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The robotic inverse kinematic problem can be rightly classified as a very felt theme in the 
field of robotics. Many studies have been carried out in order to find new methods for 
the solution of the problem as alternatives to the traditional ones. In particular, every 
method able to improve the calculation speed is more and more appreciated. 
In the present paper an innovative method for the numerical inversion of non linear 
equations sets is shown. The approach is based on some procedures typical of the soft­
computing area. In particular, the inverse kinematic problem is solved by a Neural 
Network optimised by means of a Genetic Algorithm acting inside an Hyperincursive 
scheme. 
After the introduction of the methodology developed, the paper shows some results 
obtained on a SCARA robot; they appear very good in terms of computational speed, 
even if the solution precision is not high near the boundaries of the working area. 
Keywords: Robotics; Numerical inversion; Neural Network; Genetic Algorithm; 
Hyperincursion. 

1 Introduction 

The robotic inverse kinematic problem, that is the inversion of the system of equations 
that gives the gripper's pose (position and orientation) in the wor~g space as function 
of the co-ordinates of the gripper in the joint space, appears a very felt problem in the 
field of robotics. (Paul, 1981; Coiffet, 1981; Vukobratovic, 1989). 
Many studies have been carried out in the direction to find methods for the solution of 
the problem alternatives to the traditionat ones, analytical and numerical. 
The synibolic definition of the relation · which allows to pass from the external co­
ordinates to the inner ones (analytical approach), has the advantage to put in evidence 
the number of solutions of the problem and, usually, it gives origin to very speed 
calculation ·algorithms; on the other hand, such a approach is not possible for every kind 
of geometry of the robot. · 
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On the contrary, the generation of the local inversion by means of a numerical method, 
when it converges, can be applied to all the manipulators, it gives one solution only and, 
if high accuracy is requested, it is generally slower than the analytical one. 
In the present paper an innovative method for the inversion of non linear equations sets, 
is shown. (Other interesting new methodologies of the kind can be found in Fukuda and 
Shimojima, 1997; Alsina and Geholt, 1994; Dreiseitl and Kubik, 1994). The studied 
approach is based on some procedures typical of the Soft Computing field (Holland, 
1992; Floreano, 1996; Back, 1996; Haykin, 1999), Neural Network and Genetic 
Algorithms in particular, ruled by an hyperincursive feedback cognitive process (Dubois 
1996, 1998). The application of the new methodology for the solution of the inverse 
kinematic problem for industrial robots appears a good alternative to classical methods: 
i) it gives a global solution; ii) the calculation speed is very high (when the Neural 
Network weights are established); iii) it can be, in principle, applied to all the 
manipulators, being not influenced by the robot geometry. 

2 The Inverse Kinematic Problem and the SCARA Robot 

In the present work we will consider the inverse kinematic problem for usual industrial 
manipulators, which can be modelled as open chains of rigid bodies. 
The kinematic problem can be formalised in the following way: being ll the vector of the 
external co-ordinates of the gripper (displacement and orientation of the gripper in its 
working space) and q the vector of the inner co-ordinates or joint variables, we have: 

DIRECT KINEMATIC PROBLEM 

u = f(q) 

INVERSE KINEMATIC PROBLEM 

{I, 2) 

Equations that constitute set given on the left side are often called 'position equations' 
and they allow to find " when q is known (direct kinematic problem); their complexity 
depends on the architecture of the robot, in particular on some dimensions of the links 
and on the kind of the coupling pairs (revolute or prismatic) that characterise the robot 
structure. 
The relation on the right hand side represents the formalisation of the inverse 
transformation; solving the inverse kinematic problem means, assigned vector " = "', to 
determine the corresponding vector q'. 
Whereas the solution of the direct kinematic problem for serial robots is normally very 
simple, the solution of the inverse kinematic problem shows some obstacles (greatly 
documented in literature). intrinsic in the formulation of the problem itself: which are 
briefly reminded: the non linearity of the position equations, the presence of singular 
configurations, the difficult choice of angular variables and of the related units of 
measure and the contemporary presence of angular and linear variables, usually 
characterised by range of variability significantly different. 
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To test the adequacy of the new method hereafter described to solve the above stated 
problems, we considered a simple two degrees of freedom SCARA Robot. 
The SCARA robot is a two arms, two revolute joints robot and can be modelled as 
shown in Fig. I . 
Being u and q vectors for such a robot made as follows (3, 4), the system of two 
equations in two variables (unknown) which describes the direct kinematic is represented 
by eq. (5). 

ll = (;) 

y 

0 

{
x = 11 ·cosa+/1 -cos(a+ P) 
y = l 1 • sen a + l 1 • sen( a + /J) 

p 

(3, 4) 

(5) 

x 

Fig. 1: The scheme of a SCARA robot and the system of position equations. 

