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1 have long felt that computation is a matter of common sense - English dictionary, 
sound practical judgement. This paper presented at the British Theoretical Computer 
Science Colloquium at the University of Warwick in March 24-26, 1986. proposed a 
definition of common sense as essential element in the solution of the problem of 
machine intelligence. lt concluded, that common sense is both the deep syntax of 
natural processes and governs the basic semantics of logical or mathematical language. 
Then published only as an abstract, I felt it merited inclusion in CASYS 07 
Keywords: Universal Turing computation, universal quantum computation, grammar, 
common sense, machine intelligence. 

1 Introduction 

This paper was/is divided into the following parts; a non technical section 2 with 
various subheadings and a technical section 3 with the following subheadings: 
3.1 Deutsch's extension of Turing computation to quantum computation, including the 
subclass of quantum computers that define Turing computability. 
3.2 The logical grammar appropriate to the class of quantum computers. 
3.3 Gefwert's methodology by which be extended Martin-Lofs intuitionistic theory of 
types, this being an extension of Russell's doctrine of types, to become a logical depth 
grammar in Wittgenstein's sense in accordance with his proposition as rules idea. And a 
statement of the logical depth grammar. 
3.4 The rules of definitional equality which apply to the logical depth grammar. 

2 Non Technical Presentation of Computation as Common Sense 

2.1 Al Hype 

In order to illustrate this 1986 point of view, let me be a little unfair to one of the 
foremost and highly regarded specialists at the leading edge of the field, who said that a 
true learning system must have an encyclopaedic knowledge base. Any member of the 
public (using his/her common sense) seeing a new born child knows this to be wrong. 
Each child starts life with little or no knowledge base, yet it leams at an astonishing 
pace, and builds such a base as a consequence of a learning process. 
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However this specialist cornes much closer when he said what experiments in machine 
leaming lacked, was common sense. Common sense is however surely the colloquial 
phrase for what we ail universally possess, an inherent inferential logical grammar that 
allows us to build logical models of 'reality' from our experience; these models being 
essential to our short and long term survival. And if this grammar is the basis of the 
leaming process then ultimately 1 believe that we will be forced to conclude from the 
evidence collected from the very necessary extensive Al experiments conducted so far 
that ultra intelligent machines must be based on something other than general purpose 
Turing computation, whether by sequential or concurrent processing. That is Turing 
computation will allow us to demonstrate intelligent like behaviour, but not true 
intelligence. Is this why there have been no major (theoretical) breakthroughs in AI? 

2.2 The Reasons for my Belief that Models of AI Based on Turing Computation 
are Inadequate 

1 do not take seriously the prevailing belief that we or the ultra intelligent machines that 
are its goal, need be no more than a suitable collection of PCs loaded with the 
appropriate programs for intelligent symbol manipulation etc. , or with the contention, 
widely held, that natural language Jacks mathematical description or precision in regard 
to communication. For with regard to the former is it likely that if as Gode! proved that 
arithmetic cannot be reduced to a finite set of algorithms, that intelligence can be so 
reduced. For I assume that when 1 speak to you or you to me, that the spontaneous 
reasoning of our speech must take place with complete mathematical consistency, so 
that if we are wrong in what we say, it must in general spring from the incompleteness 
of our knowledge, and not from the basic design of the human inference engine, as 
originated and tested throughout the long process of human evolution. 
Equally Turing computation implies that all meaningful human communication ought to 
take place via exchange of algorithms; a very rarely used form. Similarly humans very 
easily acquire natural language, which digital computers can leam hardly at all. Why is 
this? It is that digital computation Jacks common sense, a hypothesis that questions the 
Church-Turing hypothesis, that ail forms of computable functionality or operations can 
be ultimately reduced to those that a Turing machine can compute? 

