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Abstrect
Model building for non-trivial application domains like environmental sciences is a complex
task which should be canied out in a way such that resulting models not only describe the

,reality under investigation correctly at the chosen level of abstraction, but are also
understandablg maintainable and, thus, reusable in modified experimental settings. We propose
a modeling approach (supported by a computer based modeling environment) in which
complex models are designed in a stepwise refinement process. Our approach is illustrated on
the basis of a running example taken from forest ecology, using the conceptual framework of a
modeling and simulation environment developed at our department.
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l. Introduction

Computer based modeling and simulation serves diflerert, however strongly related needs. On
the one hand we have identification of structures, on the other hand prediction of future
behavior. In practical applications both tasks are used in the context ofdecision support which
may be understood either in a descriptive way, in order to give the analyst a picture of the
systerq or in an optimization mode where the analyst uses the model for finding some
"optimal" decision. This means that model building has to be understood as an open loop
process of stepwise refinement and restructuring of the model.

In order to achieve these goals there are diflerent approaches and techniques available. For
identification 91 structure one may use algebraic or graphical approaches which identifies
structural relatiônships between variables and/or models. This has to be distinguished from the
distinct relationships between the variables defined by equations. These concrete relationships
between the variables are of utmost importance in the case of predictio4 where a number of
tools are available ranging from mathematical models over statistical models up to simulation
models. Also with respect to optimization there is a broad range of possibilities from classical
techniques up to new methods like neural networks or genetic algorithms

Another important aspect in modeling is the choice of granularity. In many applications we find
a spatial dimension, a temporal dimension and an individual dimension. There are two possible

extreme views: at one end of the spectrum we have mathematical models formulated as a
system of difierential equations which allow qualitative analysis of the system behavior usually
with specific information in form of parameters. In order to facilitate analysis these models are
formulated frequently in a normalized way which limits the use in real
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applications. Because such models allow only prediction at a global level we call such models
global cveroge mdels. At the other end of the spectrum we have simulqtion mdels, used
mainly by practitioners in real world situations. Models of that type are often characterized by
an explicit spatial dimension and the more or less explicit consideration of individuals. Such
models have frequantly an abstract mathematical kernel but it is not cleady visible. Although
these two approaches are linked in some sense with the two above mentioned tasks structure
identification and prediction this is not necessarily the case.

In this paper we present some ideas for the structure of a modeling environment which
supports the process ofmodel building. Section 2 gives a short analysis ofthis process and in
section 3 we show how this ideas are used in the area of modeline forest ecosvstems. A
modeling environment is outlined in section 4.

2. Models

2.1 Model Description

Because we are interested in models which have the opportunity to react onto the real world
our main interest are dlmamic input-output models as defined by Zeigler (1976). Formally such
models have a set of input variables, a set of parameters, a set of output variables together with
associated output transformation functions, a set of state variables together with their state
transition functions and a definition of the time resolution. Usually we have not a simple model
but a rather complex structure which is defined in the process of model derivation which means
coupling of different model components. As a result we obtain a model graph where the nodes
are the model components, represented as boxes and the arcs define the dependency between
the components. From a formal point of view we distinguish different types of models:

Basic model: This type of model is described by the attributes enumerated above and does not
contain any submodels.

Static model: By this term we denote a special kind of basic model characterized by the fact
that no state variables are used. Such models are usually employed as auxiliary nexus in the
process of model coupling.

Compound model: Tltrs model type is obtained by coupling models of any kind. Such coupling
is done by connecting input and output variables ofthe components models.

ÙIultimodel. In order to describe Ciscontinuities in the behavior multimodels are used (cf
Zeigler et al., 1993). A multimodel consists of structurally (in terms of input and output
structure) compatible component models with distinct behavior which play a mutually
exclusive role during simulation.

Anay model: An array model can be thought as a special kind of compound model consisting
of a varying number of components of a certain type arranged in a parallel fashion. The input
data are distributed to each component by an input fork function and the output of the model is
calculated by an output aggregation function from the component outputs. Moreover there
exists a regeneration and a destruction function in each array model which allows the control
of the number of components.



