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Abstract. The non- invasive diagnostic protocols of magnetic resonance tomography 
and spectroscopy have been made effective for the clinical routine by means of the 
chirality reversing concepts of spin echo and gradient echo. Because Cooper pairs 
in a spin singlet are formed from time-reversed quantum states, the coadjoint orbit 
picture of the unitary dual N of the real Heisenberg step 2 nilpotent Lie group N gives 
rise to the symmetry group 8U(2, C) ~ 8pin(R3 ) . Due to the Hopf fibrat ion of the 
unit sphere 83 '----+ C EB C over the Bloch sphere 82 '----+ R EB C with fiber 8 1 '----+ C , the 
compact Lie group 8U(2,C) acts via U(l ,C) gauge transformations on the complex line 
bundle associated with N. The metaplectic symmetries of the symplectic spinor bundle 
configuration, conjugated by indistinguishable pairs of contragredient fiat double-layers 
occurring in the foliation of N, permit a natural approach to the quantum information 
transfer within pairs of Bose-Einstein condensates. 

Keywords. Quantum state engineering of complex line bundles; U(l ,C) gauge symme­
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1. Introduction 

When the pioneer of quantum state engineering, Heike Kamerling Onnes, received the 
Nobel award in 1913 for his liquefaction of He and the discovery of the phenomenon 
of superconductivity, he concluded his acceptance speech by expressing the hope that 
advances in low temperature quantum physics would contribute towards lifting the veil 
which thermal motion at normal temperatures spreads over the inner world of atoms and 
electrons. Speaking long before the advent of industrial quantum state engineering and 
the non- invasive diagnostic technique of clinical magnetic resonance tomography and 
spectroscopy, Onnes could not have guessed how prophetic his words would prove. Ever 
since their original discovery nearly 100 years ago, superfluidity and superconductivity 
have led to an incredible number of unexpected and surprising physical phenomena. For 
the spectrum of novelt ies revealed by the quest for low and even ultralow temperatures, 
by far the most dramatic have been the physical phenomena that occur in a degenerate 
system of Bose-Einstein particles or bosons for short , as Bose-Einstein condensation, 
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or in a system of degenerate Fermi- Dirac particles or fermions for short , as Cooper pair­
ing. Even today Bose-Einstein condensation and Cooper pairing continue to offer new 
and arcane physical phenomena. Superconductivity, superfluidity, and Bose-Einstein 
condensation remain among the most fascinating phenomena in nature. Their strange 
and often surprising properties are direct consequences of quantum field theory and 
offer quantum state engineering applications. 

Clinical magnetic resonance imaging scanners are the result of three converging 
quantum state engineering methodologies carried to a remarkable level of technologi­
cal sophistication. The large magnetic field density in which the patient is placed is 
generated by coil configurations cooled to liquid He temperature and exhibiting super­
conductivity, a phenomenon of fundamentally quantum nature. Only such assemblies 
of coils can produce without heating effect the large magnetic field densities required 
for high contrast- resolution magnetic resonance tomography. The choreography of the 
spin ensembles observed by clinical magnetic resonance tomography is also ruled by 
the laws of quantum physics ([5]). Finally, the signais picked up in the detection coils 
are transformed into high contrast- resolution images by powerful computers which also 
exploit quantum effects within their semiconductor circuits. In this way, quantum state 
engineering can be directly witnessed for the benefit of the patients ([9], [10]) . 

The physical phenomenon known as Bose-Einstein condensation was predicted by 
Albert Einstein in 1924 on the basis of a statistical argument of Satyendra Nath Bose 
to derive the black- body photon spectrum of cavity radiation: In a system of indistin­
guishable particles obeying Bose statistics and whose total number is conserved, there 
should be a well- defined, critical temperature below which a finite fraction of all the 
particles condense into the same one-particle state. Einstein's original prediction was 
for a noninteracting gas, a system felt by some of his contemporaries to be perhaps 
pathological, but shortly after the observation of the phenomenon of superfluidity in 
liquid 4He below the temperatue of 2.17 K, Fritz London and Laszlo Tisza hypothesized 
in 1938 that despite the strong interatomic interactions Bose-Einstein condensation was 
occurring in this system and was responsible for the appearance of the superfluid prop­
erties. Their work was the first to bring out the idea of Bose-Einstein condensation 
displaying quantum behaviour on a macroscopic size scale, the primary reason for much 
of its current attraction. Their visionary suggestions have stood the test of time and is 
the basis of the modern understanding of the properties of the superfluid phase. 

Forming a Bose-Einstein condensate is simple in principle: One has to make an 
atomic gas extremely cold until the atomic wave packets start to overlap. Over the last 
two decades a brilliant program of research in the field of quantum state engineering 
was established by the success in using optical lasers and evaporative techniques to cool 
dilute clouds of monatomic gases into the nano K temperature range ([6]). Engineering 
cooling techniques need an open system which allows entropy to be removed from the 
system, in laser- cooling in the form of scattered photons which carry away more energy 
than has been absorbed by the atoms, hence resulting in net cooling, in evaporative 
cooling in the form of discarded atoms while the remainder rethermalize at steadily 
lower temperatures, resulting again in a cooling advance. Laser- cooling is applied to 
precool the atoms so that the atoms are cold enough to be confined in a magnetic trap. 
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After magnetically trapping the atoms, forced evaporative cooling is applied as the 
second stage of ultracooling. The sophisticated experimental techniques of combining 
engineering cooling schemes and trapping methods by magnetic fields culminated in 
the attainment of Bose-Einstein condensation in such systems in the summer of 1995. 
More recently the experimental progress has permitted investigation not only of Cooper 
pairing but of the crossover between this phenomenon and Bose-Einstein condensation 
proper. 

