; B <;::> (Vi E I )(A(i) :S B(i)), 

and as infimum and supremum the intersection and union defined by 

The solution set of equation (1) then is a snbset of the complete lattice (:FL(I), <; ) 
and can be seen as the intersection of the solution sets of the inequalities 

supT(A(i) , X(i)) :Sb (2) 
iE l 

and 
sup T (A(i),X(i)) ~b. (3) 
iE l 

Obviously, due to monotonicity considerations, inequality (2) always has a solution, 
namely x0, while inequality (3) has a solution if and only if xr is a solution, i.e. if 
and only if 

b :S sup A(i ). (4) 
iE l 

In general, inequality (3) is a lot harder to solve than inequality (2). For the moment , 
we are only concerned with the greatest solntion of equation (1). 

On a complete lattice. The following statements can be verified: 

0 If the partial mappings of T are sup-morphisms, then the solution set of in­
equality (2) is given by [x0, G] with G defined by 

G(i) = Ir(A(i), b) . (5) 

In particular , this result shows us the solution set for equation (1) in case 
b= 0. 
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0 If the partial mappings of T are sup-morphisms, then the solution set of equa­
tion (1) is not empty if and only if the fuzzy set G defined by (5) is a solution. 
Moreover , if G is a solution, then it is t he greatest solution. 

Necessary and sufficient solvability conditions. Notice that , in general, no 
simple necessary and sufficient solvability condition for equation (1) can be given: 
one has to construct the potential greatest solution and verify that it is indeed a 
solution. In some cases, however , such a simpler condition can be formulated: 

0 In any case, condition ( 4) is a necessary condition for the existence of a solution 
to equation (1). If L is a complete chain and the partial mappings of T 
are maximally surjective homomorphisms, then condition ( 4) becomes also a 
sufficient condition. Moreover , in case T is the meet operation, then L need 
not be totally ordered (in this case, we are working in a co.!".lplete Brouwerian 
lattice), see Zhao (1987). 

0 If the partial mappings of T are maximally surjective homomorphisms, then 
the condition 

(:Jk E J) (b ~ A(k)) , (6) 

a stronger version of condition (4), is a sufficient condition for solvability. 

On the real unit interval. For a left-continuous t-norm Ton (0 , 1], the solution 
set of equation (1) is not empty if and only if the fuzzy set G defined by (5) is the 
greatest solution. Moreover , if T is continuous, then condition ( 4) is a necessary 
and sufficient solvability condition. 

4.3 Complete Solution Set 

For most practical considerations, it is sufficient to know the greatest solution of 
equation (1) . From a mathematical point of view, one is, of course, highly interested 
in the complete solution set. Before we can discuss this solution set, we need to 
develop an appropriate representation for it . Obviously, it would be desirable to 
find a representation that is closed under (arbitrary) intersections, since that would 
learn us how to solve 'systems of equations at the same time. Fortunately, such a 
representation exists. 

Root systems. A subset R of an ordered set (P, ~) is called a root system if there 
exists an element <7 in P and an antichain 0 in l <7 = { x E P I x ~ <7} such that 

R = .LJ [w,u]. 
wEO 

For a root system R,. the corresponding element <7 and antichain 0 are unique. 
The element u is called the stem and the elements of the antichain 0 are called 
the offshoots ~f the root system. A root system is called finitely generated if the 
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set of offshoots is finite . The stem is the greatest element and the offshoots are 
the minimal elements of the root system. Hence, a root system clearly is an order 
convex subset that is completely determined by its greatest element and its minimal 
elements. 

The following results are of extreme importance in the present discussion, see 
De Baets (1995b, 1998b): 

<> Let (R;)iEI be a family of finitely generated root systems of a complete lattice 
(L , :S) with stem O"; and set of offshoots O;. If the intersection niEI R; is not 
empty, then it is a root system with stem o- = inf;EJ O"; and as offshoots the 
minimal elements of the set 

{supw; I (Vi E J)(w; E O; /\ w; :So-)}. 
iEJ 

(7) 

<> If the intersection of a finite family of finitely generated root systems of a 
complete lattice is not empty, then it is a finitely generated root system. These 
offshoots can be determined in an exhaustive way, or following an iterative 
algorithm, see De Baets (1995b, 1998b). We will call this method the pen­
and-paper method. 

If the root systems are not finitely generated, then, in general, nothing can be said 
about their intersection. 