2.3 Why the Church-Turing Hypothesis must be Brought into Question 

Practical general purpose Turing computation must be called into question, firstly in the 
continuous regime of classical physics, because Turing computation, a purely discrete 
process is unlikely to be possible physically (in this context). For I know that the 
physical world is, as far as is known, ultimately describable through quantum theoretic 
processes. Is it these that make the Turing computation physically possible? For then 
the leading question is why is it possible to build a practical general purpose Turing 
computational engine? The answer - the laws of physics allow this! Our logical designs 
for discrete systems can thus be translated into physical ( computing) machines; and call 
on the very quantum nature of physical processes to so do. The fact that Turing 
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computation is possible physically is therefore of great fundamental importance not just 
practically but theoretically. It must be explained and it must be supposed that the 
existing Church Turing Hypothesis contains this implicit physical assumption. 
How does this reflect on AI? We can either assume that our mental processes (i.e. our 
human intelligence) are grounded entirely on physical processes or not. If not, then AI 
science is in a dilemma for it assumes that these non-physical mental processes can be 
emulated on a general purpose Turing computer working through physical processes. 
And if yes then there is no reason to suppose that nature should not use such physical 
processes too, since in the final analysis no human observer could know the difference. 
Thus we must logically suppose the universality of quantum physical processes and 
hence of physical law or abandon the search for AI. 

2.4 AI Turns Computer Science on its Head 

The above conclusion is thus the first line of enquiry which should be eliminated as a 
possibility. That is, we must follow Bennett and Landauer [1985], that physical law 
must set finite limitations to the execution of ail computable mathematical operations 
through which such law must ultimately be expressed. And conclude that thinking and 
indeed ail mathematical activity, the current basis of computer science, is therefore 
conditioned by one's own mental (physical) activity governed through the laws of 
physics. 
Thus constructive mathematics and computation does not subsume physics and physical 
processes as is widely believed, but co-exists in juxtaposition to physics; otherwise 
general purpose Turing computation would not be physically possible. What evidence is 
there for this? Certainly computation in current machines is subject to limitation by the 
speed of light, a feature absent from any of the existing models of Turing computation 
or computer science that I am aware of. How can this be? Clearly it is not true, that 
there exists in the physical world extemal to us, physical systems corresponding to ail 
the abstract symbolic mathematical models known to exist; however this does not 
prevent these existing as physical systems in the brains of such mathematicians. It 
would explain why mathematics works! Why when we do mode! any finitely realizable 
physical system through say an appropriate differential equation, and predict, via the 
axioms of the calculus, the future behaviour of the system, that one gets valid results. 
For this is indeed why science is judged to be so successful. It doesn't mean however 
that the physical system obeys these axioms in determining its own physical behaviour? 
Alternatively there may be no precise solution to the differential equation, yet reducing 
this equation to a difference equation, and then to a general purpose digital computer 
algorithm frequently can yield equally successful predictions. Why should this be? 
If physical processes and their mathematical descriptions are inexorably linked through 
some new form of the Church-Turing Hypothesis, then ail would be explained. 
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2.5 The Church-Turing PrincipJe of Deutsch 

In his (then recent) Royal Society paper, Deutsch (1985) has taken these arguments to 
their inevitable conclusion, and annunciated the Church-Turing Principle that 'every 
finitely realizable physical system can be perfect/y simu/ated by a universal mode! 
computing machine working by finite means'. This replaces the existing quasi 
mathematical Church Turing Hypothesis, one version of which is 'Every function which 
would be naturally be regarded as computable can be computed by the universal Turing 
machine.' Deutsch then shows that subject to the Third law of Thermodynamics that 'no 
finite process can reduce the entropy or temperature of a finitely rea/izable physical 
system to zero' that this principle is compatible with the notion of universal quantum 
computation where 
a) universal quantum computers can do everything that universal Turing computers can 
do but have many other remarkable properties that are not Turing reproducible, and 
b) that these physical processes can simulate universal Turing computation. 
Thus it appears that just as classical physics has been replaced by quantum physics, so 
classical computer science i.e. that of Turing, must give way to quantum computer 
science, and that models of AI or intelligence should be based on the brain as a quantum 
rather than a Turing computer. 
The former must surely be correct for one of foremost scientific discoveries of this, 
concems the quantum inseparability of any finitely realizable physical system from any 
other and from the universe itself. Thus the human brain in the final analysis is no mere 
finite machine but inseparable quantum physically from every other brain and with the 
Universe that created it in the course of its evolution. And my common sense tells me 
that this model is much more in accord with my experience than existing ones grounded 
on universal Turing computation, for it says the latter may indeed show intelligent like 
behaviour in the way that expert systems do, but no true intelligence or ability to leam 
the way humans do. This is a property ofuniversal quantum computers. 

