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Abstract

This paper describes the possibility of science hyperincursive integration by
construction of a formal theory _ which becomes a universal language for the sciences
and where it is possible to build their integration process. After this integration any
scientific theory assumes all the data and ideas that can be useful for it from the other
scientific theories. Dubois’ incursive algorithm scheme permits a good two by two
integration process of all the sciences but the continous making of new scientific ideas
and data in the outside environment of the integration process implies the necessity to
can change it during its execution by opportune control parameters which represents the
new scientific data and ideas which we can introduce. Thus we have really an
hyperincursive process to integrate the sciences among them.

Keywords: epistemology, formal theory, hyperincursivity, incursivity, science
integration.

1 Introduction

Is it possible to design a global scientific theory? Any science gives and takes
ideas and data from other sciences. Apparently, a partial science hierarchy exists.
Roughly: logics = mathematics - physics = chemistry = biology > psychology ->
ethologic sciences = sociology and applied sciences -> history and culture history >
philosophy. Really, science history teaches us that any science has taken ideas and data
from any science: e.g. mathematics and philosophy take ideas and data from logics but
this last one takes also ideas and data by mathematics and philosophy. Thus sciences
form a net that has to be described by anticipatory relations. This anticipatory net may
be used as global theory. To manage it: before, we build a formal theory where any
science can be representend, after, we build a logic on the truth relations between the
sciences with a set of logic operators whose arguments are scientific theories, after, we
define nets and nodes of scientific theories, finally, we give a science hyperincursive
integration algorithm.
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2 A Formal Theory L to Represent Sciences
2.1 Formal Theory Definition
2.1.1 General Definitions
A formal theory S is defined when the following conditions are satisfied:'

1*) There is a set of symbols which is at most countable and which is the set of the
symbols of £. A finite sequence of symbols of T is called expression of _.

2*%) There is a subset of the expressions of S which is called set of well formed
formulas® (abbreviate with wffs, singular wff). Usually, there is an automatic
procedure to decide if any expression of S is wiff.

3%) There is a subset of the wiffs of S which is called set of the axioms. = is called
axiomatic iff there is an automatic procedure to decide if a wff of = is axiom.,

4*) There is a finite set of relations py, ..., py, among wffs that are called inference

rules. For every p; there is a sole integer positive j such that for every set of j
wifs and for every wff o one can decide if the j wiffs are in relation p; with o.. In
this case o is called direct consequence of the j wffs by p;.

2.1.2 Proof Definition

A proofin S is a sequence 0., ..., O,. of wifs such that for every i, o; is axiom or
direct consequence of a subset of previous wiffs.

A theorem o in S is the last wff of one or more proofs. Such proofs are called
proofs of a.

S is called decidable iff there is an automatic procedure to decide if any wif of = is
a theorem.

A wif o of S is called consequence of a set I" of wffs of = iff there is a sequence
oy, ..., oy, of such that wifs for everyi, o; is axiom or direct consequence of a subset of

previous wifs or q;e I". Such a sequence 01, ..., o, is called proof (or deduction) of o

from T'. The elements of I" are called hypotheses or premises of o. Read ‘Tv»>a’ “The
wifs of the set I are premises of &”, in other words, “The wifs of the set I" deduce o”. If

! We consider only standard logic with non-contradiction principle in this work. We think that the hyperincursion
principles (see above) can be applied to any logic with any formalism but we do not prove this fact in this paper for
space reasons. However, our convinction is based on the following achievements: Fuschino has proved the
reducibility of fuzzy logics to standard one (Fuschino 1999); Rutz (1973) and Grappone (1995) have proved the
reducibility of many-valued logics to standard one; Grappone (1988) has given a translation of Matte Blanco’s bi-
logic in terms of standard logic; Malatesta (1982) proved that non-classical logics cannot take a step without a stock
of tautologies belonging to classical one, which are laws of non-contradiction. According the author either the set of
laws of a non-classical logic is a proper subset of the classical one or there is an intersection between the sets of laws
of classical logic and a non classical one, without which the last cannot work.

2 Assume that a well formed formula is a symbol which means a given proposition in S.
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I'=0, then I'>o iff o0 is a theorem. So, we can denote “ol is a theorem” with the
expressions ‘Jr—a’ and ‘a’.
The concept of consequence has the following properties:

1**¥) If I'cA and I'>a then A—o.
2**) Tt>o iff there is such a finite set A that ACI” and Ao
3**) If T deduces every wif of A and A—aq, then ['—>a.

2.1.3 Bi-logic Formal Theory Definition

A given formal theory is bi-logic® iff all its meaning expressions, which are not
operators, are fusions of other its meaning expression, which in turn are not operators,
and such that its inference schemes include fusions and divisions of meam'ng
expressions which are not operators (Matte Blanco’s symmetry principle’ and
symmetrical-asymmetrical relationship’).