Collisions between ultracold atoms have remarkable properties. They induce re­
producible and controllable phase shifts on atomic quantum states. These collisional 
phase shifts permit to construct quantum gates and to engineer the non- local concept 
of quantum entanglement in condensates trapped in a potential well. In this respect, 
cold atom collisions can be compared to the Rydberg atom collisions mediated by a cav­
ity. In both cases, a process which is commonly considered as generating randomness 
is made phase coherent and controllable by imposing boundary constraints. However, 
cold collisions in optical lattices L have an advantage over cavity mediated collisions. 
They can be immediately generalized to entangle in a single operation a large ensemble 
of qubits and to build entanglement factories for ensemble of cold atoms which allow 
the study of the Mott phase transition in a lattice L. 

Returning to photons, the successful observation of ultraslow light propagating at 
group velocities more than seven orders of magnitude below its vacuum speed, and 
the subsequent stopping and finally storing of light pulses in atomic media has demon­
strated a quantum physical protocol to accomplish the challenge of studying methods 
to transfer quantum information between atoms and photons by means of the modern 
ultralow temperature technologies of condensed- matter quantum physics. The tech­
nique relies on a symplectic spinor bundle configuration which uses a coupling laser 
light field to coherently control the propagation of a pulse of probe laser light. The 
probe or signal pulse coherently imprints its amplitude and phase on the quantum co­
herence between two stable internai states of the atoms. Switching the coupling field 
off stops the probe pulse and ramps its intensity to zero, freezing the probe's coherent 
information of intensity and phase into the atomic media, where it can be stored for a 
controllable time period. Switching the coupling field back on at a later time writes the 
information back onto a quantum holographically reproduced probe pulse, which then 
propagates out of the atomic cloud and can be detected. The reproduced output light 
pulses were indistinguishable in width and amplitude from non- stored ultraslow light 
pulses, indicating that the switching process preserves the quantum optical information 
in the atomic medium during the storage time with a high degree of fidelity. 

In the present paper, the metaplectic symmetry of the symplectic spinor bundle 
configuration is studied by means of harmonie analysis on the double 2 N of the three­
dimensional real Heisenberg step 2 nilpotent Lie group N ( [5]) via a series of stepwise 
extension techniques. These group extensions have their own mathematically interest­
ing feature because they culminate finally in the coadjoint orbit covering theorem. 
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2. Symplectic Vector Spaces 

Let W denote a finite-dimensional vector space over R, endowed with a symplec­
tic form < ·, · >. Thus < ·, · > is antisymmetric and nondegenerate. The non­
degeneracy is equivalent to the condition that the mapping W ---+ W* from the 
symplectic vector space lV to its dual vector space W* over R, given by the as­
signment w ~ (w' ~< w, w' > ), be a real isomorphism. Let the outer tensor 
product Wc ~ W ® C be the complexification of W . It forms the vector space 
W EB i. W over C and represents the ambient qubit space in the sense of quantum 
computing. Indeed, projectivization leads to P(Wc) ~ P 1(C) so that bipolar stereo­
graphic projection provides the Hopf fibration 8 1 '---+ 8 3 ....!'.....+ 8 2 which forms a realiza­
tion of the qubit concept of quantum information science. Notice that the Lie group 
80(3,R) of orientation preserving rotations of the Euclidean vector space R 3 is dif­
feomorphic to the real projective space P 3(R) and therefore compact and connected. 
Its two- fold covering group is the compact, connected, and simply connected Lie group 
8 3 ~ 8L(l, H) ~ 8U(2, C) ~ 8pin(R3 ) which consists of the complex matrices 

{ ( :, -;') 1 (w ,w') E C x C, lwl2 + lw'l2 = 1}, 
and has as its center a subgroup isomorphic to Z/2Z. The three-dimensional real Lie 
algebra 

Lie(8U(2,C)) = { (~ =~) iz E R,w E C} 

of the quantum mechanical rotation group 8U(2,C) is spanned over R by the traceless 
Pauli spin matrices 

{ ( ~i ~i) ' ( ~ 1 ~) ' ( ~ ~J} 
and is therefore isomorphic to the real Lie algebra of pure quaternions 'SH. In this 
context 'SH ~ R 3 denotes the real hyperplane in H ~ C EB C with normal 1 EH. The 
Pauli spin matrices are in correspondence to the canonical basis of the real vector space 
R 3 ~ Lie(80(3, R)). The real Lie algebra R 3 under the vector product x as its Lie­
Jacobi bracket cornes equipped with the Hopf fibered spin group 8U(2, C) ~ 8pin(R3 ) 

as an additional, only at the first glance rather unexpected gauge symmetry group of the 
three-dimensional real Heisenberg step 2 nilpotent Lie group N. The gauge symmetry 
is generated by the natural duality between symplectic groups and orthogonal groups. 