2.6 Common Sense 

I therefore postulate that common sense is the universal property of universal quantum 
computers in the same way that universal Turing computation is the property of digital 
computers. 
Universal quantum computation tells us that there must exist mathematical operations 
beyond those that allow us to simulate universal Turing computation. It is the physical 
nature of these very special operations therefore that must concem us. Deutsch (1985) 
tells us that they concem the mathematical operations linking the continuous and the 
discrete in relation to the quantum theoretic model for a single bit; i.e. the unitary 
operations on the two dimensional Hilbert space, the state space of the single bit. 
Moreover these operations are of a universal nature. They therefore define a universal 
set of transformations between the continuous and the discrete - a problem that has 
occupied natural philosophers and research workers in many fields since antiquity. 
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However I believe a much more appropriate view, in regard to intelligence, cornes from 
the fact that physical law sets finite limitations to the execution of ail computable 
mathematical operations through which such law must ultimately be expressed. In the 
final analysis this statement implies that physical law expressed in mathematical or 
logical form, must set logical limitations to the operation of logic or logical statements. 
Thus there must be a logical form that mathematical language must take if it is to 
remain mathematically or logically consistent (physically). 
This has been demonstrated by C. Gefwert., a Finnish philosopher and logician and 
follower of Per Martin-Lof. An examination of both Gefwert's paper (1985) and 
Deutsch's (1985) shows that despite the radically different nature of their approaches 
that both the logical form of mathematical language and quantum computation 
necessitate the same rules of definitional equality or inferential logical grammar. 

2.7 What does this Mean? 

It means that there is indeed an inherent universal inferential logical grammar 
appropriate to all logical constructs we make through our (physical) mental processes. I 
call this grammar, common sense and say that it is the same as that generally referred to 
colloquially. Would it be surprising if logic, like any other language had its own 
grammar and that this grammar was universal? With hindsight this seems almost self 
evident. It makes clear why progress in AI has in the past settled on say Prolog so much 
closer to natural language than algorithmic programming languages. For just as Turing 
computation is the appropriate universal model for defining the syntax of algorithmic 
languages, then universal quantum computation must be the model for natural 
languages including mathematics. 
Common sense therefore transcends Turing computability, and I believe it makes 
possible a new architecture of semantic machines and a science of semantic 
engineering, which encompasses both natural language and the engineering of 
thermodynamically possible machines (which will of course contain the existing so 
called general purpose Turing computers as a subset) 1 

2.8 Intermezzo - the Thesis 

There is an especially intimate relationship between physical processes and their 
mathematical representations; a generic statement of which is the Church-Turing 

1 In particular, it becomes clear in 2007 with hindsight that the anticipatory 
computation, and the extensions to recursion, of incursion and hyperincursion, which 
Professor Dubois has so presciently pioneered, can be identified as examples of 
semantic computation and engineering. For the concept of semantics and grammar, 
would provide an alternative explanation of why these novel methodologies are so 
successful in arriving rapidly a sound computational solutions to difficult problems and 
of why the corresponding recursions in the form of ordinary digital computation often 
fail to do so. 
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principle of Deutsch. The reader may however feel that a formai philosophical 
investigation of mathematical language i.e. the process of construction of proofs 
through the theory of types, such as Gefwert has carried out, can have little to do with 
logical structure of quantum theory, which is the currently best available physical theory 
which science possesses to describe the fundamental processes of the natural world. 
However, even a perfunctory examination yields significant similarities. 
Firstly Gefwert's paper (1986) concerns the essential logical rules or grammar which 
must govern the naming or labelling procedures for sets if the consistency of 
mathematical language is to be maintained; while quantum theory provides some of the 
most accurate models we have of the real world, where such models have been 
experimentally validated through real world entities described in relation to their 
attributes and dynamical behaviour. Thus, the physicist is able to attach labels to 
specific attributes and to assign to these specific numerical values so that these values 
are consistently reproduced when an experiment is repeated. Moreover these 
experimental procedures are essentially processes of counting against well specified 
standard measures. Quantum theory therefore shares with Gefwert, this concern with 
labels both in respect to type and value. And as we shall see in the next section, Deutsch 
in his approach to computation is also specific in his concern to labelling i.e. how the 
input and output states of a computational machine should be referred to. Analogously 
Gefwert is equally concerned that bis labelling or typing procedures should have a 
computational nature. It appears from Deutsch's work that universal quantum computers 
are basically 'type' or labelling computers capable of dividing an environment into sets 
or domains of functionality by attribute, where no two different classes have an element 
in common, and every element is in some class. Further it is then possible to assign 
values to these classes of attributes by counting. And this is just what the Gefwert's 
rules of definitional equality require in respect of sets in regard to their type, and what 
Turing computation/'counting' will result in as regards value. 
Moreover Conway has show in his book (1976) where Gefwert definitional equality 
rules apply in the form of lexicographical functionality in terms of labels or names, 
that these labels can be extended in the simplest possible way to surns, products, 
inverses, algebraic and transcendental extensions as successively more complicated 
concepts so as to form mathematically closed fields. But as Conway also shows these 
rules for number also generate ail the numbers by value great and small including the 
transfinite and the infinitesimal. That the number/symbol for 1 should have the valuel is 
therefore, it can be hypothesized, a quite remarkable property of our universe i.e. it is 
the laws of physics, i.e. Pauli exclusion, that ensure that this is so! And it means that if 
the property of one, is the integer 1, then the computation of the property of the integer 
n it must have the value of n as the result. But there is now a limit imposed by the 
universe and its finite resources on the values of the integer n that can be comJmted in 
practice, i.e. although numbers as labels can always be exhibited say l 000100 such a 
number symbol may be beyond the bounds of calculation. 
This distinction between type and value is one which Gefwert finds essential to his 
analysis of mathematical language i.e. the construction of proofs. 
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3 Technical Presentation 