2.2 Definition of of the bi-logic formal theory _
2.2.1 Language of L

LO01) @ denotes a void or inexisting expression;*

L02) a, b, c, ... denote generic terms;

L03) if o, B, v, ... are terms or term series then @, @, @, ... are atomic terms;

L04) if a, B, v, ... are terms then (@), (&), (aBY), ... are terms;

L05) if a is a term then (o) is a term which is a constant;’

L06) if o, B, 7, ... are terms then (@By. ..) is the term which is the achievement of the
application of @ on B, v, ... where the constant (@) is used as functional letter;®

L07) if o is term then Tovand Lot are terms;

L08) If a row contains only ¢ then this expression is sentence;

L09) a, b, c, ... denote generic sentences;’

L10) ifa,B,Y, ... are sentences or sentence series me@,@,@, ...are atomic sentences;

Lil) ifo, B, v, ... are terms then {o}, {af}, {0By}, ... are sentences;

L12) ifa, B, v, ... are sentences then [a], [0f], [aBY], ... are sentences;

L13) if o, B, v, ... are sentences then aff, af}y, ... are sentences;

L14) ifa, B, Y, ... are terms then {(@)ﬁy. ..} is the sentence which is the achievement of
the application of @ on B, v, ... where the constant @) is used as predicate;'®

3 See Matte Blanco (1988).

* See Matte Blanco (19752).

5 See Matte Blanco (1975b).

® & plaies in L the same function of zero in mathematics.
7 To define a constant see Mendelson (1964).

8 To define a functional letter see Mendelson (1964).

% Observe that @, b, c, ... can be @ too (see L08).

19T define a predicate see Mendelson (1964).
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L15) if ais sentence then To and da are sentences;
L16) is sentence
L17) is sentence'’

2.2.2 Metalanguage of L

MO1) Call% universal quantifier of bin Hﬂb;

MO02) call Yla particular quantifier of b;

M03) call ld variable of [1d in [ 1db and of Sid in Sdb;

MO04) call b scope of ]’[@ in f@b and scope of XB in ZBb;

MO5) call B free in b if neither it is the variable of any ]—[E or any Z@ nor it is in their
scopes in b and call |g /inked if it is not free;

MO6) call any [d which is free in b linked by []d in [T and linked by Yid in Yidb;

MO7)call a free for @ in c if all its internal terms are free after its substitution to @ in c;

MO8) call sentence in prenex normal form a sentence a whose quantifiers are in its start;

M09) "...: are generic expression limits;

M10) call closed sentence a sentence a if there are not free variables in it;

M11)if o, B, y, ... are expressions then a{By...) is an expression o which contains B, v,

M12) if o and P are expressions then of...8...), ...B...0...), o(...p...B...B...), ... are
expressions which mean that o contains respectively at less 1, 2, 3, ... distinct
groups of occurrences of B;

M13) if o, B and 7y are expressions then of...B/y...) is the achievement of the
substitution of § with yin o;

M14) if oo and B are expressions then of...8...) and o(...$(...)...) are expressions
which mean that o does respectively not contain B and B(...);

M15) o=0(...) is the sentence: “o. is a sentence which contains ...”;

M16) Ua@a means:

*)  ais a sentence in prenex normal form,
**)  all the occurrences of @ are linked by a single particular guantifier,
***) all the occurrences of B are linked by a single particular quantifier or free,
M17) ’odE Q means:
*) ais a sentence in prenex normal form,
) a=a@@);”
M18) ’;a@B means:
*) > aild
**) all the occurrences of § in a are linked by a single universal quantifier,
*#*%) all the occurrences of% are linked by a single universal quantifier,

"' To semplify exposition of the algorithm for deduction building in L we do not use the standard definiton of a
particular quantifier (3x)4 in terms of universal quantifier, i. e. ~(Vx)~4. Mendelson (1964).
121, e.: the sentence a contains no atomic sentences which contain either the term b or or the term c.
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**%%) if o is an expression which is obtained from a by the following sequential
procedure:

01# erase all the quantifiers,

02# replace any atomic term which is neither @ nor@ with §
03# replace any §...§ with §,

04# replace any d§e with de,

05# replace any (§) with §,

06# return to 3# till you obtain changes,
07# replace any {§} with §,

08# replace any §...§ with §,

09# replace any f§g with fg,

10# replace any [§] with §,

11# return to 08# till you obtain changes,

and o is not §, then o is a sentence which is true at most in two of these
four cases:
1$ true {b} and true {c},
2% true {b} and false {c},
3$ false {b} and true {c},
4% false {b} and false {c};"
M19) {}a means: a does not contain two quantifiers with the same variable and any
quantifier links some variable in its scope;
M20) o — B means: o deduces B;
M20) o. <> § means: o. deduces B and vice versa;
M22) o+ ([]¢> B) means: o deduces B by a term wrong fusion;

2.2.3 Axiom of L
AX01) o

2.2.4 Inference schemes of L

1S01) [Td[TAI G- --a@ B - ><—>@@B
1S02) YISl addBlld ...) <> Yhabe.. a(dlblld ...)

1S03)
[la(Mabe.. /d _ﬂmma bl dlabe.Yac. D) laMabe.. Yd Yia)
m) ]<—> be.. Uabe.. J);

1504) a(Tabllab Hm@/r@ i),

1S05) [[a((Labe.. ))][a((albc M al(@ble...))]...] & all(abe...));

1S06) [[a({(Tabe.. W[ al(aTbe.. W[ al(abTe...))}...] & a(T(abc...));

13 This last property of o can easily be verified by standard truth function calculus. E. g., see Malatesta (1997a).
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1S07) [[{{abe.. }[{albe.. Y[ {ablc.. }]...] & Labe...};

1S08) [[{Tabc...}[{aThc.. Y[ {abTec...}]...] & T{abc...};

1509) a{ T+ {(D)  } k=) A D [ 1) © a( Tkt )

1510) a(UpjB) > a(

1S11) (Tt < a(TiR)

1S12)[[Tabc...)[aTbe.. J[abTc...]...] & { [abe.. ];

1S13) [[{abe...J[adbe.. Jablec.. )...] & Tlabe...);