The symplectic form < ., · > on W extends by C- bilinearity to a symplectic form, 
still denoted < ., · >, on Wc. Let 8p(W) and 8p(Wc) be the symplectic groups 
of W and Wc, respectively. The groups of isometries 8p(W) and 8p(Wc) of the 
symplectic forms < ., · > on W and Wc, respectively, consist of R-linear and C-linear 
endomorphisms of W and Wc, respectively. An element g E 8p(W) may be extended 
to a C- linear endomorphism, still denoted g E 8p(Wc), of Wc such that 

8p(W) = {g E GL(W)I < g(w),g(w') >=< w,w' >, (w,w') E W x W}, 
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and 

Sp(Wc) = {g E GL(Wc)I < g(w) , g(w') >=< w, w' >, (w , w') E Wc x Wc} . 

The extension process yields an injection of symplectic groups Sp(W) <--+ Sp(Wc). 
Complex conjugation on C ~ R EB R associated with the orthogonal reflection matrix 

(~ ~l) E 0(2, R) 

with respect to the real axis induces a complex antilinear involutive endomorphism of 
Wc by the assignment w ® Ç "-> w ® (, where w E W , and Ç E C. 

A complex structure on W is formed by an operator I E End(W) such that 12 = -1 . 
The complex structure is said to be compatible with < ., · > if I E Sp(W) . It can have 
eigenvalues equal only to { ±i} , and these eigenvalues must occur with equal multiplicity, 
which will be~ dimR W for each. Let Wt Ç Wc be the ( +i)- eigenspace of the complex 

structure I, and let w1- Ç W c be the corresponding ( -i)-eigenspace. Then W[ = Wt 
where the overline indicates complex conjugation, and the decomposition 

of conjugate vector subspaces holds. The R - linear mapping pj = ~ (1-iJ) projects Wc 

onto Wt with kernel w1-, and the complementary R - linear operator Pi = pj = ~ (1 + 
il) projects Wc onto W[ with kernel Wt. Notice that the projector pj is a R - linear iso­
morphism from W onto Wt, and the projector Pi is the corresponding R-linear isomor­
phism from W onto w1-. Specifically, pj(Iw) = ipj(w),pi(Iw) = -ipi(w) for w E W. 
It follows that the assignment I "-> Wt is a bijection from the set of complex structures 
on W onto the set of totally complex vector subspaces of W c of dimension ~ dimR W. 
The assignment (w,w') "-> i < pj(w) ,pi(w') >= ~(< Iw ,w' > +i < w,w' >) estab­
lishes that if W is endowed with the complex structure I performing the multiplica­
tion by the imaginary unit i by an application of the mapping J, then a symmetric 
Hermitian- bilinear form arises when the real symplectic plane W is considered as a 
vector space over C. The action of Sp(W) on Wc preserves the symmetric Hermitian­
bilinear form. Its positive definiteness is equivalent to the positive definiteness of its real 
part, which is the symmetric bilinear form < J., · > associated with W. There exists a 
symplectic frame in W such that < I ·, · > is a positive definite symmetric bilinear form. 

3. Nilpotent Harmonie Analysis 

For the real symplectic plane W = R EB R * let 

(0 -1) Io= l O E SL(2, R) 

act as a multiplication- with- i transformation with 16 = -1 on W, the first coordinate 
of w E W being assigned to the transversal isotropie line R, and the second coordinate 
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being assigned to the transversal isotropie dual line R ~ R*. Notice that the symplectic 
matrix I 0 , well-known from the hypoelliptic Cauchy- Riemann differential equations of 
holomorphie fonctions , is independent of the basis used to define it. The differential 
equations characterizing the momentum mapping for the action of a Lie group on a 
symplectic manifold going into the real dual vector space of the associated Lie algebra 
can be considered as a generalization of the Cauchy- Riemann equations. The fonda­
mental idea, however, to endow the planetary orbit plane with its natural symplectic 
stucture is due to Johannes Keppler (1571 to 1630) who invented the symplectic sam­
pling method as a high precision numerical technique to predict the spatio-temporal 
positions of the planets from the astronomical data available ([4]). The idea to equip 
each coadjoint orbit with its natural symplectic structure can be traced back to Sophus 
Lie's monumental theory of transformation groups (1890). Lie also had many of the 
ideas of momentum mappings going into the dual of the Lie algebra so that he should 
be considered as the legitimate successor of Keppler ([8]). For many years the original 
work of Lie appears to have been forgotten, although it leads to the insight that the 
symplectic leaves of the Lie-Poisson foliation on the dual Lie(N)* of the Heisenberg 
Lie algebra Lie(N) coïncide with the coadjoint orbits, and finally to the coadjoint orbit 
covering theorem. 