All these model categories may be organized in an object oriented class hierarchy which
encompasses also diflerent methods of computation (Grossmann et al., 1996). In applications it
is important to have a unified description for all types of models which is given by the
following attributes (cf. Schwab et a1., 1997):

Nane -describing the main purpos€ of the model
Eneasive tûul daoûptiotr - explaining the main characteristics
Model lype inûcdû - indicating the model type in the sense defined above
Moful prtncûfu - describing the general performance ofthe model
Usage level - indicating whether this model may be applicable inside an array model
Internal *Ldate- giving the information about the submodels contained inside the model

togeth€r \ilith the coupling information
Inpû varùablæ - consisting of name, textual descriptiorq measurement unit and value range of

the input variables
OuEut vsôablæ - consisting of name, textual descripion" measurement unit and value range

ofthe output variables
Stde vuiablæ - consisting of name, textual descriptio4 measurement unit and value range of

the state variables together with the initial values
Internal vuûablæ - auxiliary variables used for internal calculations
Puamdqr - used in the calculation of the state transition function
Time ræoluliot- used for calculation of the state transition function
Stûe frorrsitiorrfunclior - updates the state variables
Simulation methd - a numerical prbcedure for solving recursive algebraic equations in case

of difference equations or differential equation in case of continuous systems.

Note that not all these attributes are meaningfirl for all types of models, for example, in case of
static models the state transition function is not meaningful. During the process of model
derivation the most important attributes arc the Mdel principle, the Intemal stntcture and the
Unge level. The Mdcl Principle may be seen as the basic idea behind the state transition
function for the state variables of primary interest, no matter what internal complexity the
model has. Typlcal examples are population balance equations ofthe form

New Population = Old Population + Birth - Death.

Sometimes suchModel prirciples nrny be captured in a precise form by a standard differential
equation model like a saturated growth model, a predator prey model or a cohort population
model (Leslie model). Note that such principles say nothing about the internal complexity of a
model. For example a cohort model based on tle Leslie principle model may consist of a
number of models which represent the cohorts and may consider the population rnass as well
as the number of individuals in each cohort as state variables, whereas a saturated growth
model consists only of a single equation for a single state variable.

T\e Internol structure of the model is of utmost importance for compound models.
Corresponding to tbe Mdel Prirciple we distinguish several layers in the description of the
internal structure. The prinry layer e'ontuns all model components which formalize the
M&l Principle. The secondary layer de*drbes model components which are used in the
calculation of auxiliary quantities, frequently used by the main compon€nts, for o<ample as
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substitution of the parameters. Independent from the layer each model component of a
compound model needs information about the connection to other model components.

The Usage level of the model tells us whether a model may be used at the aggregate level, at
the individual level or at both levels. This distinction is important for the definition of array
models. Only models with an individual Usage level can be used as components of an array
model.

As an example consider the compound model shown in figure l. The modeling principle is
defined by the generic cohort model (or Leslie model). Conesponding to this Mdel principle
the primary components ofthe model are the components representing the cohorts denoted by
Age Class L The two models Fizod and Harvesting are at the secondary layer and are used for
the calculation of the time varying parameters in the primary components. The Fd
component is a dynamic model whereas the model Harvesting is a static model represented in
the figure as a box with double boundary. This interpretation is only one possible way to
understand this model. Another one would be to include the food model into the primary
model. With respect to the Uwge level we assume that this model can be used only at the
aggregate level because we have in the standard interpretation a percentage for each cohort
which moves to the next age class.

I Age Class 0 Age Class 2

t_
Fig. 1: Cohort model with secondary components

2.2 Model Derivation

In the process of model derivation the model builder uses either a top do\ryn or a bottom up
approach. In the top down approach one starts with a generic Model principle and derives in
several refinement steps the final model, in the bottom up approach one starts with a number of
well defined model components and aggregates them to a new model. In any way the resulting
new model has to be documented in an appropriate way.
Looking at the process of model derivation from a more applied point of view we
distinguish two types of derivation. The first one is more oriented towards structure,
second one more towards refinement.

can
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Structural Derivation

By structural derivation we understand the introduction of a new model component of any type
except an array model. In this case first of all the linking of the new model component to the
already existing model has to be defined. This is done by defining the outputs ofother models
which are inputs for the new component and those already existing model components for
which the outputs are used as inputs. We distinguish the following trvo types of connections:

(l) Direct conneclion'. Inputs and outputs are connected with outputs and inputs of already
existing model components.

