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Abstract 
Relativistic quantum mechanics can now be constructed minimally from a single 
creation operator with explicit energy, momentum and mass terms. The phase factor, 
amplitude, spinor structure and vacuum states are all automatic consequences of the 
initial definition. As separately-defined entities they are completely redundant. The 
operator can even be reduced to two terms ( energy and momentum) if differentiation is 
defined in a discrete sense. This version of quantum mechanics is also a full quantum 
field theory, with an automatic incorporation of vacuum and second quantization. 
Renormalization is, in principle, eliminated by the intrinsic (vacuum) supersymmetry of 
the fermion and boson structures, while the fundamental interactions of particle physics 
are consequences of the mathematical structure alone, and do not require any additional 
'physical' assumptions. 
Keywords: relativistic quantum mechanics, creation operator, quantum field theory, 
particle physics, universal rewrite system. 

1 Introduction 

Quantum mechanics and quantum field theory have been expressed using many 
different mathematical formalisms. Formalisms, however, are only as good as the 
physics they are able to encompass or generate - they have no intrinsic validity based 
on mathematical characteristics. Even the use of particular algebras does not determine 
the formalism which produces the most useful physical information. This is especially 
true of formalisms based on Clifford or geometrical algebra (for example, Hestenes, 
1966, 1967, 1975). Thus, while it is mathematically convenient to define wavefunctions 
as elements of minimal left- or right-ideals (so giving them idempotent characteristics) 
as an explanation for the need of a spinor structure, this turns out to be a relatively 
inconvenient description for physical purposes. However, a much more powerful 
nilpotent formalism can be developed which can be easily related to the idempotent 
description, but which creates a version of quantum mechanics with an immediately 
holistic structure not available using any other formalism. Idempotents still have a 
significant role in this representation (as discrete vacuum operators), but nilpotents, 
which seemingly give a less general picture in mathematical terms, are unique in 
providing the full range of physical information required, and in generating the most 
significant physical results while simultaneously reducing the formai apparatus to a 
minimum. 
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2 The Nilpotent Version of Quantum Mechanics 

The nilpotent Dirac equation (Rowlands 2004, 2005, 2006, 2007) can be derived 
relatively simply by first taking the classical relativistic energy-momentum-mass 
equation in the form: 

2 2 2 0 E -p - m = , (1) 

then factorizing using noncommuting algebraic operators (multivariate 4-vector 
quaternions or complex double quaternions): 

(± ikE ± ip + jm) (± ikE ± ip + jm), (2) 

before, finally applying a canonical quantization to the first bracket, with E and p in the 
first bracket becoming canonical quantum operators, say i à / àt and -iV, with n = 1, 
rather than numerical variables. The first bracket can then be seen as an operator, 
operating on a phase term of some kind, say e - i(Er - p.r) for a free particle plane wave, and 
the second bracket the amplitude which results from this operation. 

(± ikE ± ip + jm) (± ikE ± ip + jm) 
= (+ kà I àt + ùV + jm)(± ikE ± ip + jm) e- i(Et - p.r) =O. (3) 

This now becomes equivalent to the Dirac equation for a free fermion, and the 
amplitude has the property, displayed in equation (2), of being a nilpotent, or square 
root of zero. 

The key transition, however, is to assume that, even when the fermion is not a free 
state and the operators E and p are not equivalent simply to à/ àt and V, but, say, to 
covariant derivatives or to operators involving field terms, that the amplitude remains 
nilpotent and that this is the defining characteristic of the fermion state. As soon as this 
step is taken, we depart from the conventional emphasis on the Dirac equation as the 
basis of relativistic quantum mechanics and privilege instead the operator represented 
by (± ikE ± ip + jm), irrespective of the composition of the terms E and p. Of course, if 
the fermion is nota free state, then the phase term will no longer be e- i(Et- p.rJ, but some 
expression which, when operated by (± ikE ± ip + jm), produces an amplitude which is 
a square root of zero. In this case, bath the phase factor and the amplitude will be 
uniquely determined once the operator is defined, and hence become redundant as 
independent information. The same also applies to the quantum mechanical equation. 
Although an equation can be constructed from the operator, it does not exist 
independently of it, and the derivation of phase factor and amplitude directly from the 
operator is actually more true than their derivation from any quantum mechanical 
equation because it does not depend on the ( often incorrect) assumption that the 
amplitude is a constant. 
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However, even the operator contains redundant information. The expression which is 
abbreviated as(± ikE ± ip + jm) is really a row vector containing four terms, expressing 
the relative sign variations in E and p: 