Since I 0 is the infinitesimal generator of the maximal compact subgroup 80(2, R) ~ 
R/Z of SL(2,R) , in a unitary linear representation of SL(2,R) the symplectic matrix 
I0 must act diagonally with eigenvalues in the set iZ; in other words, iI0 must act di­
agonally with eigenvalues in Z . The standard symplectic form < ·, · >on the real plane 
W is defined by the recipe < (x, >.) , (x' , N) >= X(x) - >.(x') for (x, >.) = w = (x, y) , 
where x ER and>.= y ER* such that 

< w, w' >= det ( ;, i') 
holds. The standard symplectic form on the tangent space of the real dual plane W* is 
defined by the d- closed exterior differential two-form w = dx /\ dy = ~ dw /\ dw in the 
GraBmann power /\ 2 W*. Notice that w is actually at the heart of the coadjoint orbit 
method in representation theory. The affine connection one-form on the cotangent space 
of the real dual plane W* associated with the standard Kahler form w on C ~ R+ x 
80(2, R) reads e = ~ (x.dy-y.dx) = rrr2dt, so that the identity w =dB= 2rrr. dr/\dt 
holds. The standard symplectic structure I0 defines on W a geometry of signed areas in 
the sense of the Kepplerian second law of planetary motion which leads to the concept 
of self-orthogonality on W: < w, w > = 0, w E W. Its group of isometries is given by 

1 Sp(W) ~ SL(2, R) 1 

so that the complex structure I 0 is compatible with the symplectic form < ·, · >. It 
follows that the pair (W~, Wï;;) forms a complete polarization in the qubit space W c . 

Define N, the simply connected three-dimensional Heisenberg step 2 nilpotent Lie 
group attached to R , by Heis(W) = WEB R as a set that admits the group law 

( w, z) ( w', z') = ( w + w', z + z' + ~ < w, w' >) . 
223 
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Thus N = Heis(W) forms a central extension of the transversal symplectic plane (W, < 
., · >) by the longitudinal quantization axis R '-+ N ___, W. Therefore N forms the 
universal covering of the central extension 

where the one-dimensional compact torus group T ~ R/Z ~ 8 1 ~ Spin(R2
) repre­

sents the central phase circle action of phase-coherent quantum information. It follows 
also that the roto- translation group of planar Euclidean rigid motions under its sub­
Riemannian metric and its natural contact geometry is locally modeled by the Heisen­
berg Lie group N. 

It is traditional to realize the line bundle N as the Lie group of all unipotent real 
matrices 

{ G ~ D 1 (x , y) E R œ R,z ER} 

Obviously its background manifold is R 3 . The subgroup 

is isomorphic to the real line R and forms the center of the Heisenberg nilpotent Lie 
group N. The subgroups 

{(~1 X~ Z) } ~ 1 (x, z) E R EB R , 

and { 0 ~ Y) 1 (y, z) E RffiR} 
are isomorphic to the real plane R 2 and form normal subgroups of the Heisenberg 
nilpotent Lie group N. Less obvious is the isomorphy of N in its unipotent real matrix 
model to the first order jet space 

Kit_(R) = { (J'(t), t, f(t)) i f E Cit(R) , t ER} 

under its sub- Riemannian structure which derives from the contact one-form df 
f'(t) dt of local coordinates dz - x dy in R 3 . It follows the contact identity 

( dz - x dy) !\ d ( dz - x dy) = - dx !\ dy !\ dz . 

The real Lie algebra Lie(N) = W EB R obtains by making the real line R central, and 
for any pair ( w, w') E W x W one defines the Lie-Jacobi bracket [ w, w'] = < w, w' > z 
with a fixed basal element located on the longitudinal quantization axis z E R. It is 
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easy to see that Lie(N) is isomorphic to the Heisenberg Lie algebra over R of nilpotent 
matrices 

{(~ ~ ~)fwEC,zER} 
where w = x + iy, w = x - iy . While complex notation is used, Lie(N) is still a real 
Lie algebra with three real dimensions under the matrix commutator as its Lie-Jacobi 
bracket. Its one-dimensional center, the longitudinal quantization axis of Lie(N), is 
defined by w = 0, so that 

{ (
0 0 iz) } 
~ ~ ~ lz E R ~ Lie(T) , 

and Lie(N)/center is isomorphic to the qubit space Wc. In terms of the prequantization 
procedure, the central extension N defines by means of the unitary character of W which 
represents the phase factor Xo of the symplectic Fourier transform :Fw : S(W) ..._ 
S(W) of order 2, a smooth complex line bundle over the symplectic frames at the 
points of W, still denoted N , with closed two- form w of curvature and connection one­
forme. 

The Rabi frequency v on the central quantization axis of the real dual Lie(N)* 
can become comparable to the laser light frequency allowing the population to flip 
coherently from ground state to the excited quantum state and backwards during a 
laser pulse of only a few cycles of light. For the concept of carrier- wave Rabi flopping, 
let x : t "0 e2"'"it E T denote a non- trivial character of R, and particularly xo : 
t "0 e2"'it E T the unitary character of normalized Rabi frequency label v = 1. Then 
xo(w, w') = Xo(~ < w, w' >) for all pairs (w, w') E W x W defines a two- cocycle on 

W. In terms of the central character X E R the phase-coherent action of the generic 
element 

( 

1 0 
0 1 
0 0 

(z' ER) 

belonging to the central quantization axis x = y = 0 on the trivialization N x C of the 
complex vector bundle Nover W with fiber isomorphic with C reads as follows: 

(1 x z) (1 x z+z') 
( 0 1 y ,v) "-t ( 0 1 y ,x(z')v) 

0 0 1 0 0 1 

Therefore the phase-coherent action takes place on the complex line C through the 
element 

(1 X 0) 
0 1 y EW, 
0 0 1 

for all numbers v E C . 
In broad terms, representation theory of the Heisenberg step 2 nilpotent Lie group 
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N and the double Heisenberg group 2 N is the study of the symmetries of quantum 
fields. The unitary dual N is determined by the fondamental 

Strong Stone- von Neumann Theorem. There exists one and up to equivalence only one 
irreducible unitary linear representation Px of N with central character x E Îl which is 
square integrable modulo the central quantization axis. 