1S14) [THTe & T[Tbk;

1515) YHTe & TYe;

1S16) Ta— ([l © a);

IS17) [a[b]c][ald]c] <> [albd]c];

IS18)[] © a[]b;

1S19) a[bcldef <> a[bec)def,

1S20) abc|delf <> abc|dbelf;

1S21) abed > abcebd,

IS22)a & [[a]];

1S23) a(b) (b),

1S24) [[tla >

1525) if Uafp][d and Ua@@and Ud@.and Udlld and ... in Sple(@lld[d[d -..) then
le@/bdldddd ... a@bddddd .. @ ddEibd .- 1.1+

B HBEH. .:
1S26) if vaff] [d and vah||d and vap[d and vafp][d and ... in YHe@E [ -..) then
{[a@@@gﬁﬁu Ye@ddidbdi ... la@ldddibd ..)).. 1

1S27)if Y. g Yajpl|d and Ydf[d and ... in [[Ha(dd ...) then
[la - MiaBlipdld a@bddddied . ))...1 -

1828)31;%‘, »(5 ]HII[ Eﬂb@ ]
1529) $34d[...b{d)...] & BL... TId[b{D

(8]

1S30)a(.. .. Jldc(d®)...) & a{.. ... (d/b)...),
1IS31)a(...b... (db) Dyeal ... Xd/b)...);
1S32)a®) <

1S33)a

2.2.5 Abreviations of L"

ABO1) Nt is [or];"

¥ With n>2. We use a polyadic extension of Polish language for standard sentence logic. See Lukasiewicz (1958)
and Malatesta (1997b). It is not complete because to complete it is useless for our purposes.
15 No. is the negation of o.i. €., in standard language, ~ot.
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AB02) Vo, 0,0,.... 01,0, is 2;'°

ABO03) A0, 0,05,...0t,,0,, is [[on ][]0 [on]. .. [0, (et ]];"

ABO04) Ba,0,,.... 01,0, is [0 Jou0. .00, 00, ]

ABO5) Bear,00t,...0t, 01, is [0 Jou][[on]ats]. .. [[et,. Jo 15

ABO06) Cor,00t;...0;, 01, is [0, 0400, [0, ]1:%°

ABO7) Ceo0,0t,....a, 0, s [0 [og]]fon[a]]. [, [or 117

AB08) ﬁa‘alog. ..o, 0 s o000, . .ocn_loz"];22

AB09) E0,040...0t,,0, i [[040505..0;, ot J[[oy J[og ][] . [at,, ][, 111

AB10) Fo,00t,....0,, 0, is [a,];

ABI11) éa,%%...an_la,, is [o,];

AB12) ﬁa,%%. .0, 0 1S O

ABI13) l"cx,ocz%...a,,_]a,, isa;

AB14) Jo0401,...0t,,0, is [0 [o][0s]. . [at,, ][ TT{ o Jor [ox]...[cr,
1][%]]2[[0&1][%]%- [e, ][, 11 [lov J[ow ][] . . et o, T o JTox, )] . . [,
Jo, 117

ABI5) Jioyon0t,....01,, 0, is [[[oy[on]lon]..[or,, Ile, T1[oy [ou [0 ]. .. e,
Jlos Mo Joyfe]. o, 1T o J1[eJlos]os. . [ex, 1o 1T . [Ton Jlew ) o] ..o,
Lo J10o e, Jfes]. ..o, Jor, 11:%°

n . .
"% Va,on0,...01, @, is polyadic tautology.

n . . . . .
17 Ao,0,0,...0,, 0 ispolyadiclogicsum,i.e.,instandard language, o va,vo,v...vo, Ve, .

18 5 ; s . T . .
Ba,o,a,...0, 0, is Malatesta’s converse sequence implication, 1. e., in standard language,

((...((0c0)cr)e. . ), )0, See Malatesta (1989a).

19 l;'cala?ag...(x .10, is Malatesta’s converse chain implication, i. e., in standard language, (@,50,)A
(0,50)A. .. A(Q, o0,). See Malatesta (1989b).

20 Cna,a:.ozj...an_]a” is Malatesta’s sequence implication, i. e., in standard language, o, >(0t,5(03>(...(@,,_, 50,)...))-
See Malatesta (1989c).

o C"ca]az%...an_la" is Malatesta’s chain implication, i. e., in standard language, (0,50, )A(020)A. .. A(Q, | SQL,).
See Malatesta (1989d).

2 D”al(x,_,(xy..an‘]an is polyadic logic sum of sentence negations 1i.e., in standard language,
~0L VOV~ 0LV VO, VL

2 Ena‘azay..u"_lu" is Malatesta’s polyadic equivalence, i. e. is the equivalence of all its arguments. See Malatesta
(1989¢).

uJ a,0,0,...0, o, is Galens’s complete battle, i. e. it is the truth of one and only one argument. See Galen, ed.
Kalbfleisch (1896) and Malatesta (1992a).
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ABI16) Ko, 0,00, 0, is 0, 0,00, 0,

AB17) Lo, o,0,...01, 0, is 0, 0,05...0,, [o,);”

AB18) Leaya,0,,...0t,., a1, is [[o[ou))[ayf]]. . [0, [0, 1)
ABI19) My, 0L,0%,....0,, 01, is [0, ]ou0,. .0, 0,; %

AB20) Mo, a0, is [[{oJou][[on]as]. . [0, Jot, 115
AB21) Xo,0n0,..01,.,0,, s [oy][on][e]. .. [or, ][ ];
AB22) Oa, 00,0, 0, is [];*