(ikE + ip + jm) (ikE - ip + jm) (- ikE + ip + jm) (- ikE - ip + jm), (4) 

lt is a 4-component spinor, which incorporates the variations representing fermion / 
antifermion ( ± E) and spin up / spin down ( ± p ). However, in the nilpotent structure, the 
sign variation is identical for ail fermion states, and so only the first or lead term 
represents information. In other words, the nilpotent operator entirely removes the need 
for using such mysterious objects as wavefunctions and spinors. They are strictly 
redundant, along with phase factors, amplitudes, and quantum mechanical equations. Of 
course, it will often be convenient to use such terms, but, in every case, they will be 
constructible uniquely by a completely standard procedure as soon as the first term of 
the operator is defined. 

3 Consequences of Quantum Mechanics 

The nilpotent contains four creation operators, which, as represented in ( 4), are 
respectively for fermion spin up, fermion spin down, antifermion spin down, 
antifermion spin up. The first or ('lead ') term decides the nature of the real particle 
state; the other three are the vacuum ' reflections', representing the states that the 
particle could transform into. They are produced by respective P, T and C 
transformations, or by respective pre- and post-multiplication of the lead term by the 
quaternion operators i, i; k, k; -j,j. Pre-multiplication of the lead term by i, k,j produces 
idempotent vacuum states, which can be described respectively as 'strong', 'weak' and 
'electric' . The combination of the lead term with the real state equivalents of the three 
'vacuum' terms leads to the production of boson-type states, which are, respectively, the 
fermion-fermion pairing observed in Cooper pairs and other applications of the nonzero 
Berry phase; spin 1 boson; and spin 0 boson (astate that cannot be massless in nilpotent 
theory because (ikE + ip) (- ikE - ip) = 0). The four states in the nilpotent 
representation can, of course, be rotated to make any of the three vacuum states into the 
lead term or real state. 

W e may ask: what is the physical meaning of defining the fermion as an operator? 
What is it operating on? The indications are that it is vacuum, meaning the rest of the 
universe. For a 'free' fermion, the phase factor (exp (- i(Et- p.r)) provides the complete 
range of space and time translations and rotations, but if the E and p terms represent 
covariant derivatives or incorporate field terms, then the phase term is determined by 
whatever expression is needed to make the amplitude nilpotent. Annihilation, of course, 
requires the opposite signs for E and p to creation, and the four terms in (2) could be 
equally taken as four creation operators, four annihilation operators, or as two creation 
operators and two annihilation operators, together producing a totality zero. 

The p term in the nilpotent is a multivariate vector and already contains the concept 
of spin, as a result of the full product of multivariate vectors containing both scalar and 
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vector product terms (Hestenes, 1966, 1967, 1975; Gough, 1990). So the nilpotent can 
also be represented in a more conventional notation as (ikE + icr.p + jm) or (ikE - il.p + 
jm), or even (ikE - ilp + jm), since (cr.p)(cr.p) =pp= p2. However, because there are 
four spin states coexisting in the fermionic nilpotent, cr can be treated as a dynamical 
variable. The conventional derivation ofhalf-integral spin follows immediately from 

[ Ô" , J{] = [-1,-j (Ïp1 + jp2 + kp3) + ikm] = 2ij 1 X p 

[L, Ji] =- ki [r, 1.p] X p = -j [r, 1.p] X p = - ij 1 X p, 

[L + â / 2, Ji] = 0, (5) 

which makes L + â / 2 a constant of the motion. The spin term here derives specifically 
from using a multivariate vector p, but, of course, if we take p or V as a conventional 
vector, as for example, when we are using polar coordinates, we will necessarily need to 
include an explicit spin term. 