3.1 Turing Computation 

This part begins with a statement of how the usual definitions of Turing computation 
may be extended in order to define universal quantum computation. It is kept brief since 
a full and expertly detailed description is to be found in Deutsch (1985). 
He tells us that two classical deterministic machines are 'computational equivalent' 
under given labellings of their input and output states if they compute the same function 
f under these labellings. But a quantum computing machine and indeed classical 
stochastic machines, do not compute functions in this sense; for the output state of 
stochastic machine, is random with only the probability distribution function for the 
possible output state depending on the input state. 
The output state of a quantum machine although fully determined by its input state, is 
not an observable and so the user cannot in general observe its label. Nevertheless the 
notion of computational equivalence can be generalized to apply to such machines so 
that as far as input is concemed labels may be given for each of the possible ways of 
preparing the machine which corresponds by definition to all the possible input states. 
However whereas a quantum system can be prepared in any desired permitted input 
state, measurement cannot in general determine its output state and instead one must 
measure the value of some observable. Thus what must be labelled is the set of ordered 
pairs consisting of an output observable and a possible measured value of the 
observable i.e. an Hermitian operator and one of its eigenvalues. Such an ordered pair 
contains specifications of a possible experiment that could be made on the output, 
together with a possible result ofthat experiment. 
Two quantum computers are then computationally equivalent under given labellings if 
in any possible experiment or sequence of experiments in which their inputs were 
prepared equivalently under the input labellings and observables corresponding to each 
other under output labellings were measured and the measured values of these 
observables for the two machines would be statistically indistinguishable. That is, the 
probability distribution function of the two machines are identical. 
Such operations are therefore formalized by considering computing machines with two 
inputs, where the preparation of one constitutes a 'program' determining which function 
of the other is to be computed. To each such machine M, there corresponds a set C(M) 
of 'M computable functions' and a function fis M computable ifM can compute fwhen 
prepared by some program. Like a Turing machine therefore, a model quantum 
computer Q bas two components, a finite processor and an infinite memory of which 
only a finite portion is used. The computation may therefore proceed in steps of fixed 
duration T and during each step the processor and a finite part of the memory interact, 
the rest of the memory remaining static:-
The processor consists of M 2states observables n = {ni} (i E ZM ) where ZM is the set 
ofintegers from 0 to M-1 
The memory consists of an infini te sequence m = {mi} (i E Z) of 2 state observables, 
and corresponding to the Turing machines tape position, in the quantum machine is 
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another observable x which has the whole of Z as its spectrum; x is the address number 
of the currently scanned tape location. 
Thus the state of Q is the unit vector in the Hilbert space H spanned by the simultaneous 
eigenvectors lx; n; m > = 1 x ; no,n1 , .... nm-1 ; ... .. m..1, mo, m ... .. > 
labelled by the corresponding eigenvalues of x, n, m, so that these form the 
computational basis states for the machine, where a 2 state observable with spectrum 
(0, 1) ie Z2 has a natural interpretation as a 'one-bit' memory element. The dynamics of 
Q can then be summarized by a constant unitary operator U on H such that if U 
specifies the evolution of any state \'V(t)> EH during a single computational step then 

i'l'(nT)> = un i'l'(O) > (n E z +) and u+u = uu+ = 1 (1) 