2.2.6 Calculus of the Simplest Sentence which Deduces a Given Sentence z of L

Let «z» be the simplest sentence which deduces a given z in L. To calculate it:*
step 01: write z;
step 02: let v be the top row (z in this case); if v=v(0"(xl(x2a3...amlan ) then write AB22
at right of v and write v<0"a1u2a3. ..0,,,0,/[1) on v; go to the start of this step till
changes happen;
step 03: let v be the top row; if v=v()?a1aza3. ..o, o) then write AB21 at right of v and

write w(Xo,0,0,. .., 0,/[0y ][0 ][0s]. .. [, )[0,]) on v; go to the start of this
step till changes happen;

> pratically, Jia,0,05...t,, 0, is Gellius’ incomplete battle, i. e. it is the truth of at most one argument. See Gellius,
rec. Marshall (1968).

24 Igoz,aza.j...a”_,a,,ispo}yadiclogicproduct,i,e.,instandard language, O, ACLACLA. .. AQL, | ALY,

2 l','a,u.zaa...aﬂu" is negation of Malatesta’s sequence implication, i. ¢., in standard language, 0L ACLACLA. .. AQL,_
AL

% l”caltx.za?...a"_la" is negation of Malatesta’s chain implication, i. €., in standard language,
(0 A~O)V(OLA~A) V... V(T A~0L).

= A'r'la]uio.s...a"_lun is negation of Malatesta’s converse sequence implication, i.e., in standard language,
O AL A~CLA. . A~ AL,

E A"/Ica]a.za:‘...un_]u" is negation of Malatesta’s converse chain implication, i. e., in standard language,
(0, 20L)A(0>0)A. . AR, S0).

- )'("a,o.za.j...a”_la" is polyadic logic product of sentence negations i.e. in standard language,
~OU A~OLA~OUA. . A0, | A~OL .

2 5a1%%...a .0, is polyadic contradiction.

33 Observe that a is theorem (contradiction) in L iff «a» is & ( [] ); let contradictions be wrong term fusions (consider

the historic development: set ingenuous concept > all class antinomy - division of the set ingenuous concept in set
class and non-set class concepts), thus the steps 33, ..., 47 correct in «a» the contradictions of a.
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step 04:

step 05:

step 06:

step 07:

step 08:

step 09:

step 10:

step 11:

step 12:

step 13:

let v be the top row; if v=v(]l"4:a1(x2a3. ..o, 0. then write AB20 at right ofv and
write wW(VEQL 0,0ty .01, 0 /[[[0r ]on][[05]0s ] [, ]ot,]]) on w; go to the start of
this step till changes happen;

let v be the top row; if v=v(1\"40t1012a3. ..o, o) then write AB19 at right of v and
write v(](/llala,zug...(x,,_,a,/[al]uz%...an_lotn) on v; go to the start of this step ftill
changes happen;

let v be the top row; if v:v<["ca‘05a3. ..q,,0, ) then write AB18 at right of v and
write W(Le0,0,01,...,,00/[[0 [00]1[05[04]]. .. [0, [0, 11]) on v; go to the start of
this step till changes happen;

let v be the top row; if FV(ZQ‘%%...G"_!G"> then write AB17 at right of v and
write v(L"(xl(x,Z()Lj...a"_la"/(x]aza}...a"_,[a,,]) on v; go to the start of this step till
changes happen;

let v be the top row; if v—'V(]%(x,aZOL_,. ..o,,,0.,) then write AB16 at right of v and
write v(l%a,a,z(xj...an_,a,/a,azog...ocn_la”> on v; go to the start of this step till
changes happen;

let v be the top row; if \r——v(.ﬁn(xla?a}...an_,a”> then write AB1S at right of v and

write w00, 0 /(1[0 o)) ..[er, )Tz e [ ow). . et )T
o, ][y Joufos].. . [o,, Jox,J1ox o Jor,. - for,  Jle 1. . [fon }fon]{on]. .ot [
o J1[[e, o 1[es]. . [o, ,]ou,11) on vy go to the start of this step till changes
happen;

let v be the top row; if v=w(J o,0,0L...0, 0, ) then write AB14 at right of v and
write wJo,an0...0r,,0,/ [[on[ou] et ] [or,, Jloy [Te Joufox ] [,
JlogJle JlonJes. . foe, 00 o ]]-..[[on][on][on]. .00, [on J][[on Jen][os] - [ex, ]
o.,]]) on v; go to the start of this step till changes happen;

let v be the top row; if Fv(lncxlazocj. ..o, 0. ) then write AB13 at right of v and
write w(/ o,0L0,...0, 0 /o) on v; go to the start of this step till changes happen;
let v be the top row; if v:v(ﬁa,aza}...an_la") then write AB12 at right of v and
write v([-;alaz(x}. ..o, /a) on v; go to the start of this step till changes
happen;