Because of the way they are defined, nilpotent opera tors are specified with respect to 
the entire quantum field, they are already second quantized, and a formal second 
quantization process becomes unnecessary. In effect, the nilpotency condition can be 
taken as defining the interaction between a localized fermionic state and the unlocalized 
vacuum or 'rest of the universe', with which it is uniquely self-dual, and the phase 
becomes the mechanism through which this is accomplished. Defining a fermion, 
therefore, implies simultaneous definition of vacuum as 'the rest of the universe' with 
which it interacts. (In terms of the universal rewrite system previously defined, the 
fermion and the rest of the universe total zero as (ikE + ip + jm) and -(JkE + ip + jm).) 
The nilpotent structure then implies energy-momentum conservation without requiring 
the system to be closed. The nilpotent structure is thus naturally thermodynamic, and 
provides a mathematical route to defining nonequilibrium thermodynamics. The 
nilpotent condition (2), thus, appears to have at least.five independent meanings: 

classical 
operator x operator 
operator x wavefunction 
wavefunction x wavefunction 
fermion x vacuum 

special relativity 
Klein-Gordon equation 
Dirac equation 
Pauli exclusion 
thermodynamics 

Nilpotent operators are also intrinsically supersymmetric. The conversion from 
fermion to boson is by multiplication by an antifermionic operator; the conversion of 
boson to fermion is by multiplication by a fermionic operator. If we repeatedly post
multiply a fermion operator by any of the discrete idempotent vacuum operators, we 
will create an altemate series of antifermion and fermion vacuum states, or, 
equivalently, an altemate series of boson and fermion states without changing the 
character of the real state. W e can interpret this immediately as the series of boson and 
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fermion loops, of the same energy and momentum, required in an exact supersymmetry. 
Fermions and bosons become their own supersymmetric partners through the creation of 
these vacuum states. The mutual cancellation of the boson and fermion loops then 
eliminates the need for renormalization and removes the hierarchy problem altogether. 

4 Idempotents and Nilpotents 

Conventional relativistic quantum mechanics has been assumed to be idempotent 
(AA = A), rather than nilpotent (AA = 0), but the vacuum operators in the nilpotent 
theory show that idempotents are also important there. However, the nilpotent theory is 
a much more significant development than one based on idempotents, because it is the 
nilpotent nature of the theory that allows us to use constraints, based on zeroing, to 
remove redundant information. But there is no fundamental conflict, for we can see that 
the nilpotent equation actually incorporates an idempotent equation. The equations are 
precisely the same - the difference is purely one of interpretation. There isn't even a 
transformation required, just a redistribution of algebraic operators between differential 
operator and amplitude. So the alternative interpretations are: 

IDEMPOTENT 
[(iko I ot + zV + jm)j] [i (ikE + ip + jm) e- i(Et - p.r )] = O. (6) 

operator wavefunction 

NILPOTENT 
[(iko I 8t + zV + jm)j j] [(ikE + ip + jm) e - i(Et - p.r )] = O. (7) 

operator wavefunction 

5 A Discrete Version of Nilpotent Quantum Mechanics 

The nilpotent operator has three terms, compartmentalised using the quaternions k, i, 
j, in a similar way to real and imaginary parts. If we use discrete differentiation, we can 
even reduce it to two. In discrete differentiation, as defined by Kauffman (2004), to 
preserve the Leibniz rule, we take 

dF = [F ,H]= [F,E] 
dt 

and 8F =[F P] 
ax . '· 

1 

(9) 

The mass term disappears in the operator (though it has to be introduced m the 
amplitude). Suppose we define a nilpotent amplitude 

If= ikE + iiP1 + ijP2 + ikP3 + jm (10) 

and an operator 
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fl .k a .. a .. a .k a 
,JJ =1 - - 11--11--1 - , 

àt àX1 àX 2 àX3 

(11) 

with 

a; = [lf/ ,H]= [lf/,E] and (12) 

The + and - signs for the differentials are, of course, arbitrary, but are chose to match 
up with those of the nilpotent Dirac equation (3). In addition, we can use à If/ / àt rather 
than dlf/ / dt, here, because we are making no explicit use of a velocity variable. This 
means that 

ik à If/ = - k[lf/, E] = k lf/E + kE If/ = k lf/ÏkikE - kE If/ 
àt 

= i lf/ÏkE - kE If/ - 2Œ2 

and 

ii ~; = - iii['I' ' P;] = -iii lf/P; + iiiP;lf/ = iii lf/ÏiiiP; + iiif>;lj/ 
1 

= i lf/ÏiP; + iiif>;lj/ - 2iiiP;iiP; = i lf/ÏiP; + iiif>;lf/ + 2if';2 
• 

Now, if m is a scalar, we may use the identity 

(13) 

(14) 

0 = jlf/lrl- jmlj/ =-j1fjjm- jmlj/ = -lf/.im- jm ljf-2jmjm = -lf/.im- jmlj/-2m2
• (15) 