On a complete lattice. So far, we know the greatest solution of equation (1), if 
there exists a solution at all . Under very general conditions, we can always find a 
root system of (FL(I), ~)that is contained in the solution set, see De Baets (1995b). 
Indeed, if the partial mappings of T are maximally surjective homomorphisms and 
condition (6) holds, then the solution set of equation (1) contains the root system 
with stem G defined by (5) and as set of offshoots the set {Mk I b :S A(k)}, where 
Mk is defined by 

) if i = k 
, elsewhere 

(8) 

Moreover, these offshoots are minimal solutions. If the index set I is finite, then 
this root system is, of course, finitely generated. This result shows how particular 
minimal solutions, that could be considered as Dirac-solutions or point solutions, 
can be constructed. In general, it is not known how other minimal solutions can 
be determined. As pointed out further on, in some cases, the above root system 
coincides with the solution set. For instance, under the same conditions on T and 
condition (6), but for a complete chain L and a finite index set I, the solution set 
coincides with the above root system, which is then finitely generated. 

On a distributive, complete lattice with join-irreducible and join-decom­
posable elements. So far, the above discussion reveals only the complete solution 
set in case of a complete chain and under some additional conditions. However, there 
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is an interesting class of lattices, in particular from a practical point of view, in which 
the complete solution set can be determined. Let us first recall some order-theoretic 
notions , see Birkhoff (1967) and Davey and Priestley (1990): 

(i) A lattice (L, ::;) is called distributive if the following property holds: 

('rf(a. , b, c) E L 3 )(a.'"" (b '-" c) = (a.'"" b) '-"(a.'"" c)). 

For instance, any chain is distributive and also the Cartesian product of dis­
tributive lattices is distributive. 

(ii) An element a of a lattice (L . ::;) is called join-irredur:ible if 

('r/(b, c) E L2 )(b '-" c =a.==> (b =a V c =a.) ), 

and join-decomposable if there exists a set A of join-irreducible elements of L , 
with #A 2: 2, such that a =sup A. 

For instance, all elements of a chain are join-irreducible, and all elements of a finite 
distributive lattice or a Cartesian product of a finite number of chains are join­
irreducible or join-decomposable. 

In order to describe the complete solution set of equation (1) , we now direct our 
attention towards inequality (3) , inequality (2) being solved already on a complete 
lattice. The following results hold, for a distributive. complete lattice (L , ::;) and a 
finite index set I , see De Baets (1995a): 

0 The case of a join-irreducible right-hand side. If bis join-irreducible, the 
partial mappings of Tare inf-morphisms and the solution set of inequality (3) 
is not empty (see condition (4)), then it is a finitely generated root system 
with stem XI and as set of offshoots the set {1111,- I b ::; A(k)} , where lvh is 
defined by (8). 

0 The case of a join-decomposable right-hand side. If b has a JOlll­

decomposition b = supiEJ b1, the partial mappings of T are inf-morphisms 
and the solution set of inequality (3) is not empty (see condition (4)), then it 
is a root system with stem x1 and as offshoots the minimal elements of the set 

{ u Mk I bj::; A(k)}, 
jEJ 

where Mk is defined by 

Mni) = { .C7(Abk) , b1) , ifi = k 
, elsewhere 

(9) 

If the join-decomposition is finite , then this root system is also finitely gener­
ated. 

79 



Combining this information with our knowledge of the solution set of inequal­
ity (2) leads to a full description of the solution set of equation (1), again for a 
distributive, complete lattice and a finite index set I , see De Baets (1995a): 

<> The case of a join-irreducible right-hand side. If bis join-irreducible, the 
partial mappings of T are homomorphisms and the solution set of equation (1) 
is not empty, then it is a finitely generated root system with stem G defined 
by (5) and as set of offshoots the set {Mk I b s; A(k) /\ Mk <:;:; G} , where 
Mk is defined by (8) ; moreover, if the partial mappings of T are maximally 
surjective, then the set of offshoots can be written as { Mk I b s; A( k)}. In the 
case of a complete chain , the latter result was already mentioned above. 

<> The case of a join-decomposable right-hand side. If b has a join­
decomposition b = supjEJ b1, the partial mappings of T are homomorphisms 
and the solution set of eqnation (1) is not empty, then it is a root system with 
stem G defined by (5) and as offshoots the minim.al elements of the set 

{LJ Ail I b1 ~ A(k) /\Ml~ C}, 
jEJ 

where M/,. is defined by (9). If the join-decomposition is finite , then this root 
system is also finitely generated, and if £,7 s; 'Iy , then the offshoots are the 
minim.al elements of the set 

{ LJ Ml I b1 s; A(k)}. 
jEJ 

Note that if Lis a complete chain and the partial mappings of Tare maximally 
surjective, then the ineqnality £ 7 s; I 7 always holds. 