In the simulating phase we will consider a SCARA robot having both links lengths equal 
to 0.5 m. 

3 The Neural Network Used 

Artificial Neural Networks are information-processing · systems that belong to the 
connessionistic theory, born from the neurological studies on the human brain way of 
computing. 
From these studies emerged that the way of information processing of the human brain is 
completely different from that of the conventional digital computers; whereas computers 
are sequential machines, brain is formed by a very large number of elementary units 
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(neurons) where the stored infonnation is distributed, processed and then, re-fonned. As 
Neural Networks we, thus, mean a parallel distributed processor fonned by artificial 
neurons, where the knowledge is achieved through a learning procedure and where the 
strengths of the intemeuron coMections (synaptic weights) are used for storing the 
knowledge. Each neuron can be modelled as shown in fig. 2. 

Input X1 

Input X2 

InpulXNx 

bias 

Fig. 2: Structure of an artificial neuron. 

Input level 

Output level 

Fig. 3: Structure of a three level Neural Network. 
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The neuron sums the products between each input signal (X,) and the related synaptic 
weight, adding to this partial result also a bias value (bk) and, applying then to the value 
so obtained the activation function, which is thought to limit the amplitude of the output 
of the neuron. 
Varying the neurons distribution and the typology of the used connections, we can create 
many different architectures and many different models of artificial Neural Networks, 
each one characterised by typical capabilities. 
The network architecture that appears as the best one for the studied problem, in 
authors' opinion, is a feed-forward type, characterised by the fact that each neuron is 
connected only with neurons of neighbouring layers and connections are all 
unidirectional, from input to output nodes. 
Let us consider, for simplicity, a network made up of three levels (with just one hidden 
layer): the first one (input level) is formed by NX elements, the hidden layer by NH 
neurons and the output level is constituted of NY units. 
In the net architecture shown in Fig. 3, the bias values for each neuron of the hidden and 
output layers are considered as the weights for fictitious input units, whose value is 
assumed equal to one. 
As transfer functions, a sigmoid for the neurons of the hidden level ( Tl(.)) and a linear 
function ( T2(.) ) for the output layer elements have been used, the analytical 
formalisation of which is: 

Tl(x)=-
2
--J T2(x}=x (6, 7) 

l+e-:r 

Assigned inputs values (X,), outputs Jj- can be calculated through the following two 
steps: 

(8, 9) 

This procedure is called execution phase. 

Such a Neural Network is able to learn an arbitrary function which links input variables 
(independent variables) to output variables (dependent variables). This capability is 
achieved in a training phase. To train a Neural Network means to propose to the net a 
proper set of examples, made of different values for the input variables and of the 
corresponding values of the dependent variables; during each iteration we modify the 
synaptic weights of the net in order to minimise the error due to the execution of the 
proposed examples. To obtain this, several training techniques are known in literature, 
for example the back-propagation (the best known), the learning with momentum, etc. 
(Haykin 1999, Floreano 1996). 
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4 The Genetic Algorithm Used 

The optimisation procedure used belongs to a non-conventional class of algorithms 
called 'evolutionary' due to their characteristic to emulate the natural selection process 
of an animal species. 
In details, the Genetic Algorithm is based on the principles that the individuals of a 
certain species, during the evolution process, improve their characteristics to fit 
particular environment conditions. 
Mathematically, the algorithm operates on groups (populations) of vector variables 
(individuals) everyone associated with a quality index (fitness) evaluated on the basis of 
the specific functional to be optimised (environment). At the end of the process, the 
optimised solution will be the vector which presents the highest value of the quality 
index. 

Initial 
population 

Evaluation of the 
quality index 

Is the quality 
of solution good 

enough'! 

Yes 

Return the best 
found solution 

No 

Creation of a new population of 
potential solutions applying in 

sequence the genetic operators: 
selection, inheritance, 

cross-over and mutation 

I 
0 

--- Inreritm::e 
--- Cross-o\'el' 

Mmation 

Fig. 4 - Flow chart and action scheme of the main operators of the Genetic Algorithm 
used. 
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In particular, the algorithm starts from an initial class of random solution esteems and 
then it builds new groups of vectors manipulating and combining their elements (genes). 
This is realised sequentially by applying some genetics operators named selection, 
inheritance, cross-over and mutation (reproductive process). These operators select 
some vectors from each groups of solutions so to make easier the selection of that ones 
with highest quality index; then their elements are manipulated and some random 
components are introduced to realise a new genetic patrimony. In this way, after a high 
number of iterations, every zone of the functional definition field is analysed. 
The convergence of the method is guaranteed by the reintroduction, in each new group 
of solutions, of the best one found in every previous iteration; on the other hand, every 
new class of solutions is generally closer and closer to the optimum. (A more detailed 
description of the particular technique used by the authors can be found in Bussola and 
Tiboni, 1999). 
The elaboration process is stopped when a predefined quality index is achieved, or when 
the optimisation solution does not improve at all during a pre-fixed number of 
consecutive iterations. 
Fig. 4 shows the flow chart of a classical Genetic Algorithm with the action scheme of 
the main operators involved in the iterative process. 

