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Abstract
This paper deals with the control design for a thermal plant with constrained input
signal based on the second order time delayed models. The design follows the
requirement of the fastest possible transient processes without overshoot. It is limited to
the case when the control signal can potentially attack both the upper and lower
saturation limit. For the basic PD controller tuning it is usually enough to use
approximation of the original plant by the I2Td model (double integrator + dead time).
The piecewise constant (or slowly varying) disturbances are compensated by a
windupless integral action added to the controller output. Here, the loop properties can
be improved by using also more sophisticated 2no order plant approximation.
Keywords: thermal plant, constrained pole assignment controller, dead time,
windupless I-action, disturbance reconstruction and compensation.

I Introduction

The PID controllers are known as the basic and most frequently used instruments in
the industrial automation and control. In the form we know them today they are already
produced for more then 60 years. According to their tmctional simplicity one could
expect that all basic problerns relevant for their utilization have already been clarified
many decades ago. However, in fact, contrary is the case. This situation in process
control can be well characterized by the note given in Âstrôm & Hâgglund (1995)
"...derivative action is frequantly switched off for the simple reason that it is difficult to
tune properly''... It is easy to show that using the linear confroller design, the PD
controller qmnot be properly tuned in real (conskained) situations! Up to date,
practically at each conference oriented to the control systems design, new papers
devoted to an "optimal" design or tuning of PID controllers can be found. So, already
this single moment is enough to indicate a till now hidden aspects necessary for a
reliable controller design. The key factors for this ,,inflation" were shown by Huba
(1999), Huba & Bistak (1999) as the distribution of the dynamical terms within the
control loop in combination with the control signal saturation. This leads to the
existence of two different dynamical classes of Pl-controllers and three classes of PID
controllers. By the dynamical class we denote the number of the control signal phases
attacking possibly the given control signal constraints. According to this we speak then
about PD2, PIDe, PIDI and PIDz controllers. It is interesting to note that only the
dynamical class of PIDo and PIo controllers can be rigorously analyzed by the classical
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linear methods. The new ways to generally acceptable windupless Pl1-solutions are
treated in the parallel paper Kamenskf & Huba (2005). The fully new PlD2-controllers
based on extending the PDz controllers by reconstruction and compensation of input
disturbances were firstly treated by Huba and Bistak (1999).

In this paper, several practical steps of the new windupless controllers design are
demonstrated for the dynamical class of PID2 controllers by controlling thermal plant
used in education.

2 Model of the Thermal Plant

Thermal plant consists of the heating light bulb, temperature sensor, filter, fan and
contol electronics.

The diagram of the thermal plant is shown in Fig.1. Table Tab.l contains data of the
input-output characteristic of the plant, the measured dependency is shown in Fig.2.

Figure l: The thermal plant with filtered output (filter time constant Tg: 5s)

Table l: Measured i haracteristic values of thermal plant

The input-output steady state characteristic was approximated by a 2nd degree
polynomial computed by the least square method. The result is described by equation

T : 67.0031u' + 268.2099u + 288.7 043 (1)
Fig. 3 shows an upward step response of the thermal system. The step of the input
voltage was made from -2.3V to -2.6Y. The system output behaviour corresponds at
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first to 2nd order static system and then it turns to behaviour similar to the integral 2nd
order
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Figure 2: The input-output steady state characteristic of the thermal plant (broken line)
and its approximation.

system with the l" order integrator (system output does not tend to reach a steady state).
Neither in case of a downward step the temperature value does stabilize simply. First it
drops down and then it grows up slowly. This does not correspond to the 2no order
integral system and this characteristic of the system we could model as disturbance
affecting always in one direction or to describe it by a time-variant parameter of the
system. Because of such uncertain behavior of the system it seerns reasonable to use
simple 12T6 approximation of the systern.
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Figure 3: Step response of the thermal plant
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The IzTo approximation of the response corresponding to an upward step is shown in
Fig. 4. The acquired model concentrating on a good approximation of the initial phase
ofthe transient response is:

K. ,  -T 's
F ( s J =  r e  u

s

K s = - 0 . 4 ; 4 i  = 0 . 3 s

dead-time as the IzTo model is:

F(s)= 
K 

e- 'u ' i
( { s+ l ) ( t l r s+ l )

K = -42;  T,  = 22 s lTz =11 s;  {  = 9.3"

(2)

rgt 100 ? tc0", ræ.6 tcû8 :11
: m* l*l

Figure.4: 12T6 approximation (dashed cunle) of the initial phase of an upward step
response of the thermal plant, K,: -0.4,4r : 0.3 s

For designing the reconstruction-based compensation of disturbances (I-action) we
will use also the approximation by a static 2no order model denoted as PT2T,1
approximation as it is shown in Fig. 5. The acquired model using the same value of

(3 )
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Figure 5: The PTz Td approximatio..t;îilTard step response of the thermal plant,
K:  -42,T1 :22 s .  T2 :  11s.  Td:0.3s

3 Constrained Control of the 2od Order Svstems

3-l Controller Design

using algorithms designed for the double integrator with transfer function
K

F(s) = '!"

s '  
g )

it is possible to control a plenty of linear and nonlinear 2nd order systems. The control
was derived following the idea of regular distance decrease of reference point

frorn the next lower invariant set, see (Huba, 1999; Huba & Bistrâk, 1999; Huba àt al.
1999; Huba,2003).