Combining equations (13)-(15), term by term, we obtain 

Blf/= Îl/A.JkE+ iiP1 + ijP2 + l'kP3 + jm) 
+ i(ikE + iiP1 + ijP2 + l'kP3 + jm)lf/- 2 i(È- P 1

2 - P 2
2 

- P/ - m2
) . (16) 

When is lj/nilpotent, then 

(17) 

or, in fuller form: 

(18) 
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where 

If/=± ikE ± iiP1 ±ijP2±1'kP3 + jm. (19) 

This is the discrete form of the nilpotent Dirac equation. Two significant facts 
emerge immediately from this derivation, and the elimination of the mass term from the 
operator. The first is that the derivation did not need the introduction of the canonical 
in (or i when li = 1). Equation (17) is true whether the operators are 8 / ot and -V or 
i li 8 ! ot and -i li V. It is both classical and quantum, and the transition from classical to 
quantum is absolutely smooth. The second remarkable fact is that the annihilation 
operator for any particular fermion / antifermion is the exact negative of the creation 
operator. 

6 Zitterbewegung 

Making explicit use of the constants e and 1i, and of the symbol a for -ijl, we can 
write the Harniltonian for a nilpotent fermion in the form Jf= -ijecr.p - iiime2 

= - ijclp -
iiime2 

= aep - iiime2
• It is convenient now to regard a as a dynamical variable, and to 

define a velocity operator, which, for a free particle, becomes: 

. dr 1 [ '111 •• 1 v = r = dt = in r, JLJ = -ZJ e = ea. (20) 

W e can also write an equation of motion for the operator -ijl = a, as a function of t: 

(21) 

Since Jfis a constant, this yields the solution: 

a(t) = v(t) = i:(t) = e.711p + [ a(O) - e.711p] exp (2iJlt I h). (22) 
e e 

This, in turn, can be solved, to give the equation of motion for a free fermion: 

2 
~ lie 1 

r(t) = r(O) + J{ t + 2iJ{ [a(O)- e.71 p](exp (2iJlt / h)- 1). (23) 

The first term of this solution represents the initial position vector and the second 
term represents the displacement at time t. The third term, however, has no classical 
analogue, and represents a violent oscillatory motion or high-frequency vibration 
(zitterbewegung) of the particle at frequency ~ me 2 

/ 1i , and amplitude h I me, which is 
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the Compton wavelength for the particle. Since the dynamical variable here is cr, it is 
apparent that this motion is a representation of the switching between the four spin 
states in the fermionic nilpotent. 

7 Antisymmetric Wavefunctions 

Pauli exclusion is, of course, automatically defined for a nilpotent wavefunction 
because: 

If/=(± ikE ± ip + jm)(± ikE ± ip + jm) = O. (24) 

However, the standard definition of nilpotent wavefunctions as antisymmetric, with the 
antisymmetric nature due to the spin, also still applies since 

lf/l lf/2 - lf/2 lf/l = 

(±ikE1 ±ip1 + jm1)(±ikE2 ±ip2 + jm2 )-(±ikE2 ±ip2 + jm2 X±ikE1 ±ip1 + jmi) 

= 4P2P1 - 4P1P2 = -8ipl X P2 = 8ip2 X P1 

before normalization, while 

lf/I lf/2 + lf/2 lf/I = 

(±ikE1 ±ip1 + jm1)(±ikE2 ±ip2 + jm2 )+(±ikE2 ±ip2 + jm2 X±ikE1 ±ip1 + jm1) 

=4E1E2 +4E2E1 -4p1p2 -4p 2p1 -4m1m2 -4m2m1 =0. 

(25) 

(26) 

Equation (25) is a remarkable result. lt implies that, instantaneously, any nilpotent 
wavefunction must have a p vector in real space (a spin 'phase') at a different 
orientation to any other. The wavefunctions of all nilpotent fermions instantaneously 
correlate because their p vector directions must all intersect, and the intersections 
actually create the meaning of Euclidean space, with an intrinsic spherical symmetry 
generated by the fermions themselves. At the same time, equation (24) could also be 
interpreted as suggesting that each nilpotent also has a unique direction in a 
quatemionic phase space, in which E, p and m values are arranged along orthogonal 
axes. We may suppose here that the mass shell or real particle condition requires the 
coïncidence between the directions in these two spaces. In addition, the p vector, as 
implied in (25), carries ail the information available to a fermionic state, its direction 
also determining its E and p values uniquely. Three consequences of this are 
immediately apparent. To avoid direction duplication, one at least of the three nilpotent 
terms (the mass term, in fact) must have only one algebraic sign; also, a hypothetical 
massless fermion and antiferrnion pair would require opposite helicities (say, ikE + ip 
and - ikE + ip) to avoid being on the diagonal; and, finally , such a massless fermion 
could not exist in practice because, since the magnitudes of E and p would always be 
equal in such cases, then the resultant angles would always be the same. 
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8 Nilpotent Structure and the Fondamental Interactions 