(2) Indirect connection'. Inputs and outputs are connected to already existtng models in
another way, for example as a substitution of parameters or as new variables in the state
transition function.

The first case is well defined and rather easy to handle. More intricate is the second case
because a contection principle has to be identified and there may be a number of side effects
which have to be considered. This side effects have to be documented in the Mdel principle

and in the Interuol stntcture of the model. Note that the principle may change by the
connection principle. Ttns Mdel principle is of utmost importance in the automated definition
of the computation. Take for example the model of figure l. If we want to derive such a model
from scratch in a bottom up manner we would start with a single model component for the
entire population. This model is a very simple model defined by the Model principle.
proportiornl growth with loss and the state transition function is given by

x(t + At) = X(t) + [rx(t) - ôx(t) ] ̂ t

The parameter 1, represents the growth rate and ô gives the mortality rate. Time increment is

defined by Àt. This model may be interpreted as a growth model for a homogenous population
without any regeneration. In order to make such a model more realistic we derive from this
model in the next step a model with two classes (children and adultsl as it is depicted in figure
2 and which is described by the following dynamics:

1ç,,11+ At): X{(r ) + t)r,ùfu(r) - p>ft(t) + c Xr(t) - ôo)fu(t)l Âr

Xr(t + ^t) = Xr(t) + [ÀrXr(t) + tt )6(t) - ôrxl(t) ] At

I ^n" Class O l-1 Age Class 1 r+

-Ir-

Fig.2: Simple cohort model with 2 Age classes
The parameter c represents the regeneration rate ofthe adults, the parameter prepresents the
dynamics of transfer from children to adults and the parameters I; and ôi repres€nt cohort
specific gowth rates and mortality rates. This coupling is of course of indirect type because we
have usod a special interpretation of the input of the new component. Due to this coupling we
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have also a change in the modeling principle from proporîional growth with loss to the age
dynamics of cohorts. Proceeding further by introducing more age classes we keep the
modeling principle but obtain only a change in the Internol structure and arrive at the primary
components offigure l" The introduction ofthe components for harvesting and food is also an
indirect coupling of the components because both components affect only the transition
parameters p, ô and À,

2.2.2 Disaggregation and Aggregation

Under this heading we summarize all considerations in connection with spatial and individual
structure. A model obtained in the derivation process may fall with respect to this spatial and
individual dimension into one of the four categories defined by the two dichotomies:

r models at the individual level versus models at the aggregate level
o models with explicit spatial dimension versus models without spatial dimension

In order to switch to another category we use derivation steps characterized by the terms
aggregation and disaggregation.

Models at an individual level may be easily aggregated to a population level by using an array
model component. Moreover the input fork function allows to some extent the consideration
of competition between difFerent individuals, in particular all kind of competition which is
competition for input variables in dependence of the state of the output variables. Using the
regeneration and destruction mechanism of the array model we can also define population
dynamics at an individual level, similar to the case of discrete event simulation.

A little bit more care is needed in case of disaggregation of population models to an individual
level. In that case the value of the {/sage level of the model is of utmost importance which
states whether the model allows disaggregation or not. The crucial point is how the model at
the population level handles competition" regeneration and destruction. As long as such
considerations are not included into the model it is often possible to make disaggregation. In
case of implicit modeling of such phenomena disaggregation will need a major restructuring of
the whole model and consequently we would not speak from model derivation.

With respect to the spatial dimension both processes are usually easy to handle. The typical
example is consideration of grid cells. A model for a well defined area can be transferred easily
to larger areas by using an array model with appropriate input variables. Note that this array
model needs no regeneration or destruction function. Similar we can do disaggregation by
specification of new inputs for a number of grid cells. Difficulties may arise also in this case
mainly from interactions between spatial cells.
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2.3 Model computrtion

In order to compute the model one has to define an executable program from the graphical
structure set up during model derivation. Various attempts in this area have already been made
and at the moment it seems that the most efficient process is that one which defines a compiled
version of the program. The process of generating this program depends on the model which is
defined. From a formal point ofview every model which has to be executed can be understood
as a compound model with a final output and an initial input. The derivation of the program for
a compound model depands on the Internol shrcture of the model. Basically we have to
distinguish three cases.