The algoritlmr has grantedly 2 advantages: respecting of the control signal constraints
and the possibility to choose the poles with respect to the identified dead time. From a
geometric point of view, the chossn poles are quotients of a distance decrease in
approaching the next lower invariant sets (the Reference Braking Curve - RBC and the
origin of coordinate system) by the reference point. We denote the controller operating
according to the proposed algorithm as Constrained Pole Assignment PDz Controller
(CPAO.

The control algorithm design consists offour steps:
1. Transformation of the reference state to the origin (invariant set of the dimension

0). For a given reference signal w and the real output yr it can be done using equations
vQ)= y,Q)-,,ft\;
i ,0= i , r \ - r r \ ;  (5)
v0= y,Q\-r ;Q\
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The system description is then
d x
f f= tox+b0u,x= ly , l
Its time solution corresponding to the initial state.xe and to u:const is
*(r)= A(r)*o +bQb;

A /  l  A r
A( r )=s  u  rb ( r )= l e  ob ' d r

o

2. For given control signal constraints a e't|1,llz) and a chosen closed loop pole a1

determination of the line segment of the Reference Braking Curve traced out by the
eigenvector with vertices

; I L I
x o r  = [ a , I  - l . o [  ' v r u t ; i = t , Z  ( 8 )

and determination of the continuation of the RBC corresponding to the limit control
values U, with the end at xor described by equation

r(,)i -rC ")xd + o(-,)u, (e)

3. Definition of distance p of the representative point x from RBC, e.g. by choosing a
direction for its measurement.

4. Deriving the control algorithms decreasing the distance p according to
tlp-:. = aaP
{lt

with a2 being the 2"d closed loop pole.
For the double integrator and the distance measured along the y-axis one gets control

algorithm, which is far from to be complicated (as usually considered about the

(6)

(7)

( i0 )

constrained control design) :

1  t  I  o ro . ,  c r t  + r l11  (  r ru ,  Kru ,  )
rr=r 'x: r '  - !  '  '  ---:--------2 l ;  i 'e l--------=-. 

'  !

LK'  K '  - l  I  o r  o r  )
( 1 1 )

K"ur )

\ )

(r2)

The controller operates in 2 modes: linear and nonlinear one. where the linear mode
represents the control law oflinear PD controller (1 1).

In case of the 2"d order system the control action consists of two dominant intervals -

acceleration phase and braking phase that correspond to moving ofthe reference point
to the RBC and along the RBC towards the origin.
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3.2 Windupless I- action

Now we complete the controller design by a windupless I action. The possible
control structures are based on reconstruction and compensation ofan input disturbance
via inverse model of the plant (Fig.6). For the case of the measured output derivative the
I-action is introduced in the same way as in controlling the l" order systems (Kamenskf
and Huba, 2005). The only difference is that the reconstructed disturbance influences
also the effective limit values of the CPA PDr controller.

Figure 6: Constraint windupless control of the double integrator with measured output
and its derivative (above) and just with measured output (below). The static feedforward

control is to use only with the inverse model (16).

Implementation problems usually occur in the case of the 2nd order dominant systems
with the non-measured output derivative. The transfer function of the filter on the
controller output

F"(s)=--f-
(7rs + l ; '

does not cause any problems. However, these are related to the 2nd order derivation in
the reconstruction block that is described by one of the following transfer frmctions

(13 )

(r4), (15)

F*. (s) =
(Z ,s+ l ) (1 rs+ l )

K (T rs  + l ) ' 1

If we use (14) or (15)
omitted, otherwise it has

(16)

in the reconstruction block, the feed-forward gain needs to be
the value rlr reciprocal to the steady state gain. Here we
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prefer use of the known filter time constants even in the case when the PD2 controller is
based on the double integrator approximations!

The signals added to the controller output
action), however, changes the effective control

(Fig.7).

(feed-forward gain and signal from I
limits U.,;j =t,z avallable to controller

Figure 7: Transformation of the controller limit values u7;;i =t'2 
in the case of a bias

u o .

The I-action designed in such a way integrates in right direction (against disturbance)
also in the case when the disturbance occurs during transient process, independently of
sign ofthe control error.