Thus if the computation begins at t = 0 and if at that time, x and n are prepared with 
value zero,and the state of a fini te number of m is prepared as the program as input and 
the rest are set to zero, then i'l'(Ü) > = L: mÀmlû;O;m> and L:\Àm\2 

= 1 · where only a finite 
number of Àm are non-zero and Àm vanishes whenever an infini te number of the m are 
non-zero. 
The 'by finite means' requirement for Q means the elements ofU take the form 

'· '· '\U\ _ (s:x+I U+( , '\ )+s:x-1 u-( , '\ )] fl s:my <x ,n ,m x,n,m> - u x' ' n ,mx n,mx u x' n ,mx n,mx yf.x u my 

The continued product on the right ensures that only one memory bit the xth, 
participates in a single computational step. The terms 5x+lx' ensure that during each step 
the tape position x cannot change by more than one unit forwards, backwards or both. 
The fonctions lt which represent a dynamical motion depending only on the 'local' 
observables mx and n are arbitrary except for the requirement that U be unitary. Each 
choice defines a different quantum computer Q(U\U-). 
Turing machines are said to hait, signalling the end of computation, when two 
consecutive states are identical and a valid programme is one that causes the machine to 
hait after a finite number of steps. However (1) shows that two non trivial consecutive 
states of a quantum computer Q can never be identical and moreover Q must not be 
observed before the computation is ended since this would alter its relative state. 
Therefore quantum computers need to signal actively that they have halted and so one 
of the processors bits say n0 must be set aside for this purpose. Every valid Q program 
then sets no to 1 when it terminates but does not interact with it otherwise. The 
observable no can then be periodically observed from the outside without effecting the 
operation of Q and the analogue of the classical condition for a program to be valid 
would be that the expectation of no must go to 1 in a finite time. 
Deutsch then shows that because quantum computers Q(U+,U-) are necessarily 
reversible, the unitarity oftheir dynarnics, may be obtained by taking 

lF(n', m'\ n, m) = 112 Ô
0
•A(n,m)5m,B(n.m) (1 ± C(n,m)] 

where A,B,C are fonctions with ranges (Z2)M, Z2 and (-1,1) respectively 
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Turing machines are thus those quantum computers whose dynamics ensure that they 
remain in computational base state at the end of each step given that they start in one, 
where to ensure unitarity it is necessary and sufficient that the mapping 

((n,m)) <----> ((A(n,m),B(n,m),C(n,m))) 

is bijective. And since the functions A,B,C are otherwise arbitrary there must in 
particular exist choices that make Q equivalent to a universal Turing machine T. 
By appealing to this Turing universality and the definition of M computability, for 
every recursive function f there exists a program n(f) of T such that when the image of 
n(f) is followed by the image of integer i in the input of T, T eventually halts with n(f) 
and i themselves followed by the image f(i) with ail the other bits zero. 
That is, for some positive integer n U"IO;O;n(f),i,O> = IO;l;O;n(f), i, f(i),O> 
Here 0 denotes a sequence of zeros, and the zero eigenvalues of mi (i < 0) are not shown 
explicitly. And thus for each recursive function f and integers a and b as Deutsch 
ex plains, there exists a pro gram n(f, a, b) which computes the function f on the contents 
of a and places the result in b leaving a unchanged i.e. 

jn(f, 2,3),i,j> -----> n(f,2,3, i, j EB f(i)> 

where EB is any associative and commutative operator with the properties i EB i = 0 and 
i EB 0 = i which is the reversibility requirement so that the exclusive or function would 
do. 