let v be the top row; if Fv(éa,%%...an_,a") then write AB11 at right of v and
write W(Got, 0L0...0;,,0,/[0,]) on v; go to the start of this step till changes
happen;
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step 14: let v be the top row; if FV{ﬁa‘%a3...an_la"> then write AB10 at right of v and
write v(I:L(x,(x?aJ. ..o,0./[o,]) on v; go to the start of this step till changes
happen;
step 15: let v be the top row; if v=v<E"cx1(x2a3...(x”.,a") then write AB09 at right of v and
write v(éalozzog. oo /[[onone,. ..o o [Toy Jlog][o]. . o, Jlee, ]]]) on w; go to
the start of this step till changes happen;
step 16: let v be the top row; if v=v(D”(x1(x2cx3...ocn_,a") then write ABOS at right of v and
write v(ﬁaloz?a,j...oc”_la,/[oc,a_,%...an_lcxn]) on v; go to the start of this step till
changes happen;
step 17: let v be the top row; if v=v(('i(x10!,zo(3. ..o, 0 ) then write ABO7 at right of v and
write W(Ceot, 0,0. .0, 0, /[0, [0, ]][05[0t]]- . [et, [, ]]) on w; go to the start of
this step till changes happen;
step 18: let v be the top row; if Fv(éalaao.j...aﬂan) then write AB06 at right of v and
write W(Co, 040t 0, 0, /[0, 0,05 .0, , [, ]]) on v; go to the start of this step till
changes happen;
| step 20: let v be the top row; if v—ﬁ'(écala,_,(x?. ..q, 0, then write ABOS at right of v and
write WB0,040,..0,,,0,/[[oJon][[on]ot]. .. [[or,.Jot,]) on v; go to the start of
this step till changes happen;
step 21: let v be the top row; if Fv(éalazog. ..a,,0,) then write AB04 at right of v and

write v(éalugog...an_,(x"/[[al]azas...(xn_loc,,]) on v; go to the start of this step till
changes happen;
step 22: let v be the top row; if v=v(/e’l'(xlaz(x3. ..a, o) then write ABO3 at right of v and

write WA, on0,..0;,,0,/[[o J[05][0, ][] .. [or, ][0, 1)) on ¥; go to the start of
this step till changes happen;

step 23: let v be the top row; if v=w(Vo,a,0L,...0;, ,0,) then write AB02 at right of v and

write v{l}a,a.zag...ak,an/e) on v; go to the start of this step till changes happen;

step 24: let v be the top row; if v¥=w(No) then write ABO1 at right of v and write
w(No/[ar]) on v; go to the start of this step till changes happen;

step 25: let v be the top row; if Fv(Z@a@) then write IS33 at right of v and write
v(Z@a@/a@) on v; go to the start of this step till changes happen;

step 26: let v be the top row; if Fv(r[@a@) then write IS32 at right of v and write
v(]'[@a@/a@) on v; go to the start of this step till changes happen;

step 27 let v be the top row; if v=w(a(.. [H}...XldBc(d/b)...)) then write I1S31 at right of v

and write wa(.. [d...XdBc(d/b)...)a(.. |B...Side(db)...)) on v; go to the start
of this step till changes happen;
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step 28: let v be the top row; if v=1w(a(.. @ . .r@@c(d/b). ..y) the write 1S30 at right of v
and write v(a(......H@/@c(d/b)...)/a(...@...H@c{db)...)) on v; go to the start
of this step till changes happen;

| step 29: let v be the top row; if v=w(J[...[[d[b{d)...]) the write IS29 at right of v and

| write W(G[...[Td[6dd)... VXML ..6d)...]y on v; go to the start of this step till

changes happen;

| step 30: let v be the top row; if FV(II[...ZE[b@...]} then write IS28 at right of v and
write W(O[...Yld[b{d)...//STTd[...6d)...]) on v; go to the start of this step till
changes happen;

step 31: if the steps 29 or 30 have added rows in their last execution return to step 29;

step 32: if g is free in b@ then write IS23 at right of v and write v(b@/ﬂg b@) onv,
go to the start of this step till changes happen, finally store the top row as w;

step 33: let v be the top row; if Fv(r[@a@%. ..)) and Valb}d and ¥ am and Y, a@ and
Vdbld and ... in [[Ha(Hddd...) then write 1S27 at right of v and write
W[ Tt (Bl ../ [[a(Bbddlbdde. . [aBbdddibde. . )1 aBbdddelbd )]
]) on v; go to the start of this step till changes happen;

step 34: let v be the top row; if v=w(3{ba(Biddld. ..)) and afpld and sdbld and vapld and

|
\
\
\
‘ sapld and ... in YHa(Hldde...) then write 1S26 at right of v and write
\
\
|
|
|
|

w3 {bla(elddd../[[atlieddbdde. . e (Blibdddibde. . la(Bibddddbd. . )1. .1
) on v; go to the start of this step till changes happen;
step 35: let v be the top row; if v=v(ﬂl:)]a< ...))and Ua{l__ﬂ and U@ and Ua@ and
Udpld and ... in Yjpla(Hddd...) then write 1S25 at right of v and write
WY paidde. ../ [laBbddbddd. . le@bdddibdd.. a(Bibdddaibd. . 1. .1
Y on v; go to the start of this step till changes happen;
step 36: let v be the top row; if v=v<Z@p> then write I1S24 at right of v and write
v(Zﬂa/]"@a) on v; go to the start of this step till changes happen;
step 37: let v be the top row; if Fv([[@a(b)) then write IS23 at right of v and write
‘ v(ﬂ]Ba(b)/a(b)) on v; go to the start of this step till changes happen;
| step 38: let v be the top row; if v=w([[a]]) then write IS22 at right of v and write
w([[a]}/a) on v; go to the start of this step till changes happen;
step 39: let v be the top row; if v=wabchd) then write IS21 at right of v and write
| wabcbd/abed) on v; go to the start of this step till changes happen;
step 40: let v be the top row; if v=w(abc[dbelf ) then write IS20 at right of v and write
wWabc[dbelf /abc[delf ) on v; go to the start of this step till changes happen;
| step 41: let v be the top row; if v=w(a[becldef ) then write IS19 at right of v and write
| wa[becldef /albcldef’) on v; go to the start of this step till changes happen;
step 42: if the steps 39 or 40 have added rows in their last execution return to step 39;
| step 43: let v be the top row; if v=w(a[]b) then write IS18 at right of v and write
| wa[]b/[]) on v; go to the start of this step till changes happen;
step 44: if the steps 38 or 39 or 40 or 41 or 42 or 43 have added rows in their last
| execution return to step 38;
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step 45:

step 46:
step 47:

step 48:
step 49:
step 50:
step 51:

step 52:

step 53:
step 54:
step 55:

step 56:

step 57:

step 58:

step 59:

step 60:

step 61:

step 62:

let v be the top row; if v=[a[bd]c]; then write IS17 at right of v and write
[a[b]c][a[d]c] on v; go to the start of this step till changes happen;

if the step 45 has added rows in its last execution return to step 38;

let v be the top row; if v is not [] then end the algorithm otherwise write IS16 at
right of v and write Tw (see step 31) on v;

let v be the top row; if wv(TZ@a); then write IS15 at right of v and write
v(TZ@a@@Ta); go to the start of this step till changes happen;

let v be the top row; if v=v(THEa); then write 1S14 at right of v and write
v(THZ@a/H@Ta); go to the start of this step till changes happen;

if the steps 48 or 49 have added rows in their last execution return to step 48;
let v be the top row; if v=w(T[abc...]); then write IS13 at right of v and write
wWMabe...)/[[{abe.. J[albe.. J[able...]...]); go to the start of this step till
changes happen;

let v be the top row; if v=w({[abc...]); then write IS12 at right of v and write
w(d[abe...)[[Tabe.. [aThe...)[abTc...]...]); go to the start of this step till
changes happen;

if the steps 50 or 51 have added rows in their last execution return to step 50;
let v be the top row; if Fv(T@@; then write IS11 at right of v and write
F(T@@; go to the start of this step till changes happen;

let v be the top row; if v=v({[pFH)); then write IS10 at right of v and write
lc(l@/@)); go to the start of this step till changes happen;

let v be the top row; if v=1( TBK=F){|bk==3)d); then write 1S09 at right of v
and write v(T@(%}}/P { @}i@({%}/l{@}); go to the start of this step
till changes happen;

let v be the top row; if v=w(T {abc...}); then write IS08 at right of v and write
WM {abey N[ {Tabe.. 3[{aThe...}[{abTc...}]...]); go to the start of this step
till changes happen;

let v be the top row; if v=w({ {abc...}); then write ISO7 at right of v and write
wd{abe}[[{dabe.. Y [{albe.. . }[{ablc...}]1...]); go to the start of this step
till changes happen;

let v be the top row; if v=wa(T(abc...))); then write IS06 at right of v and write
wa(T(abc.. W[a{(Tabe. . )[al(aTbe.. )] al(abTc...))]...]); go to the start
of this step till changes happen;

let v be the top row; if v=w(a({(abc...))); then write ISO5 at right of v and write
wa((abe.. )Y [a{(dabe.. H[al(albe.. N[ al(ablc...))]...]); go to the start
of this step till changes happen;

let v be the top row; if v=v(a<T L@b)); then write IS04 at right of v

and write v(a(T@ﬂB@l@é}/a{T @); go to the start of this step till
changes happen;

let v be the top row; if v=v({a( labc. . )Y; then write IS03 at right of v and

write
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wa(Tabe.. Yabe.. Mla(Mabe.. Yidlabe... Ybe.. hla(MNabe. Jplabe. Yac. DI
a(Mabe.. l/E Uabe.. }ab.. )]...1); go to the start of this step till changes happen;
step 63: let v be the top row; if v=w(Ylabc.. Ja(dBld ...)); then write 1S02 at right of v and

write V((HEB ...)@@Z@Z@...a@ﬂ@ ...»; go to the start of this step

till changes happen;
step 64: let v be the top row; if v=w([Tabc. Ja{dhld ...)); then write ISO1 at right of v
and write v((@@ YT TATY. ..addBld -..)); go to the start of this

step till changes happen;
step 65: return to step 33.

3  Scientific Theories and Their Logic in |

Any scientific theory can be represented in L by the logical product of the
representations in L of its single affirmations or equations.* Thus any scientific theory is
finally a sentence in L.

Any scientific theory has a potency which is either its event prevision power or its
tecnical problem solving power. To define the logical relations among potencies of
sentences of L. when they represent scientific theories observe that the consideration of
their simplest premises increases the efficiency and the elegance of the represented
theonies. Furthermore it conserves their potencies. Thus, for every sentence a, we use
always «a» in its place when a represents a scientific theory; also, as a tautology gives
no information,” it has no potency, thus «[««ax{«a»]»]» which represents a tautology
in L, has no potency and so we can put that «[«a»]» is a theory which has exactly the
potency that @ has not and, in general, that ««a»«b»«e»...» is a theory which has
exactly the potencies of all the theories a, b, ¢, ... .** Thus we can define the following
connectives in L which represents the logical relations among the potencies of their
arguments when they represent scientific theories:

INO1) Navis «[«o»]»;

IN02) l"/ocla,zu,,. .00, 1S 2

IN03) Aat, 0,001, , 01, is «[Noy, No,No,Ne,...Nat, Nat, 1
IN04) Bo,0,0t,.... a1, , 01, is Ao, NouNoy,....Noi, Nov,;

INOS) ﬁcal%%. A A «Bzocloczéaza}. : .lia,,_,oc,,»;

INO6) Cn‘a,ozzog. ..o, 0 18 A"NalNazNog. ..No,,0,;

INO7) éa,%%. ..o, 0 18 «Cz‘alazé'u.z%. : .Cz‘an_,oc,,»;

3% The equations are represented in L by representation of opportune mathematical formal theories.