The three fundamental interactions of particle physics - electric, strong and weak -
and their characteristic force laws and defining symmetries are direct consequences of 
nilpotent structure alone, and do not require any additional 'physical' input. First, we 
assume that spherical symmetry requires that we express the momentum term of the 
operator in polar coordinates, using the Dirac prescription, with an explicit spin term: 

V == (~ + _!_) ± i j + Yi . 
ar r r 

(27) 

The nilpotent Dirac operator now becomes: 

( 
.kE . ·( à 1 . j +Yi ) . J 
l +11 or +-;-±z-r- + 1m . (28) 

Now, whatever phase factor we apply this to, we will find that we will not get a 
nilpotent solution unless the 1 / r term with coefficient i is matched by a similar 1 / r 
term with coefficient k. So, simply requiring spherical symmetry for fermion state, 
requires a term of the form A / r to be added to E. A Coulomb term is generated 
automatically within any fermion state used to define spherically symmetric Euclidean 
space. All the fundamental interactions of particle physics have a U( 1) Coulomb term, 
the minimum requirement being when no other consideration is being invoked. In this, 
purely scalar, case, we describe the interaction as electric. Ail the component terms of 
the nilpotent contribute to the scalar aspect of the spherical symmetry, because al! have 
scalar values, but the jm term alone has no other function. Application of a Coulomb 
term, of course, leads to the creation of a phase factor for the nilpotent which generates, 
within six lines of calculation, the energy levels for the so-called 'hydrogen atom' 
solution of the conventional Dirac equation (Rowlands, 2004, 2005, 2006, 2007). 

Secondly, we invoke the vector nature ofp to write down a lead term of the form 

(ikE ± i ipx + j m) (ikE ± i jpy + j m) (ikE ± i kpz + j m) (29) 

which, according to the nilpotent condition, has six allowed phase, i.e. when p 
successively and exclusively takes on the values ± ipx, ± jPy, and kpz. The gauge
invariant transformations between these phases has exactly the SU(3) group structure 
required for the standard 'coloured' or strongly interacting baryon wavefunction made 
of R, Gand B 'quarks' (Ryder, 1996), 

IJI"-- (RGB - REG + BRG - GRE + GBR - BGR) (30) 

with transitions via massless generators, but with components that must be massive via 
the Higgs mechanism because of the simultaneous existence of positive and negative 
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helicities in (29). Also, since the transitions are absolutely nonlocal, any spatial 
separation of the components of (29) has no effect on the rate of momentum exchange. 
This is equivalent to a constant force or a potential energy which is Jinear with distance. 
As has been demonstrated previously (Rowlands, 2005, 2006, 2007), the combination of 
linear and inverse linear (Coulomb) potentials added to the energy term in the nilpotent 
produces an automatic phase factor which requires the component (quark) confinement 
of the strong interaction, with asymptotic freedom and infrared slavery. 

The third aspect of the nilpotent structure which generates a physical effect is the 
spinor structure, and the accompanying zitterbewgung. Though this is only a vacuum 
process, it specifically requires the creation ofbosonic structures of the form (ikE + ip + 
jm) (- ikE + ip + jm) and (ikE + ip + jm) (- ikE - ip + jm) via a harmonie oscillator 
mechanism, which is the characteristic defining process of the weak interaction, in real 
as well as vacuum states. In effect, the zitterbewgung ensures that a fermion is always a 
weak dipole in relation to its vacuum states, and the single-handedness of the weak 
interaction can be regarded as the result of a weak dipole moment connected with 
fermionic V2-integral spin. Significantly, al! weak interactions between real particles 
require sources that are in some senses dipoles (fermion-antifermion) and so can be 
expected to require a dipolar potential, in addition to the Coulomb term. Any such 
potential combination applied to the nilpotent operator produces a series of energy 
levels characteristic of the harmonie oscillator. In this case, the interaction and its SU(2) 
symmetry appears to be generated by the duality of the pseudoscalar term ± ikE in 
generating antifermion, as well as fermion states. 