The essentially unique representation Px of N admits a usefol alternate realiza­
tion on a complex vector space of holomorphie fonctions, the Fock representation of 
quantum state engineering. Recall that during the early stages of the development 
of quantum mechanics a central mathematical question was finding a representation 
for the canonical commutation relations. In terms of the twisted differentiation aw 
at the point w E W, and the Dirac measure Eo E S'(R) located at the origin of the 
real symplectic plane W, these commutation relations admit the infinitesimal form 
[ 8w , 8w') = 2ni < W , W

1 > €0 , which corresponds to the representational form 

j [Px0 (w), Pxo(w')] = 2ni < w, w' > ids'(R) j 

for all pairs (w, w') E W x W and the identity operator ids'(R) acting on the complex 
vector space of tempered distributions S'(R) . The problem was solved by the Stone-von 
Neumann theorem. Although the irreducible unitary linear representation Pxo of the 
Heisenberg step 2 nilpotent Lie group N is unique up to equivalence, it admits different 
concrete realizations such as the Schrodinger model, the Bargmann-Segal model, or the 
Fock model of quantum state engineering mentioned above. The square integrability 
modulo the central quantization axis allows the application of Schur's lemma. 

The closed exterior differential two- form w = d(;I E /\ 2 W* is the natural symplectic 
form associated with the coadjoint orbit picture of N in the real dual vector space 
Lie(N)* of the Heisenberg Lie algebra Lie(N). Therefore it explains the fact that the 
complex line bundle N over W represents the mathematical structure responsible for the 
laser-cooling techniques which actually depend on the mechanical properties of light 
momenta modelled by the momentum mapping of the Hamiltonian N-homogeneous 
manifold W*. 

4. Metaplectic Harmonie Analysis 

The R - linear action g(w, z) = (g(w), z) of elements g E Sp(W) on (w, z) E Lie(N) 
embeds the symplectic group Sp(W) ~ SL(2, R) into the automorphism group of 
Lie(N) and hence of N. In both cases, the action of Sp(W) on the one--dimensional 
center is trivial. The trivial action on the longitudinal quantization axis implements 
Emmy Noether's theorem on the conservation law for the angular momentum ([7)). The 
metaplectic group Mp(W) forms a two- fold cover of Sp(W) . Thus there is the central 
short exact sequence 

{1}-+ Z/2Z-+ Mp(W)-+ Sp(W)-+ {1}. 

The Lie group Mp(W) exists and is unique up to isomorphy because a maximal compact 
subgroup of Sp(2,R) is isomorphic to the circle group U(l , C) ~ Spin(R2 ) ~ S0(2, R) , 
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so that the fondamental group of SL(2,R) is isomorphic to the additive group of integers 
Z ~ 'Î'. Thus Mp(W) gives rise to the short exact sequence 

{1} ~ 0(2, R) ~ Mp(W) ~ Sp(W) ~ {1}, 

which induces the aforementioned short exact sequence 

{1} ~ Z/2Z ~ Mp(W) ~ Sp(W) ~ {1}. 

The computational approach from inside demonstrates that Mp(W) is the closure of 
the normalized spin-oscillator semigroup. Its physical meaning is at the origin of the 
Jaynes- Cummings model of quantum optical resonance: A fermionic system consisting 
of a two- level atom interacts with a bosonic system consisting of a quantized single-­
mode field. This fermion- boson coupling leads to quantum entanglement of the atom 
and the mode field. The linear interaction model also predicts that, at precisely half of 
the revival time, the fermionic and bosonic system become disentangled. 

Let g ~ g denote the covering projector of Mp(W) onto Sp(W). A consequence 
of the Stone-von Neumann Theorem is the 

Shale- Weil Theo rem. There exists a uni tary linear representation Œ x of the metaplectic 
group Mp(W) , unique up to equivalence, operating on the space of the irreducible 
unitary linear representation Px of N such that the covariance identity 

holds for elements g E Mp(W) and h E N in the complex Hilbert space L2 (R) to be 
found among the sections of Hilb(S'(R)) in the line bundle Nover W. 

In particular, the intertwining opera tors Œ xo (Ï0 ) = Fa , Œ xo (Ï0 ) = Fa are nothing 
else than the Fourier transform and Fourier cotransform filters, respectively, acting on 
the complex Schwartz space S(R) of smooth vectors of the representations Pxo and Œx0 , 

and its complex dual vector space of tempered distributions S'(R) . In the Schwartz 
isomorphism theorem, the Fourier cotransform Fa operates as a wave packet transform 
on the vector space S' (R) . 