3.2 The Logical Grammar Appropriate to the Class of Quantum Computers 

Thus not only does universal quantum computation prescribe Turing computability and 
determine the relationship between each program n(f) and each recursive function f, but 
the requirement for reversibility imposes certain universal constraints on the domain of 
f through the space of all commutative and associative operators EB for which it will be 
physically computable. One may therefore specify these universal constraints on the 
domains of ail recursive functions fin terms the function F where respectively 

F(a, b) = F(b,a) and F(a,F(b,c)) = F(F(a,b),c) 

and where one subclass of F can be thought of as logical connectives so that the domain 
of all the recursive functions fis subject to a logical grammar where F(a,b) = F(b,a) 
must take the truth value true ie there is symmetry/reversibility, etc and where the Third 
Law of Thermodynamics requires that 

F(a,a) = 0 i.e. must take the truth value false [5] 2 

2 However I now know in 2007 that F(a,a) = 0 in the form of a2 
= 0 can mean ai= 0 in 

the case where a is a nilpotent operator, and that this criterion corresponds to Pauli 
exclusion and a unique canonical computational solution. 
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Thus in quantum computation as required by the Third Law, there are no true decision 
processes, and so Turing computability is only simulated and all proof follows only 
from the falsification of some assertion It is noteworthy that this last relationship can be 
considered as a decision process, while the three relationships applied simultaneously 
define an equivalence class or classes. 
F can also be thought of as the universal labelling function where a,b,c are sets or states 
in relation to the operator EB. 

3.3 Gefwert's Methodology 

Gefwert's paper "On the logical form of mathematical language" provides a formai 
philosophical investigation (of mathematical language) in accordance with the 
proposition as rules idea of Wittgenstein. 
The explanation of defined concepts like real number, Euclidean space, etc. are handled 
adequately within mathematics. But the explanations of the explicit definitions 
themselves must be of different kind and the aim of Gefwert's paper is to contribute to a 
formai philosophical explanation accomplished by engaging in writing a logical depth 
grammar. This is done by extending Martin Lofs intuitionistic theory of types (1975) in 
accordance with Wittgenstein's principle 'the sense of a proposition can only be given 
once' i.e. the sense of it cannot be expressed except by repeating that proposition and 
therefore there is necessarily only one proposition for each fact that answers to it. 
Thus to engage in writing a logical depth grammar is to show what makes it possible to 
produce a knowledge of facts. And this is the essence of a philosophical investigation or 
person programme, as Gefwert defines it. When a logical depth grammar is written, it 
distinguishes between a canonical syntax providing the essential explanation and the 
informai part (semantics) providing the informai, verbalized explanation where these 
are symptoms of there being a canonical form regulating their use. Thus symptoms 
provide sufficient conditions in order to engage in producing a knowledge of facts ( e.g. 
by computation or measurement) whereas canonical forms are necessary conditions. 
(Comment. Here we see for the first time, through the words computation and 
measurement how the connection to Deutsch's paper is to be made i.e. a person program 
is just that, a pro gram for a universal quantum computer or brain.) 
And the relationship of computer programming to the intuitionistic theory of types has 
been explicitly dealt with by Martin Lof, where this theory itself is an extension of 
Russell's doctrine of types(1937) which says that every proposition <l>(x) ... . has, in 
addition to its range of truth, a range of significance i.e. a range within which <l>(x) can 
be proposition at all, whether true or false . This is the first point in the theory of types. 
The second is that the ranges of significance form types i.e. if x belongs to a range of 
significance of <l>(x), then there is a class of objects, the type ofx, all ofwhich must also 
belong to the range of significance of <l>(x) however <l> may be varied; and the range of 
significance is always either of a single type, where every function and thus in particular 
every propositional function, will indeed have a type as its domain. This is almost 
verbatim the definition of the notion of set given by Bishop (1957). Very loosely 
therefore what is being said is that if x is in a range of significance, <l>(x) can be 
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computed and if it is not, then <l>(x) is non-computable where in the context of Deutsch's 
paper one now may have to distinguish between (reversible?) Turing computability i.e. 
syntax, a necessary condition, (stochastic) Turing computability (consequence?) and 
quantum computation (symptoms, semantics or sufficient condition?) 
And so ranges of significance are defined in some sense by the kind of computational 
rules that are laid down for them, where an output can be computed, and Gefwert adopts 
the notation that if the assignment of arguments xi, x2, ..... xk to variables ui,u2 ... . uk of a 
functional expression and these correspond to an indication of what specific inputs have 
been fed into a computation 