3.3 Step Response Based Controller Tuning

The couple of parameters required for the PD2 controller tuning (K, and poles a1,2)
can be obtained from the I2Ta approximation of the system step response. It is important
and sufficient to get good approximation of the leading part of the measured step
response. By using the integral based approximation, we can consider this approach as
an extension of the well-known Ziegler-Nichols method to higher-order
approximations.

The value of the appropriate closed loop poles is directly connected with the value of
the identified dead time. For the I2Ta system with the I-action according to Fig.6 above.
the fastest possible transient processes are achieved ifthe PD controller
R(s)= ro + rts = et&z - (a, + ar)s

corresponds to a quadruple real dominant pole that can be set to
s = -0.4158

bv

(r7)

(  1 8 )

( le )

equivalents poles (see

; Tf =5'457,

The same controller setting can be achieved by the so-called
Huba,2003)
ar . ,  = ( -0 .16r  jo .n ) tTd

234

(20)



substituted into (ll). If we use the algorithm derived for real poles, the complex pole
pair can be approximated by real part or the module of (20)

0.16 0.26
A", = --;- , Ol Aem = --

'd Trt

In such a case the dominant closed loop pole, however, moves to

s" =(-o.t2t  jo.$7)/T, l

or
s,,, = (-0.16+ jo.o48)l r,t

(2r)

(22)

(23)

It means that transients are reasonably slower than in the case of complex equivalent
poles. In order to simpliff the controller tuning, we can suppose the equivalent poles

and the filter time constant as simple formulas
a " = - 1 l ( c T o \ ;  T r = c T n Q4)

Fig.8 shows for some values of c all basic closed loop signals (controller output u, plant

output y and the reconstructed - filæred disturbance signal v)'
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Figure 8: Transients of the loop with measured output derivative corresponding to the

control lertuning a"=- l t (cTa);  \=crd;stepoftheinputdisturbancefrom0to0.5at
t  = 4 ' ,  U r  = - 1  U z  = l ;  K ,  = l ;  f o  = Q . Q )
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3.4 Experimental Results

. The algorithm verification was performed on the thermal plant supplemented by the
l" order filter described by the transfer function

Because we knolv the filter time constant, we used the reconstruction block (15),
where Ir was set to 5s, the sampling period w:N set to 0,001s (the loop can be
considered as a quasi-continuous one) and values K, and Îa were taken from 12T6
approximation of initial part of the step response. Experimentally the dynamics of
transient processes was speeded up by decreasing the dead time value to 0,231s. This
can be met also in controlling other stable plants. The presented experimental results
correspond to the conkoller settings based on the parameters
K, : -0,4; Ta :0,231 s (26)

Fig.9-12 show the signal of the reconstructed distwbance, the signat of the CPA PDz
controller, the resultant control signal and the plant output converging fs thç shânging
reference value. The results show that the disturbance reconstruction represents the most
noise sensitive part of the closed loop and that the use of the 2"d order mod.els can be
usefuljust with high quality signal measurement.

Figure 9: Filtered disturbance reconstruction.Ks : -0.4, Ta:0.231, a"1,2 : -1, T1=
1 . 0 0 1 8
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Figure 10: Control signal from the CPA PD2 controller.
K5 :  -0.4, Ta:0.231, ar.z :  -1,?}:  1.0018

(2s)

o 2

. 0 5

. 0 4

236



â
É  2 .

i

Figurell: Resulting control signal (CPA Ëz + Aisturbance compensation). Ks : -0.4,

Ta :  0.231, ut.z :  -1,  4:  1.0018

Figure 12: The reference andtbe plant output signal. K : -0.4, Ta:0.231,rlt.z: -1,

ry= l '0018

4 Conclusion

In this paper we presented effective approach to the control design of the thermal
plant n'ith constrained input based on the 2nd order models. The proposed structure
respects the control sigrral constraints and moreover, it enables to achieve monotonous
transient processes with short settling time. The designetl windupless l-action responds
fast and is easy to implernent. The structure is robust and can be applied to a broad
range of systems with the dominant 2no order dynamics (and not only,on systems with
clearly linear behavior). Results obtained from experiments on real plant are better than
those obtained by traditional PID controllers supplemented with standard anti-wind-up
structures. The computation of control is simple as contrasted to the most of alternative
constrained control design approaches (e.9. the constrained predictive control).

Of course, by modifying the linear PlD-controllers with different anti-windup
structures one can get many solutions and it is far beyond the possibilities of a single
paper to test all of them. But, we believe that the optimal solutions to constrained
systems cannot be simply achieved by modifying the linear solutions on a heuristic
basis (or by the trial-error procedures). So, we prefer solutions motivated by clear
physical interpretation. Not those motivated by the mathematical properties (linearity),
or simply by the traditional habits of practice.
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