The first one is a compound model consisting only of static components. In that case
computation reduces to one formula which can be derived by tracing the graph backwards
from the final output to the initial input and finding in this graph the longest patb i.e. the path
which contains the modmum number of model components. Note that in this case the model
can only be calculated ifthis graph is acyclic.

The second case is the standard application of a compound model with dynamic and static
compon€rnts. The dynamic compon€nts may be formulated as differential equations or
difference equations and can be solved by any numerical method for solving differential
equations. In most applications Euler's method is used but also more complicated procedures
are possible. All these methods need the definition of an appropriate time increment. This may
be difficult in case of models with different time resolutions but let us assume at the moment
that the model is homogenous with respect to the increments. Again the sequence of
computation is deûned by the Internol structure of the model. First of all the secondary
components are updated and afterwards the primary components. \ryithin each block we have a
pnonU rule between static and dynamic compon€nts. First the static components are updated
according to the principles stated above. Next the dynamic components are updated by the
following formula for the state transition functions which resolves automatically feedback
loops :

New value = { Old values of state variables, Input variables, Parameters)

If we look at the example of the generalized cohort model from figure I we would obtain the
following basic sfir.rcture for the program which is givar in some detail in Hitz d. al. (1997):

UpdzteFord
UpdateHamesting
Update Age Closses

The third case is the update for array models. In that case the basic steps are given by

Input aggregation function
Deastruction function
Loop for state transition function of model components
Regeneration Function

This sequence reflects to some extent the biological logic that regeneration at the individual
level is zubordinated to survival represented by the state transition firnction. In case of nested



array models the procedure may be generalized in that way that we put inside the inner loop
for the state transition another array model component. Details may be found in Grossmann et
aL,1997.

3. Apptication of model construction

Because we have already considered the case of model construction in the bottom up mann€r
to some extent in the previous section we will consider in this section only the case of top
down model building. As an application area we will use forest simulation models. The basic
principle for all vegetation models is the idea that we have to consider birth death and growth
inside the forest. Moreover most practitioners agree that a model should consider individual
trees. In particular the following features are considered as the most important ones (cf.
Bossel, l99l)): Productivity of trees, growth dyramics, competitiorl birth and deattr,
individual characteristics like shape, local site effects. In order to construct such a model we
can start from ageneric model as it is shown in figure 3

Fig.3: Generic growth model

In order to obtain a concrete model one starts in many cases with a gowth model for the
individual tree. Let us consider here only the simplest case defined by a saturated grourth
model of the following form:

ÂV : y .LA' (l- (D . II) / (D*. IL*)))

Here D denotes the diameter, H the height of the tree and D* and IL-. denote the maximum
height of the tree. The variable LA is thought as the leave area which is assumed to be
proportional to the volume of the tree, which is a function of diameter and height. Hence we
can assume that volume or equivalently biomass is the state variable and all the other variables
are auxiliarv variables.
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In the next step we add to this model input data which are given by temperature, precipitation
light and soil conditions. In order to incorporate these inputs into such a simple model a
standard technique is the definition of factors for each input which modi$ the growth
equation. Because we assume that soil conditions are rather stable over time we represent soil
conditions as a pararneter. The other quantities are time dependent and are calculated by static
model components. The most detailed model is in many cases that one for light because we
assume that competition for light is the most important interaction component between trees.
One way to define such a model is to assume that the light input is a vector of available light in
different heights above ground. From these values we calculate the light factor using the leaf
area in diferent crown layers. Putting all these models together we obtain the model for a
single tree as it is shown in figure 4.

Fig. 4: Tree model for a single tree

The Model principle of the whole has now changed and is defined as saturated growth

dependent on externql conditions. The update ofthe state variables is given by the following
equation:

ÂV : 0*l '  0rier', '  0,.- ' Oo"ts' T' LA' (l- (D' H) / (D-"' '  H*.))