ü1=x1 .... .. ... .... ü~ 
a(u1,uz .. ... .. uk) = x 

then we may write the result of the computation as 

a(u, , .. .... Uk) = x, for U1 = X1 ... ..... Uk = Xk 

The critical aspect of Gefwert's argument then concerns the necessary distinction, not 
made in ordinary mathematics, between functions proper denoted by A,B,C . and 
functions as objects denotes by a,b,c, . which concern arbitrary type valued functional 
expressions and arbitrary object valued functional expressions respectively, which are 
vital to his analysis of the practice of mathematics with its distinction between informai 
verbalized language and the formal essential explanation of which the verbalized 
language is symptomatic. This distinction also exists in experimental practice between a 
physical process ie the function as object and its mathematical representation ie the 
function proper. Wittgenstein (1977) states' The rules of grammar cannot be justified 
by showing that their application makes a representation agree with reality. For this 
justification would itself have to describe what is represented' Thus we must in the 
analyse of mathematical practice distinguish between a canonical part providing the 
essential (logicai) expianation (syntax) and the informai part (semantics) providing the 
informai verbalized explanation (which concerns the knowledge offacts). 
Thus it appears that what universal quantum computation provides as described by 
Deutsch (i.e.the Church Turing Principle where computation may perfect sirnulate any 
physicai process) is indeed a representation/description for this justification, if we take 
quantum theory as our view of reality. 
Thus there is, the Church Turing Principle implies a more general interpretation beyond 
that of logical connective functions, those of functions as objects in accord with 
Gefwert's argument. An example is the genetic code where this specifies the symbolic 
dynamics of the physical phenomena we call life. Another is the phenomena of strange 
attractors, where only certain aspect of their behaviour can be specified, i.e. the centres 
of attraction and the boundaries corresponding to those centres within which a particle 
will move if attracted to the particular centre in question. The general symbolic 
dynamics of such a phenomena as a whole, where the convention is to replace each 
centre of attraction by a symbol and represent the dynamics as an automata, is thus an 
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example, of the same notion which 1 believe we employ in natural language. That is, 
should an aspect of reality i.e. a physical process that we experience, be a symptom of 
that reality, then as a first step to constructing a logical model of that reality to convey 
its meaning is to introduce a symbol or label and then in defining its meaning we 
establish this by means of relationships to other symbols or labels already assigned for 
which our knowledge of facts is already established to some degree or other, and we 
check these specific facts to see to what extent they apply to our new symboVlabel. 3 

For example the notions of set used in ordinary mathematics is really a mixture of the 
notions of both value and type i.e. E(u) and ( L u € A) E(u) respectively. Hence an 
object of the type (Lu€ A) E(u) is an abject x of the type which is the value A together 
with a proofy of the proposition which is of the value E(u) when u is assigned the value 
x. It is not enough to speak in the analysis of the abject xjust happening to satisfy E(u). 
U sing this critical distinction and notation, Gefwert ( 1986) then constructs arguments, 
not produced here, that beginning with x and <I>(x) that in order to engage in 
mathematical language i.e. the construction of proofs, it is necessary to have a logical 
depth grammar which requires sentences in the language of the following six forms 
only:-

a=e, a = def e, a =eDf ; A=E, A=deŒ, A= EDf 

where the A valued function a and the E valued function e are definitionally equal or 
equivalent and the type valued functions A and B are definitionally equal or equivalent, 
respectively. Note that a language with these rules is the genetic code in molecular 
biology where we substitute the symbol A for adenine, the symbol U for uracil, .. . 

3.4 The Rules of Definitional Equality which Apply to the Logical Depth Grammar 

Gefwert then proves that if Â =Xis the value (denotation) of A i.e. A denotes X then 
he proves that there must be rules such that 

symmetry Â = Ë ; transitivity ; Â = Ë , Ë = ô 
~=Â Â=Ô 

reflexivity Â is a type 
Â=A 

Where, for example, the first says. if we can compute Â from Ë then we must be able to 
compute Ë from Â using the same rule 

3 Thus meaning concems these relationships but as shown now by our recent work in 
regard to the universal computational rewrite system in relation to quantum 
computation, there will always exist potentialities or emergent properties that link 
existing abjects with others that may not currently be known or even exist. 

188 



i --
1 

4. Conclusion 

Thus I conclude that the logical form of mathematical language is subject to a logical 
depth grammar, which I call 'the common sense' of mathematical sentence construction 
and that it these same rules of construction that quantum computation imposes on the 
domains of functionality of Turing computability, ie compare part 3.2 and 3.4, so that 
the semantics of mathematics are the same as syntax of quantum computation when it 
maps onto Turing computability. 
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