These results have been obtained by Zhao (1987) in the case of a complete Brouwe­
rian lattice, i.e. when choosing as t-norm the meet operation, of which all elements 
have a finite irredundant decomposition in join-irreducible elements. They have been 
generalized and rephrased in the terminology of root systems by De Baets (1995a). 

On the real unit interval. The real unit interval is a distributive, complete lattice 
of which all elements are join-irreducible. Hence, the above resnlts can be applied. 
For a continuous t-norm T and a finite index set I , the solution set of equation (1) 
is not empty if and only if condition (6) holds. This also follows from the previous 
subsection, since for finite I conditions (4) and (6) are equivalent . If the solution 
set is not empty, then it is the finitely generated root system with stem G defined 
by (5) and as set of offshoots the set {Mk I b s; A(k)} , where Mk is defined by (8) . 

On the real unit hypercube. A very attractive lattice satisfying the above 
requirements is the unit hypercube ([O, lr, s;). From an implementational point 
of view, the real unit hypercube is the ultimate ordinal and numerical working 
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environment; it allows for incomparability and offers at the same time the possibility 
to fall back on the underlying real unit interval. Moreover , it is a distributive, 
complete lattice and all elements of it are either join-irreducible or have a finite 
join-decomposition. Consider a E [O , l]m , a f. (0 , .. . , 0) = Om , then a can be 
decomposed as 

with fli = (0, .. ., a(i),. . . , 0). 

a,= sup fli 
a(i),.CO 

From the above discussion, it is clear that we should consider a t-norm T on 
[O , l]m with partial mappings that are homomorphisms . However , this implies that 
the t-norm T is the direct product of m. t-norms T; , i = 1, . .. , m., on [O , 1], i.e. for 
any x and yin (0 , 1r it holds that 

T(x, !f) = (1i(x(l) , y(l)) , ... , Tm(x(m.), y(m.))). 

The latter follows even under weaker conditions, see De Baets and Mesiar (1998). 
For the sake of simplicity, let us consider at-norm T on [O , 1] and the t-norm T(m) 
on [O, 1r defined by: 

y(m)(x, y) = (T(x(l) , y(l)), ... , T(x (m.), y(m.))). 

The corresponding operators I 7 cmJ and Lr<ml are then given by, with lm = ( 1, .. . , 1) , 
see De Baets (1995a) : 

Irtml(x, y) = (Ir(x(l), y(l)) , . .. ,Ir(x(m.), y(m.))) 

and 
Lrtml (x, y) = (.Cr(x (l) , y(l)), .. . , .Cr(x(m.) , y( m.))) 

if (Vi E Im)(y(i) :'.S x(i)), and .Crtml(x,y) = lm elsewhere. 
Combining the above results on join-decomposable and join-irreducible right­

hand sides, we can state the next result . The most important difference is that now 
the offshoots can be written down immediately, and do not have to be determined as 
minimal elements of an auxiliary set . If T is continuous, I is finite and the solution 
set of the equation 

supT(ml(A(i) , X(i)) = b (10) 
iEJ 

is not empty, then it is a finitely generated root system with stem G defined by 

G(i) = Ircm>(A(i) , b) 

and as set of offshoots the set 

{ u MZ I b(j) :::; A(k)(j)} 
jEJ i\ b(j),.CO 
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with Mlc defined by 

Mlc(i) = { .C7 cm>(A(k), !21) , if i = k 
· Om , elsewhere 

Note that .C7 cm> (A(k ), !21) = (0, ... , .Cr(A(k) (j), b(j)) ,. .. , 0) . 

4.4 Systems of Sup-T Equations 

It should be clear from the above that in many important cases the solution set of a 
sup-T equation, if not empty, is a finitely generated root system. Recalling that the 
intersection of a family of finitely generated root systems, if not empty, is again a 
root system, leads immediately to the description of solution procedures for systems 
of sup-T equations. 

The problem we are concerned with is the following: given a complete lattice 
(L , :S) and a family (As)sES in :h(I) and a family (bs)sES in L, determine the 
solution set of the system of equations (Es)sES 

sup T (A8 (i), X(i)) = bs (11) 
iE / 

in the unknown L-fuzzy set X in I . 

Greatest solution. If the partial mappings of T are sup-morphisms, then the 
solution set of system (11) is not empty if and only if the fuzzy set G = nsES Gs, 
with Gs the potential greatest solution of equation E8 , i.e. 