* See Wittgenstein (1921).

* The contradiction «w@»«[«a»]» has the potencies of all the theories, of the opposite theories too. Therefore it is
completely useless because it has contradictory prevision of events and contradictory solutions of technical
problems.
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IN08) Do, 0, 0t,. .0, , 0, is ANo, No,Nat,....Nat, Nov,;

IN09) l:fa‘(xza}. ..o, 0 1S lz)lialogcx,j. ; .amlaﬂa,aqa?. o, O
IN10) ﬁa,%%. .0, 0, is Nou;

IN11) Got, 0,00,

n

IN12) Ho, 0,010,

n-

L0, 1s No;

L0, 1S«

IN13) I"a‘a.la.,. .0, O 1S «OL;

IN14)
fu,azag. ..o, 0, 15 lﬁNu,ogog. . .(x"_la,,,ia‘Na?u@. . .an_,aﬁala?Nag. .0, o A
o0,...N ocﬂcx,/i'alu,z%. ..o, No,;

IN15)
fia,az(xg. ..o, 0, 18 Iﬂala.za,j. . .a"_la,,ﬁNalo.zag. . .amla,A"a,N(an.}. s .a,,_]anﬁa,a,zN
o...0,, O,.. .1‘;(110,203. ; .Na"_,a,/i'al(xzoq. ..o, Nao,;

IN16) Iz’alagag. O, O, 1S €OLOLMEOLY. . . €O, WO,

IN17) ful%%...an_la" 18 faluza,,. ..o No;

IN18) I".cala2a3. .0, 0, 1S N("ba‘aqag. ..o, 0

IN19) A"lala,zog. ..o, 0 1S ﬁ\’a‘azog. .00

IN20) A"ka,%%. ..q, 0, 1S Nﬁca,%%. ..o, O

IN21) )fcx,(x.z(x,_,. RO I"GValN%N%. ..No, ,No.;

IN22) Oo,0,0,....0, 0, is [];

4 Scientific Theory Nets and Nodes in __

Let tnba,a,, : ‘?al...a” be sentences at will which contain only atomic sentences

n n n n

and some of the following connectives: N, f}, /i', ﬁ, ﬁc, é, C"'c, D,E, I"L, G", Ii I", f, .f, K L
Le, M, M, X, O.
Let ®a,...0,...01, be a sentence in L which is obtained from ®a,...qt...at, by the
following algorithm:
step 01: let ‘i’a,...a,. ..o, be (i)(x,. B o A 0 A
step 02: for every which contains either terms, which o, contains, or terms, which
o, does not contain, erase these later ones in the occurrences of in

7 . .
Yo,...0...0, if such occurrences exist;
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step 03. for every @( where a, b, c, ... are not contained in o, replace all its

occurrences in "I"a,...ai...a", if they exist, with a symbol among B(%}),
(=3, ld(+=3), ... which has not been used before;

step 04: Given the four sentences:
¥ Wo...o...0, is true and [4=) is true,

4
n

¥, Yo,...q,...q, is true and @(={==]=) is false,

‘ i
n

¥ Wou...o,...0 is false and [g4=) is true,

i
1

| ¥ Yo,...q,...0, is false and jg4=) is false,
where [g(+=3) occurs in ¥o,...qt...0, if .;:‘P‘,"P;‘I’;‘Iﬂ or ﬁm‘l‘;‘l’: then
‘ replace [d(+=%) in Ya,...cr....a, with [[]], otherwise if JtN‘PTN‘P;N‘P;N‘P: or
‘ l%}zN‘I“"N‘P;N‘P;N‘I’: then replace [a{(+==3) in ¥, ... 0,0, with ],
step 05: let ®q,...0....0, be Wo.,...a...0,
‘ Observe that o, and &Iia,...a,....a” have at less the same atomic terms, i. e.
‘ (i),.al‘..(x,...an isthetransformationof, byitsinteractionwitha.,, ..., o, ..., O, by('I,>i.
Given a sentence Dq,...0....0,, let its node #®# be such an operator that if it
‘ receives the » inputs B, ..., B, ..., B,, then it restores the »n outputs &IIB,...B,....[S,,, ey
®B,..B..5, ... BB,..B..B,.