5 The Hyperincursive Method of Solution of the Inverse Kinematic 
Problem 

In previous works (see Faglia and Tiboni, 1997, for example), the authors inquired into 
the possibility of teaching to a back propagation Neural Network the inverse kinematic 
equations, which link the working space co-ordinates with the joint space variables of an 
industrial robot. 

The main problem ofthis approach is the creation of the examples on which to make the 
net learning. We proved that if we produce a matrix of NE (number of examples) made 
up by a and p values, randomly distributed into interval {O, 2tr} and then we calculate 
the corresponding x and y values with the direct kinematics equations, the Neural 
Network appears not able to learn the link between the values. 
We can understand such a behaviour if we think that in this kind of examples two 
different mathematical solutions pf the problem are present at the same time: the robot, 
in fact, is able to reach the same point P by two different sets of values a and p and a 
back propagation Neural Network is not able to understand this. Again, submitting to the 
network's attention examples with very similar (or equal at least) (x, y) values 
corresponding to different couples (a, /J), we cause confusion in the training phase and 
compromise the Neural Network learning capability. 
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On the other hand, a one hidden layer Neural Network showed itself able to learn the 
mathematical relation between (x, y) and (a, {J) under condition that the given examples 
consider only one solution. 

x ---~ Neural 
Network 

Output level 

Fig. 5: The architecture of the Neural Network tested. 

On this basis, and inspired by the mathematical methodology called Hyperincursion (see 
Dubois, 1996, 1998), which involves in the evolution of a system not only the past and 
the present events, but also the future ones, the authors developed an alternative way of 
solution, which seems able to avoid a-priori the multiple solutions problem. 
The basic idea of the Hyperincursion is very well expressed by its author, 
Prof. Dubois (1998), with the following words: "Classically, feedback processes are 
based on recursive loops where the future state of a system is computed from the present 
and past states. With the new concept of incursion, an inclusive recursion, the future 
state of a system is taken into account for computing this future state in a self-referential 
way. The future state is computed from the mathematical model of system." 
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In our case, the Net is calibrated by using in series a Direct Kinematics module which 
utilises the output of the Net itself and simulates the robot future behaviour; the Genetic 
Algorithm acts on the reference signal (x, y) and on the future signal (x ', y ~ generated by 
the robot, controlled by the Net. 
Let's suppose to know only the values of the co-ordinates of the point to be reached and 
to ignore the related values of a' and P': obviously, in this case, the procedure to set the 
weights and biases of the Neural Network cannot be the back propagation method. 
Therefore, the training phase must be carried out in another way; a possible solution by 
an iterative scheme is pictured in Fig. 6 . 

. .. . . .. . . ... . . . --~~c;~t.i~.~-P.~~'!. .. ··--- ·-···· •• f-- -- - ···· 

I x 
Neural a ' I 

Direct kinematic 
x' ----- I 

1 .... -
,.... !'.'..- Network 

p· 
equations 

y' 
- 1 

I -----m ·-· ·---·-- ---l 

Genetic -

Algorithm -

• t Training phase 

Fig. 6: The scheme of the structure developed to determine the weights and the biases of 
the Neural Network. Note that the Net is calibrated by the Genetic Algorithm on the 

basis of a future use in a module solving the Direct Kinematic problem. 

It is possible to note that the weights of the net are determined by the action of a Genetic 
Algorithm working on the values that would be actually reached by the robot (which 
performs the direct kinematic equations) if the net would be used in its execution phase. 
In other words, we calibrate the net upon what it will be its future use. 
During the iterations the Genetic Algorithm changes the net weights in order to minimise 
function 

(10) 

which represents the distance between the position which would be reached by the 
system for a specific set of weights of the net and the exact position. At the end of the 
process the optimal weights set and the net biases will be established. 
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Once the weights and the biases of the net have been found, when a new couple of x and 
y value is proposed as input, the execution phase of the Neural Network gives the 
corresponding a and p values. 

6 Results of the Application of the Method to a SCARA Robot 

In the application of the described hyperincursive method to a SCARA robot, due to the 
symmetry of the working area, we restricted our study to the first quadrant. 
In the actual study of capability of the method, we considered a Neural Network with 
arbitrary values of the parameters which identify its architecture (number of hidden 
layers, number of neurons for each layer, etc.}, being a future goal the optimisation of the 
architecture of the network itself. 
In particular, we considered a simple Neural Network, with just one hidden layer made 
of 10 neurons. 
Being the SCARA robot a two degrees of freedom robot, the Neural Network has three 
input (bias unit included) and two output units. 
In a first phase we considered a set of JOO examples, randomly distributed in the 
considered region, and, after about 300 generations of the Genetic Algorithm, we 
obtained a value of the goal function equal to 0. 0083 m, with the behaviour shown in 
Fig. 7, whereas the maximum error was equal to 0.063 m. 