G(i) = inf Ir(A8 (i), b.), 
sES 

(12) 

is a solution. Moreover , if G is a solution, then it is the greatest solution. 

In general, no simpler necessary and sufficient solvability conditions are known. 
Let us therefore turn our attention to the description of the complete solution set. 

On a distributive, complete lattice with join-irreducible or finitely join­
decomposable elements. Consider a finite index set I and assume that the right­
hand sides of system (11) are join-irreducible or finitely join-decomposable. If the 
partial mappings of T are homomorphisms and the solution set of system (11) is 
not empty, then it is a root system; if the system is finite, then this root system is 
finitely generated. Suppose that the solution is not empty, and that the solution sets 
of the equations Es are the root systems with stem Gs and set of offshoots Os, then 
the solution set of the system (Es)sES is the root system with stem G = nsES Gs 
and as set of offshoots the set 

{ u Ns I Ns E 0 s /\ Ns ~ G}. 
SES 

A necessary and sufficient solvability condition therefore is that G is a solution. The 
case of a complete Brouwerian lattice was again discussed by Zhao (1987), the above 
more general case by De Baets (1998a) . 
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5 Fuzzy Relational Equations 

We are now in a position to tackle what are called fuzzy relational equations. For 
the sake of brevity, we will restrict ourselves to the real unit interval; the reader 
can easily generalize the results to the more general setting of distributive, complete 
lattices with join-irreducible or finitely join-decomposable elements. 

Image equations of type 1. Consider a fuzzy set. A in X and a fuzzy set B 
in Y. As mentioned before, the image equation R(A) = B in the unknown fuzzy 
relation R is equivalent to a family of independent sup-T equations in the foresets 
Ry, y E Y. This equation is an important identification problem in fuzzy rule 
modelling: determine a relational correspondence given the input A and the output 
B. Clearly, the solution set of a family of independent equations is isomorphic to 
the Cartesian product of the solution sets of the individual equations. Since the 
Cartesian product of root systems obviously also is a root system, our knowledge 
of sup-T equations is sufficient for solving this type of image equation. Note that 
the set of offshoots of a Cartesian product of root systems is nothing else but the 
Cartesian product of the corresponding sets of offshoots. For instance, the solution 
set is not empty if and only if the solution sets of all individual equations are not 
empty. 

We then haVf' that for a left-continuous t-norm T , the solution set of the above 
image equation is not empty if and only if the fuzzy relation G defined by 

G(.r , y) = Iy(A(.r) , B(y)) (13) 

is the great.est solution. In case of a complete Bromverian lattice and the me.et 
operation, this result is known as one of the very first results on fuzzy relational 
equations, see Sanchez (1977) . The case of the real unit interval was discussed by 
Di Nola, Sessa, Pedrycz and Sanchez (1989). For a continuous t-norm T , a necessary 
and sufficient solvability condition is given by 

sup B(y) :S sup A(.r), (14) 
yEY xEX 

or, in words, the height of A is not smaller than the height of B. In the . case of 
the real unit interval, this condition can also be found in the work of Gottwald and 
Pedrycz (1988) and Gottwald (1994). 

Using the above framework of sup-T equations and root systems, the complete 
solution set can be written down immediately. If the universe X is finite, T is 
continuous and the solution set of the equation R(A) = B is not empty, then it is a 
root system with stem G defined by (13) and as set of offshoots the set 

0 ={MI (Vy E Y)(My E Oy)} , 

where 
Oy = {MJ I B(y) ~ A(u)} 
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with Mif. defined by 

M:f.(x) = { .Cr (A(~, B(y) ) , if x = u 
, elsewhere 

If the universe Y is also finite, then this root system is finitely generated. 
The complete solution set was described first by Sanchez (1977) for the case 

of the real unit interval, finite underlying universes and the minimum operator as 
t-norm. The generalization to continuous t-norms has been done by Di Nola, Sessa, 
Pedrycz and Sanchez (1989). In both sources, explicit proofs are given. 

Image equations of type 2. Consider a fuzzy relation R from X to Y and a 
fuzzy set B in Y. The image equation R (A ) = B in the unknown fuzzy set A is 
equivalent to a system of sup-T equations. This inverse problem plays a crucial role 
in backward chaining in fuzzy rule-based systems. Here, we can immediately apply 
the results from the previous section. 