Notice that the metaplectic representation ax may be regarded as a projective uni­
tary representation of Sp(W), and also as a unitary representation of the semi-direct 
product Mp(W) x N, or the semi- direct sum Lie(SL(2, R)) E& Lie(N) on S'(R). Notice 
also that ax is faithfol, but not irreducible, and that il0 acts diagonally on the vector 
subspace S(R) of L2(R) with eigenvalues in the set ~z. The reducibility of axo follows 
from the Lie(SL(2, R)) lowest weight module decomposition 

Js(R) = M~ EB M~ 1 

where M1 is spanned by the even quantum harmonie oscillator wave fonctions, and M~ 
is spanned by the odd quantum harmonie oscillator wave fonctions in the Schwartz spac~ 
S(R) of complex- valued smooth fonctions, rapidly decaying at infinity. Therefore Œxo 
is the direct sum of two irreducible unitary linear representations. It implies, together 
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with the Lie(8L(2, R)) highest weight module decomposition associated with the action 
of the contragredient metaplectic representation 0-xo = a:x0 on the complex dual highest 
weight module decomposition 

1 S'(R) = M_~ EB M_~ 1 

the Kepplerian third law of planetary motion. This derivation of the Kepplerian third 
law depends on the embedding of the planetary motion into the unitary dual of the 
first order jet space K:Îl_(R) ~ N, and is independent of Pauli's quantum mechanical 
adaption of the familiar Runge-Lenz vector construction. It is in disagreement with the 
convention not to give Johannes Keppler a major position among the founding masters 
of symmetry and mechanics. It is in agreement with the unexpected feature that there 
is as yet no empirical evidence that quantum physics bas limited applicability: A tech­
nique of generating elliptical atomic trajectories in planes perpendicular to the cavity 
axis is based on the atom- cavity microscope. Atoms are captured in a magneto-optical 
trap and dropped through a high-finesse optical cavity ([2]). 

The metaplectic analogue of the internai 80(4,R) Lie group symmetry of the 
Coulomb gauge is the decomposition into mutual orthogonal, irreducible 0(4, R) x 
Mp(2, R)- modules of the transcendental theory of spherical harmonies 

where H:r, denotes the real vector space of spherical harmonie polynomials of degree m 2: 
0 on R 4 , damped by the radial Gaussian distribution. The metaplectic representation 
is unique up to unitary equivalence, and is genuine in the sense that it does not factor 
through the symplectic group 8p(2,R). It is known under various names, for instance 
Shale-Weil representation, or spin-oscillator representation. It is a fascinating topic to 
realize that it is important in quantum state engineering and that its discovery underlies 
the theory of B-series, especially as developed by Carl Ludwig Siegel, and gives rise to 
the natural duality between symplectic groups and orthogonal groups as expressed by 
the dual reductive pair (8p(2, R), 0(2, R)) in 8p(4,R). In particular, the symplectic 
group 8p(2,R) and the orthogonal group consisting of the two components of proper 
and improper orthogonal transformations 

0(2, R) ~ 80(2, R) u ( ~ ~l) 80(2, R) 

are each other's centralizers inside Sp(4,R). Note that the compact manifold 0(2,R) 
of all isotropie vector subspaces of the symplectic plane W gives rise to a principal 
covering circle bundle of symplectic spinors over the qubit space Wc. Due to the fact 
that laser light pulses are modelled by tempered distributions which form the complex 
dual vector space S'(R) of the Schwartz space of smooth vectors S(R) of the represen­
tations Pxo and ax0 , the principal covering circle bundle of symplectic spinors over Wc 
coherently controls the resonant laser field interactions. 

The Hilbert subspace L2 (R) of the complex vector space of tempered distributions 
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S'(R) admits as its Schwartz kernel the canonical injection K of S(R) into S'(R). In 
terms of the adjoint operator :FR. = t :FR = :FR of the Fourier transform filter :FR, the 
image space :FR(L2(R)) admits in S'(R) the transversal Schwartz kernel of resonance 
:FR o Ko FR.= :FR o :FR_= K which is the complex Hilbert space L2 (R) E Hilb(S'(R)) 
itself ([11], [12]). 

5. Linear Symmetries of Indistinguishability 

The quantum state engineering implementation of the fondamental linear symmetry 
between matter and light wave transfer begins with the preparation of two isolated 
sodium Bose-Einstein coiidensates in a double-well potential formed by combining a 
harmonie magnetic trap and a repulsive optical dipol barrier. The entire potential is 
turned off 1 ms before the quantum information transfer begins, whereupon the probe 
and coupling optical laser beams are introduced. The quantum information transfer 
starts with the injection of a probe laser pulse into the first Bose-Einstein condensate 
while the atomic cloud is illuminated by the counterpropagating coupling optical laser 
beam of the same Rabi frequency label v . The laser light pulse propagates into the con­
densate under ultraslow light conditions. After the light pulse is spatially compressed 
within the atomic cloud, the coupling beam is switched off, leaving an imprint of the 
probe pulse's phase and amplitude in the form of atomic population amplitude. Each 
atom's component has a momentum corresponding to two photon recoils, namely ab­
sorption from the probe beam and stimulated emission of radiation into the coupling 
beam, and is ejected towards the second Bose-Einstein condensate. When this mes­
senger atom pulse arrives, the coupling beam is switched back on, and the probe light 
pulse is quantum holographically reproduced in the second Bose-Einstein condensate. 
Quantum holographically reproduced laser light pulses are imaged and then detected 
with a photomultiplier tube. 