The analysis here has shown that it is the structure of the nilpotent alone that 
produces the three fundamental interactions characteristic of particle physics, and that 
no extemal physical input is required. Simply by defining an operator which is a 
nilpotent 4-component spinor with vector properties, we necessarily imply that it is 
subject to electric, weak and strong interactions. This structure is a product of the three 
types of quantity (pseudoscalar, multivariate vector and scalar) which it contains, and, 
ultimately, these are reflections of the need for a discrete (point) source to preserve 
spherical symmetry and hence to conserve angular momentum. We saw, in section 6, 
that the angular momentum term (p) incorpora tes, in some sense, all the information 
relevant to the three terms in the fermionic nilpotent; and we can, in fact, identify these 
and their associated symmetries as being connected with the three separately conserved 
aspects of angular momentum: magnitude (scalar, U(l), spherical symmetry does not 
depend on the length of the radius vector), direction (vector, SU(3), spherical symmetry 
does not depend on the choice of axes), and handedness (pseudoscalar, SU(2), spherical 
symmetry does not depend on whether the rotation is left- or right-handed). 

Of course, this analysis does not take account of the fourth fundamental interaction, 
gravity, except insofar as it can be characterized by a U(l) symmetry like the 
electromagnetic interaction. In fact, the nilpotent structure suggests that gravity has a 
unique role in providing the basis for instantaneous nonlocal correlation and the 
continuous vacuum required by quantum mechanics, and that, unlike the other three 
forces, it is an intrinsically nonlocal interaction, whose continuous nature reflects that of 
the Higgs field and the zero-point energy. ln principle (Rowlands, 2004, 2007), the 
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three quatemionic operators split the vacuum into three discrete (idempotent) 
components, k( ± ikE ± ip + jm ), i( ± ikE ± ip + jm) and j( ± ikE ± ip + jm ), which we can 
specify as 'weak', 'strong' and 'electric', and which produce virtual spin 1, spin 0 and 
fermion-fermion 'bosonic' vacuum partners for the fermion. The gravitational 
equivalent would be 1(± ikE ± ip + jm), which specifies the complete or continuous 
vacuum, or the entire universe as seen by the fermion, and the combination of fermion 
and gravitational vacuum is a totality zero state, not simply a fermion, as it is with the 
three discrete components. Ultimately, what we measure in 'gravitational' experiments 
is a localised inertial reaction produced by discrete components of matter. Unlike 
gravity itself, this can be quantized, and it is in describing this inertial reaction that we 
find meaning in the mathematical structure of the general relativistic field equations, 
and are able to predict the acceleration effect now usually referred to as 'dark energy' 
(Rowlands, 1994, 2007). 

9 Nilpotent Structure and the U niversal Rewrite System 

The nilpotent version of quantum mechanics is not only the most streamlined and 
minimally constructed version available, it is also the most powerful, because it is 
already a full quantum field theory, with the nilpotent operator potentially incorporating 
all the physical information available to the fundamental physical state. Perhaps, even 
more significantly, it can be derived in a fundamental way from a universal rewrite 
system, which seems to have much more general applications (Rowlands and Diaz, 
2002; Diaz and Rowlands, 2005, 2006; Rowlands, 2007), while the algebraic structure 
can be shown to be derived from the algebras of the four fundamental parameters, 
space, time, mass and charge, and their mathematically symmetric relationships. This 
derivation automatically includes quantization and special relativity as part of the 
abstract formai structure - it doesn't need to assume them - while the classical 
transition can be effected smoothly by using the discrete version of differentiation, 
based on commutators, rather than differentials. 

10 Conclusion 

Using the nilpotent approach, the formai apparatus required for quantum mechanics 
and quantum field theory has been reduced to a single creation operator with explicit 
energy, momentum and mass terms. Ail the other apparatus, including renormalization, 
has been shown to be redundant. In addition the fundamental interactions of particle 
physics can be shown to be consequences of the mathematical structure alone, with no 
additional 'physical' assumptions. The nilpotent structure appears to be the one which 
truly encodes the physical information available to fermions, in addition to providing 
the simplest and most powerful mathematical formalism for quantum mechanics. 
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