Given a dyadic node #@# with inputs @, o.,, whose outputs are obviously &I, o, 0,
a’2

n 2 2
®,0,0,: denote this one by o, | #®# | ® «a,q,, call o, left input and a, upper
2

‘ D o0,
input, also, call dn)l o,0, right output  and ‘i’zal% lower output. Given
‘ a, B,
2 2 2 2
| o, | #D# |d o0, and B, | #WP# | D BB, , if the right output of the former is
| 2 2
D o0, ¥ BB,
| the left input of the later, i. e. if &>, o0, is P, then we write
a2 BZ
2 2 2
| a, | #O# #W# | ¥, BB, and, if the lower output of the former is the upper
2 2
¢2(xla2 ‘{,2 BIBZ
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o,

2

2
o | #0# | Do,
-2 2
Bl #‘P# ‘Pl BIBZ

2
¥, B,B,
abbreviations permit us to define a net to manage theory. In fact if v}, ..., v, vi, ...,V

n®

input of the later, i. e. if éza,az is B,, we can write . Both last

..., V!, ..., v" are dyadic nodes in _ and ¢t,...0t,, B,...B,, ¥;-..Y, and §,...8,, are theories in

Bl Bm
1
L I T
T,then : | I . i | isa nmer with left inputs a,...c,, upper inputs B,...B,,
1
Oy |V, - an Yn
5, 5.

left outputs 7,...y, and lower outputs §,...3,.
Observe that this net is not an n-adic node because whereas any node output is
built from all the node inputs, in our net: ¥, is only built by o, B,, ..., B,, but not by o,
., 0,; Y, is only built by a,, B,, ..., B,, but not by o, @, ..., @,; and so on. To make our
net a node we must use Dubois’ incursive algorithm scheme,”’ i. e., we must repeat the
calculus of y,, ..., ¥,» 8, --., 0,, and after replace every time respectively any o, and B,
with their correspondmg calculated Y, and §, until y,, ..., ¥,, §,, ..., 9, do not change

more. Let ;vu“ be the apphcatlon of Dubois’ incursive algorlthm scheme to net o. Thus @

As all the connectives can be built by Sheffer’s connective (i. €. the negation of a
logic product),”® so all the nodes can be built by a single dyadic node: let N@ be the node
whoseoutputsare the

o |#K# --- #K#|vy,
negations of the outputs of @, let _m be the node 2 ________________ e |
o, | #K# - #K# |7,

9, S,

where @, ..., O,

n

are the outputs of@ and B, ..., B,, are the outputs of | tet 0} ol
exactly the dyadic single node which can define any node because it corresponds to
Sheffer’s connective.

Thus, we can build a node algebra in L which is isomorphic to sentence logic:

37 See Dubois and Resconi (1992).
38 See Sheffer (1913).
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INO1) N’B is defined before;

3 ‘a‘}jm:no is @;
B ME

is ou? fo, Moutioy. . e, L,

5 Science Hyperincursive Integration in

Let §,, ..., 8, be the available scientific data which are translated as formalised
sentence columns and let T, ..., T, be the current scientific theories which are also
translated as formalised sentence columns. Their incursive integration in L is obviously

i‘%@ma on the identical nodes E, . E, H, ey B by the previous
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considerations. After this integration we should have the best possible interpretation of
d,, ..., 8, and the best possible formulation of 1, ..., T,

But the continuous production of new scientific data and new scientific ideas
implies a continuous modification of our science integration process from the outside
environment. If we interpret the new data and ideas as parameter modification then it is

clear that to integrate sciences an mcrswe process is not sufﬁcnent but an h ercurswe
process is necessary.”’ Let ‘ ‘
has the following execution:

‘ step O1: calculate completely the incursive process
| step 02: if there is an updating | I of l then calculate completely m

‘ step 03: replace any component of
| step 04: if changes have happened in last loop return to step 01 otherwise end.

B nm in :m @EI lby consecutive

repetition of step 02 for every couple and, after, by consecutive repetition of st
cp Ty coup ep

| We can easily generalise

| 03 for every couple E, B The remaining algorithm is equal.
Finally, if §, ..., §, are the formalised available scientific data, vo,, ..., v3, are
| Tespective updating of §,, ..., 9, also, T,, ..., T, are the formalised current scientific

theories and vT,, ..., VT, are respective updating of 1,, ..., T,, then their best integration
in L is:

¥ To define incursive and hyperincursive processes Dubois write: “The recursion consists of the computation of the
fatare vatue of the variable vector X(t+1) at time t+1 from the values of these variables at present and/or past times, t,
t-1,t-2, ... by a recarsive function: X(t+1) = f(X(t), X(t-1),..., p) where p is a command parameter vector. So, the
past always determiines the future, the present being the separation line between the past and the future. ... Starting
from cellular automata the concept of fractal machines was proposed in which composition rules where propagated
along paths in the machine frame. The computation is based on what 1 called ‘INclusive reCURSION’, i. e.
INCURSION ... An incursive relation is defined by: X(t+1) = f(..., X(t+1), X(1), X(t-1), ..., p) which consists in
the computation of the values of the vector X(t+1) at time t+1 from the values X(t-i) at time t-i, i = 1,2,... as a
| function of a command vector p. This incursive relation is not trivial because future values of the variable vector at
) time steps t+1, t+2,... must be known to compute them at the time step t+1. ... In a similar way to that in which we
define hyper recursion when each recursive step generates multiple solutions, 1 define HYPERINCURSION. ... I
have decided to do this for three reasons. First, in relativity theory space and time are considered as a four-vector
| where time plays a role similar to space. If time t is replaced by space s in the above definition of incursion, we
| obtain X(s+1) = f(..., X(s+1), X(s), X(s-1), ..., p) and nobody is astonished — a laplacean operator looks like this.
| Second, in control theory, the engineers control engineering systems by defining goals in the future to compute their
‘ present state, similarly to our human anticipative behaviour. ... Third, I wanted to try to do a generalisation of the

recursive and sequential Turing machine in looking at space-time cellular automata where the order in which the
| computations are made is taken into account with an inclusive recursion’. See Dubois (1997).
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5 Conclusions

The presented paper is only a first attempt to obtain an automatic exchange of ideas
and data among sciences which often have no contact among them.
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