Behaviour of the error during the training phase 
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Fig. 7: Behaviour of the mean position error valued on the examples during the 
training phase 

The first good result obtained with the training of the network is the capability of 
generalisation~ tested, in fact, on a set of about 2500 couples (x, y}, the mean value for 
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,---------- -- ---- ---
the positioning error obtained was 0. 009 m, a little higher than the one obtained with the 
training examples, but surely acceptable, thinking that the network was not still 
optimised. 
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Fig. 8: Behaviour of the co-ordinates of the joints during the execution of a spiral 
trajectory 
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Fig. 9: Accuracy in the reproduction of a spiral trajectory. 
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In this way, the net behaves as a good path interpolating system. 
With the described procedure, in fact, the Neural Network naturally evolves towards one 
solution only, without falling into the instability observed when both the possible 
solutions were present inside the given examples. The speed of calculation is very high 
and, this is very important, the solution found is 'global' : how we can observe, in fact, 
from Fig. 8, the waveform of the a and p angles obtained to move the hand-effector of 
the robot on a predefined trajectory (an Archimede spiral, for example) is continuous and 
could be, effectively, used to command the actuators of the robot. 

E"or[m] 
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.. :·· 
•, . . 

x (m] 

..... 
. .. 

· ·· ' 

Fig. 10: Distribution of the mean position error in the working area. 

We observed, moreover, that the training phase of the Neural Network in the whole 
quadrant gives not so good performances near its boundaries (sub-region a), but 
interesting results in its inner region (sub-region b). 
Fig. 10 shows the distribution of the error in the training region of the network: the error 
assumes low values in the inner region and significantly increases moving towards the 
boundaries. The mean error of position valued on 5000 points distributed in a region of 
the first quadrant, reduced of a coastal strip 0. 05 m wide (hereafter named sub-region a) 
has been obtained equal to 0.0063 m, sensibly smaller than the 0.009 m of the whole 

56 



quadrant, and the maximum error was 0.0419 m, instead of 0.063 m; if we consider a 
inner region (sub-region h), neglecting a coastal strip 0.01 m wide the average error 
decreases up to 0.0047 m and the maximum one to 0.0195 m. 
Such a behaviour is, probably, due to the bad ability of extrapolation of the network, the 
examples distribution on the border of the learning region being asymmetrical. 

To overlap the problem, the working space has been divided into five sub-regions, so 
that each sub-region is the internal part of a larger zone, where a proper Neural Network 
has been trained (see Fig. 11). 

0.8 

0.7 

0.6 

Io.s ,..., 

0.3 

0.2 

0.1 

Boundaries of the subregions and distribution off the error intensity 

0.1 0.2 0.3 0.-4 0.5 0.6 0.7 0.8 0.9 
x[m) 

Fig. 11: Sub-regions of the working space and distribution of the error intensity. 

For every sub-region a proper net was built with the recursive method above described. 
Fig. 12 shows the behaviour of the error in the first quadrant due to the execution phase 
realised with the five Neural Networks trained. The average positioning error distribution 
consequent of such a division was in the whole region 0.0017 m, 0.00123 m in 
sub-region a and 0. 001 m in sub-region h. The maximum error was 0. OJ 3 m in the global 
region, 0.0086 m in case a and 0.0052 m in case h. In Table 1 the average and maximum 
errors just mentioned are compared with the ones obtained with one network only. 
The improvement obtained with the partition of the working area cap be simply observed 
by the comparison between Fig. 9 and Fig. 13, which show the reproduction of the same 
spiral trajectory in the previous case and in the new one. The improvement achieved can 
be clearly appreciated. 
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Fig. 12: Behaviour of the positioning error in the working space with sub-regions. 

Table 1: Average and maximum errors with a single network and with five networks. 

With single Neural Network With five dedicated Neural 
Error Networks 
value 

[m] 
Global Sub-region Sub-region Global Sub-region Sub-region 
region a b region a b 

Medium 0.009 0.0063 0.0047 0.0017 0.00123 0.001 

Maximum 0.063 0.0419 0.0195 0.0130 0.0086 0.0052 

The results obtained are not really bad if we consider that no any analytical process has 
been used at all during the procedure and that no any optimisation of the networks 
architecture has been developed. 
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Reproduction of an Archimede spiral 
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Fig. 13: Accuracy in the reproduction of a spiral trajectory with five networks. 
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Fig. 14: Behaviour of the J3 angle during the execution of the spiral trajectory. 
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