When laser light pulse storage and quantum holographie retrieval occur in two dis­
tinct atomic clouds separated before condensation, each atom's wave fonction is initially 
localized to either but not both of the two isolated Bose-Einstein condensates. There­
fore, the dark state superposition imprinted during storage exists only for atoms from 
the first Bose-Einstein condensate. Nevertheless, a phase-coherent light pulse can still 
be reproduced from the second Bose-Einstein condensate through bosonic matter wave 
stimulation. In the symplectic spinor bundle configuration of a principal covering circle 
bundle, the coupling laser light field and the matter field for atoms form a symmetric 
pair: Bosonic stimulation into the macroscopically occupied photon field of the coupling 
optical laser drives the phase-coherent dynamics during the initial light pulse injection, 
whereas stimulation into the macroscopically occupied matter field of the second Bose­
Einstein condensate secures phase-coherence during quantum holographie retrieval of 
the probe light pulse. 

Because the symplectic Fourier transform :Fw : S(W) --+ S(W) has order 2, a 
doubling procedure, analogous to the double symmetry Lie group SO( 4,R) of the 
interaction in the Coulomb gauge, is needed to perform the order 4 of the Fourier 
transform filter :FR and its adjoint filter :FR. = :FR· The double symplectic em­
bedding procedure provides the Heisenberg group 2 N = Heis(Wc) corresponding to 
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SU(2, C) x SU(2, C) '-----' S0(4, R). 
Define injections j 1 and j 2 of N into 2 N by the formulae j 1 ( w, z) = (( w , 0) , z) , j 2 ( w, z) = 

( (0, -w), - z) for w E W and z E R. Thus j 1 x j 2 : N ______, 2 N is a surjective homomor­
phism with the diagonal of the centers as kernel. Let 2 Pxo be the representation of the 
double Heisenberg group 2 N corresponding to the central character Xo · Then there is 
an isomorphism 

2Pxo 0 (]1 X ]2) ~ Pxo ® Pxo 

onto the outer tensor product of the irreducible unitary linear representation Pxo of N 
and its contragredient version Pxo = Pxo . Because Xo is a non- trivial central charac­
ter of N , the irreducible unitary linear representations Pxo and Pxo are inequivalent. 
The preceding outer tensor product identity establishes that , even as the amplitude 
and phase of the wave fonctions representing the Bose-Einstein condensate temporally 
evolve, the relative phase of the two components continues to be well defined. 

Let Sp(Wc) be the symplectic group of the qubit space Wc. There are two contra­
gredient embeddings of Sp(W) into Sp(Wc): j 1 (g)( w1, w2) = (g( w1), w2), ]2(g )( w1, w2) = 
(w1,g(w2)) for g E Sp(W) and pairs (w1,w2) E Wc = W1! EB Wio. These mappings lift 
uniquely to maps between the corresponding metaplectic groups. It follows from the 
outer tensor product identity above the identity 

2axo o U1 X J2f = O'xo ® a-x_o 

where 0-xo = a-x_0 denotes the contragredient metaplectic representation of Mp(W). 
Switching the circularly polarized field of the coupling optical laser back on at a later 
time writes the information back onto a quantum holographically reproduced probe 
pulse which then propagates out of the atomic cloud. Due to the isotropie quantum 
harmonie oscillator mode} of tightly confined Bose-Einstein condensates, the metaplec­
tic symmetry of the symplectic spinor bundle configuration is represented by the outer 
tensor product 

j 2 axo o (j1 X J2f(ilo) = (axo ® a-x_0 )(iÎo) 1 

Due to the Schwartz kernel theorem, this linear symmetry of the Heisenberg picture 
2Pxo o (j1 x j 2) associates with L2(R) among the sections of Hilb(S'(R)) the posi­
tive Schwartz kernel or transversal reproducing kernel K : S(R) '-----' S'(R) of laser 
light pulses in L2 (R). It coherently contrais the resonant fields of laser light pulses 
interacting with ultracold, dense atomic clouds and turns the symplectic spinor bundle 
configuration into a particularly rich photonic system of quantum optical information 
retrieval. As coherently controlling the retrieval time to within tens of microseconds 
contrais the propagation depth of the messenger atom pulse to micrometer precision, 
the light pulse can be reproduced at metaplectic frame positions where the phase pat­
terns of the messenger and second Bose-Einstein condensate match. The norm identity 
llKllL2(W) = 1 establishes the experimental result that the revived light pulses have the 
same shape as the incoming light pulse and that there are no detectable lasses from the 
storage and quantum holographie retrieval processes ([1], [8]) . At a fondamental level, 
the observation of retrievals reveals optical laser field entanglement. Information about 
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1 the atomic state is phase-coherently imprinted onto the laser light field . Due to in­

distinguishability combined with Schur's lemma for square integrable representations, 
the induced retrieval results from the quantum erasure of the photonic imprint onto 
the matter field , and from the unitary destruction of the laser light field entanglement. 
The collapse phenomenon and the associated revival are manifestations of the quantum 
physical complementary ([2]). 