For a left-continuous t-norm T , the solution set of this equation is not empty if 
and only if the fuzzy set G defined by 

G(x) = inf Ir (R(.r , y) , B(y)) 
yEY 

(15) 

is the greatest solution. Denoting the converse (or transpose) of a fuzzy relation R 
by Rt, i.e. Rt(y , ;r) = R(x , y), we can rewrite Gas follows: 

using as implicator the residual implicator IT . In view of t.he importance of this 
equation. we also mention the complete solution set. If the universe X is finite , T 
is continuous and the solution set of the equation R(A) = B is not empty, then it is 
a root system with stem G defined by (15) and as offshoots the minimal elements 
of the set 

{ LJ M;; I B (y) ::; R(u , y) A M;': ~ G} 
yEY 

where M:f. is defined by 

Mi(x) = { .Cr(R(u,~), B(y)) , if x = u 
, elsewhere 

(16) 

This type of image equation has received a lot of attention in the literature. 
Most attempts concern finite universes, the real unit interval (or a complete chain) 
and mostly the minimum operator. The case of a (left-)continuous t-norm is also 
discussed in Pedrycz (1985), Di Nola, Pedrycz and Sessa (1987) and Di Nola, Sessa, 
Pedrycz and Sanchez (1989) . However , using our knowledge about the intersection 
of finitely generated root systems, the above results can be been derived easily and 
more generally. 
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Composition equations. Consider a fuzzy relation S from Y to Z and a fuzzy 
relation T from X to Z . The composition equation RoS =Tin the unknown fuzzy 
relation R is equivalent to a family of independent image equations S(xR) = xT in 
the unknown aftersets xR, for all x EX. The solution set therefore is isomorphic to 
the Cartesian product of the solution sets of these image equations, each of which is 
nothing else but a system of sup-T equations. Of course, the equation Ro S = T in 
the unknown fuzzy relation S is solved at the same time, since it can be reformulated 
as follows: 5t o Rt = rt . 

Therefore, for a left-continuous t-norm T , the solution set of this equation is not 
empty if and only if the fuzzy relation G defined by 

G(x , y) = inf Ir(S(y , z) , T( x, z)) 
zEZ 

(17) 

is the greatest solution. We can rewrite Gas follows: 

using as implicator the residual implicator Ir . In the case of a complete Brouwe­
rian lattice and the meet operation as t-norm, this is again one the first results of 
Sanchez (1977); in this case, there also exists an alternative necessary and sufficient 
solvability condition by Di Nola (1990). In the case of finite universes, a completely 
distributive complete lattice (L, ~) and the meet operation as t-norm, the solution 
set is also a root system. Indeed, Di Nola (1987, 1990) has shown that for any 
solution at least one underlying minimal solution can be constructed; however , not 
all minimal solutions can be constructed explicitly. This result complements the 
results obtained in our general framework. It is clear that for specific operators 
and in specific situations, additional results can be obtained. Of course, in case of 
join-irreducibility and join-decomposability, we are again in our framework. 

However, there is another way of dealing with the equation Ro S = T . Indeed, 
it can be seen as a system of image equations S(xR) = xT in the unknown fuzzy 
relation S, for all x E X . At first sight , the latter approach seems to be the most 
practical one, in particular in view of determining the minimal solutions. Indeed, 
since each of the image equations S(x R) = xT in the unknown fuzzy relation S 
stands for a set of independent sup-T equations, their minimal solutions can be 
written down immediately and the pen-and-paper method has to be applied only 
once to find the minimal solutions of the composition equation Ro S = T. In the 
first approach, the minimal solutions of each of the independent image equations 
S(xR) = xT in the unknown aftersets xR have to be found using the pen-and-paper 
method. The minimal solutions of the composition equation Ro S = T are then 
found immediately. However, in practice it is difficult to say which method is the 
most efficient one. In the second approach, the pen-and-paper method has to be 
applied only once, but then possibly on a huge number of fuzzy relations, while for 
each of the independent image equations the minimal solutions have to be found 
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among a smaller number of fuzzy sets. The second approach is the one usually 
followed in the literature, see Di Nola, Sessa, Pedrycz and Sanchez (1989), while we 
favour the first one, in particular from an implementational point of view. 

6 Conclusion 

When the input-output behaviour of a system is (only) described linguistically by 
an expert , the fuzzy systems modelling approach can be called on. A system model 
is then built by solving fuzzy relational equations. In this paper, we have explained 
how these inverse problems can be solved in the framework of polynomial lattice 
equations and have presented a uniform framework in which various types of image 
and composition equations can be dealt with. Future work will consist of providing 
a similar framework for approximate solution methods in case of voidness of the 
solution set. Also the incorporation of the fuzzy systems modelling approach in 
other systems modelling approaches, such as Rosen's (1985) anticipatory systems, 
will be envisaged. 
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