Next we use an aggregation step which allows consideration of a number of trees on a small

area called plot. This is done by puttrng a number of tree models into an array model. The

crucial step is of course the definition of competition between trees. Again we consider only
competition for light between individuals which is given due to the fact that smaller trees are
shaded by the crown oflarger trees. In order to represent this fact in the model we use a static

model which calculates the available light in different heights above crown from the overall leaf

area on the plot. This overall leafarea on the plot defines an additional output variable for the
array model. Graphically the model can be represented as shown in figure 5. The box Trees

represents the array model and the Malel principle has now changed to Tree community

grawthwith light competitionfor individuals. This model is the classical gap model formulated

in Shugart (1934), a recent implementation may be found in Urban (1990).

Tree Growth
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No. of trees

Fig. 5: Community growth model with light competition

If one is interested in considering a number of plots this can be done by using another aray
model for the plots.

4. Modeling Environment

A number ofauthors have found that in case ofenvironmental decision support a coordinated
interaction between data" models and representation techniques is necessary (cf. Van Voris,
1993). A general architecture for modeling environments is described for example in Guariso
et d. (1996). The general outline is shown in figure 6.

Graphical user interface

l
i Modelbase I I

Manaqement r I
t -

I .------L=--__
i l

Simulâion engine l
L-_ ,, ]

\

r_-:]'|- ,
i Post-processing i
i l

i_ 
_j_l

l c rs i
l

Fig. 6: Modeling environment

There are three databases which are used in the environment: a model base, an experiment base
and a data base.

E14
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The model base contains all models developed up to now which are represanted as objects with
attributes as described in subsection 2.1. Besides the structuring given by the object
representatioq the model base may have an additional structure given by the knowledge in the
ground domain. In the area of forest modeling such a structure is defined by the generic model
represented in figure 3 and we may distinguish betv/een a model base for growttt, one for
competitior4 one for regeneration and mortality and one for transformation of input data. The
model base for growth contains mechanistic models for single trees which vary with respect to
the underlying physiological assumptions, but also models defined at the population level are
included. The model base for competition offers models for nutrient and light competition.
Light competition models are characterized by geometric concepts for tree crowns which may
be formulated in different ways. Also models for nutrients use geometric concepts, but for the
root area. The model base for regeneration and mortality offers various models for birth,
usually formulated at the community level, whereas mortality may be formulated on the
community as well as the individual level. The model base for input transformations offers the
opportunity to transform input data from the data base into a form appropriate for use inside
the other models. :

The data base contains time series data as well as static data. All these data may be either
monitoring data as well as data obtained by simulation results. Each antry in the data base may
be characterized by the following aspects (cf. Plank, 1994):

Metric Scelc Aspect: describes the metric scale of the measured value, which can be percent,
parts per mi[ioq or standard metric units.

Temporal Aspect: specifies the date and time of the measuremment.
Spetial Aspect: describes the locatiorq where the corresponding measuring station is installed.

Many spatial (topological) relationships may arise form this spatial aspect of any measured
value.

Thematic Aspect: holds information of the particularities of the value. It may include
information about the reliability of the measured value, tlre method of measurernent or the
provider ofthe data set.

Structural Aspect concerns the time series structure like regular or irregular measurements.

The experiment base is orthogonal to the model base and administers experiments defined by
model instances, together with initial conditiong pararneters and input data. The main goal of
this data bas€ is to facilitate comparison of results obtained by models is coupled with different
data and vice versa.

The most important components for processing are the model base management, the
simulation engine and the post-processing tool. The model base management is responsible for
handling the model contained in the model base, i.e. retrieval, update and storage. It supports
reusability of models by maintaining additional structural and semantic relationships between
models, for erample classification of models according to use in the ground domain as stated
above, which may be exploited for retriwal purposes by an interactive model description
browser which offers selected attributes as well as graphical model representation.

the simulation engine is able to handle heterogeneous models consisting of submodels which
may be based on difierence or diferential equations. The basic method for the simulation
engine is outlined in section 2.3.
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The post-processing tool allows comparison of different experiments as well as the
presentation ofthe results using GIS facilities and statistical tools.

The graphical user interface supports modeling without programming. It includes a form based
model editor, a graph based compound model designer and a model search engine.

5. Conclusions

We discussed several modeling principles within the domain of ecological modeling. However,
we think that these principles are generally applicable. Moreover, we presented a modeling
environment, its architecture is the outcome of several prototypes developed and implemented
at our institute. .
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