It follows from the involutive action O"x """ O"x on metaplectic representations of 
Mp(W) that the quantum holographically reproduced output pulses were indistinguish­
able in width and amplitude from non- stored ultraslow light pulses, indicating that the 
switching process preserves the quantum optical information in the atomic medium 
during the storage time with a high degree of fidelity. Thus the phase-coherent storage 
of photon states in matter reveals to be a reversible linear photonic process. 

6. Conclusions and Perspectives 

The advent of optical lasers stemmed directly from fondamental research, in that it was 
a discovery which owed nothing to any expectation of practical usage. In fact , it was 
the outcome of pure curiosity research. Albert Einstein 's theory of stimulated emission 
of radiation which was concerned with the thermodynamic study of the interaction of 
an ensemble of atoms with electromagnetic radiation was developed at the dawn of the 
quantum era. It slept peacefolly in the archives of science until the physicist Charles 
Townes demonstrated in 1956 that a microwave resonator could be suitable to realize 
an ammonia maser operating at 23 GHz. Translating the resonator concept to the 
window of optical frequencies , Thomas H. Maiman succeeded in 1960 in constructing 
by means of a Fabry- Perot resonator a coherent quantum optical source, the ruby laser 
producing quantum optical signals well suited to the transfer of information. 

Combining monochromaticity and high intensity has proved crucial to cool and trap 
atoms to extremely low temperatures. In this way, the laser permits to tame radiation 
by exploiting the properties of atomic stimulated emission. The recent developments 
of atom optics to display the wavelike properties of matter on a macroscopic size scale 
of quantum state engineering, and the methodology of quantum information processing 
have radically changed quantum physics and represents a source of new mathemati­
cal models and questions. In this mathematical models, the Heisenberg nilpotent Lie 
group N and the Hopf fibered symmetry group 8U(2, C) as well as the metaplectic 
group Mp(2, R) of automorphisms of N play a dominant role. 

An important aspect of quantum state engineering is the elliptic non- Euclidean ge­
ometry of the projectivization of the qubit space P(Wc). It leads to the concepts of 
Clifford translations of the first and second kind. These are bijections of P(Wc) form­
ing a group isomorphic to 80(3,R) . The spin group SU(2, C) ~ Spin(R3 ) ~ 8 3 is a 
non- trivial covering group of the rotation group S0(3,R) and gives rise to the compact 
Heisenberg nilmanifold which forms a principal circle bundle over the two-dimensional 
compact torus T 2 ~ S1 x 8 1 with the niltheta fonctions as special cases of its auto­
morphic forms. The associated three-dimensional lattice L is given by the Z- module 
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L ~ Z EB Z EB Z . The geometry of the Heisenberg nilmanifold underlies the magnetic trap 
as well the quantum Hall effect in a double-layer two- dimensional electron system in a 
strong perpendicular magnetic field . It is important to emphasize that the small value 
of the counterflow Hall resistance does not result from a cancellation of opposite sign 
quantum Hall effects in two layers but from spontaneous interlayer phase-coherence. 
This state exhibits the quantum Hall effect when equal electrical currents flow in par­
allel through the two layers. In contrast, if the currents in the two layers are equal, 
but oppositely directed, both the longitudinal and Hall resistances of each layer vanish 
in the low- temperature limit. The experimental counterflow setup ensures only that 
the total current flowing in the two layers are globally equal and oppositely directed. 
It does not eliminate the possibility of local regions where the two currents are not 
precisely equal. The interlayer collective phase may be considered in several equivalent 
ways, including as a Bose-Einstein condensate of interlayer excitons, or a pseudospin 
ferromagnet. 

A Bose-Einstein condensate superimposed on the optical lattice L permits to drive 
the system into a Mott insulating phase. The double-layer configurations occurring in 
the foliated unitary dual JÎ1 contain a unique homogeneous real plane associated with the 
one-dimensional unitary linear representations and hence corresponding to the charac­
ters of N. Although often neglected, this singular plane governs the quantum collapse 
and revival phenomena of the matter wave field of a Bose-Einstein condensate as well 
as the transition from a superfluid to a Mott insulator in a gas of ultracold atoms. 
The associated line bundle plays a major role in the series of classical experiments of 
stellar interferometry performed by the asrophysicist and astronomer Robert Hanbury 
Brown in collaboration with the mathematician Richard Q. Twiss, as well in their 
modern atomic optics versions which establish the bunching process of photonics as a 
resonance phenomenon. The bunching phenomenon of the atomic analog of the Han­
bury Brown-Twiss effect below the Bose-Einstein condensation transition temperature 
can be visualized by a position sensitive microchannel plate detector placed below the 
center of the magnetic trap. Position sensitvity is achieved by means of a delay line 
anode placed at the rear side of the microchannel plate detector. 

On the other hand, photons in a laser were not bunched. The double-layer configura­
tion, augmented with the annihilating singular plane Lie( center )0 of quantum collapses, 
visualizes geometrically the wave field- particle duality inside Lie(N)* . Either bunching 
or quantum coherence occurs at low temperatures above and below the Bose-Einstein 
condensation threshold, respectively, but not both phenomena simultaneously. 
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