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Abstract

This communication aims to show and explain the frequency influences over the signal
evolutions. We draw an operational analogy between the modulations and the detection of
periodic and aperiodic behaviours. Consequently g(0 is related to G(s) its Laplace picture
as a frequency generator . To win morc easiness in the structure analysis we will use the
"Bond Graph" methodology and therefore we shortly notice its main specificities.
After the description of the reactivity which causes the kchnological memory we show
the operational connection from this one to the (pole - zero) pairs and underline the
delivered future characteristics. From inspecting the Laplace space we remark that any
root locus = {R L} structure corresponds to a set of Newton's lields what supplies a
divergence field in the (Lp.sp.) = laplace space. This Laplace distribution helps for
determining the g(t) evolution characteristics. From the {R L} it is possible to deduce the
system decomposition into a fint-order one and a set of second-order ones, what brings a
drastic analysis reduction offorecasting processes.The convolution ofa system g(t) with
an in{low signal x(t) will be transfered in a (Lp.sp.) what yields the angular convolution
of both {R L} stars. In (Lp.sp.), are injected horizontal conjugated heliphasors for each
fixed frequency pair with exp(-Ào) as damping variation of the amplitude, resulting
from the imaginary graduation and vertical damped or amplified Fourier phasors
supporting (Âatf frequency variation for exp(-oft) as fixed amplitude. The supply of
synchronous curves following the time evolution along the tR L), acts as an extension of
the Fourier wavelets. Afterwards we deduce a shortage of the (Lp.sp.) into a sector of
the 2"stability quadrant.This accessible window is defined by the uppemost possible
frequency.
An extended (Lp.sp.) configuration describes the evolution and the management of a
library or a documentation centre. For this last use, the informations will be located in the
Iirst quadrant where we can display the obtained gains and developments (= in1fsrm.,i.t
increase) on the real axis and the use frequency of each knowledge on the imaginary one.
This conliguration shows the interest grade for each type of knowledge and will supply a
valuable guidance to improve the future development.

Keywords : Forccasting, "Bond Graphs", Reactivity, IaplaceTrandorm,
Knowledge Management.

1 Introduction

This communication is conceived as an extension and a geometrical exploration of our
previous one " [aplace Spaces and theirAnticipatory Characteristics "(C.A.S.Y.S. 2003)
From the observation of musician plays we can deduce that the emission of any melody
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is strongly related to the rhythm of players what points the fequencies as source or
generator of any time evolution. This fact shows the explanatory function of frequency
spaces about the time phenomena.Therefore the key idea is to develop bridges from G(s)
geometry to g(t) future. By means of "Bond Graphs" we underline the functional
analogies between the Frequency Modulations and the Fourier and Laplace
Transformations. To understand the importance of the (pole - zero) pairs we have to
explain the reactivity and its in{luence in our world. In (Lp.sp.) we will settle an analogy
between the G(s) profiles and the electrical fields what will allow a rapid and accurate
view of the frequency variations.When we are comparing the (Lp.sp.) with the Fourier
phasors we deduce that the (Lp.sp.) may be considered as a support of both kind of
modified Fourier phasors: the horizontal ones or heliphasors and the vertical ones: the
radial damped or amplified Fourier phasors. Due to the synchronous curves it is possible
to evaluate the velocities and accelerations of the time evolutions along each branch of the
{R L}, what is helpful for the forecastings.The suiting of the (Lp.sp.) for the knowledge
managing is given to prove that the l,aplace topology can be used in various domains
where the mastering is primordial.The main advantage of the (Lp.sp.) is delivered by the
graphical transposition of any dynamical scheme.

2 Structures of Transfers between Time and Frequency Spaces

2.lOperational Advantager of the "Bond Graphe"

1 Contravariante sidesp
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Fig.l: Ddactical "Bond Graph" Fig.2: Vector management of (8.G.)

"Bond Graphs" or (B.G.) are graphical tools to describe synoptically the power flow
structures because any power may be considered as the product of a qualitative or level
variable with a quantitative or extensive one.This is easy to notice by "Bond Graphs"
(Fig. I ). We remark that the level variable is connected to the referential and plays like a
basis vector of this referential.
Consequently these "Bond Graphs" are also suited to notice the vector components (=
contravariante variables) embedded in any particular referential with their correspondent
basis vectors (= covariante variables) (Fig.2)"
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lntegral side I---
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Fig. 3: Differential or Integral (8.G.)
= Reactive (8.G.)
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carrier (t -> ar)

Fig. 4: (8.G.) pointing out the
Transfer structures
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Table I : Analysisof "Bond-Graphs" Characteristics

RoductOperator
(Fie. l )

On the central axis is displaid the product of both
factors supported by each cranked side.

Divisor Operator. Each side factor may be considered as the quotient of
the axis value by the other side one.

VectorManagement
(Fig.2)

The component sweeping is indicated by a transverse
stroke between the axis and the vector side.
The number of dots by strokes corresponds to the
incrementation frequency.

Tensor duality
(Figs. I _ 2)

Thick side supports the covariante variable or tlre
referential basis vectors and thin one the contravariant(
or the quantitative components.

Drected Flow The product flow is always running to the nozzles

Derivative and
lntegral Operators
= Reactive (8.G.)
(Fie.3)

Here there is a single cranked side because the flow
remains in its sytem. The cranked side is the derivative
of the variable supported by the other side. Besides the
rectilinear side is the integral ofthe variable supported
bv the cranked side

2.2 Frequency Distribution and Evolutive Processes
Frequency seems to be the key factor for forseeing the evolution of any time function.
The best way to justify this point of view results from musical plays because ûe
frequency beats on a drummer or on the piano keys are producing the melody what is an
acoustical evolution.Therefore the (Lp. sp.) geometry helps to explain and to describe tbe
future behaviours.Consequently the forecasting of any s(t) will be related to its generator

G(trr).

2.3 Modulations and Referential changes (Figs.S &6)
Any frequency modulation aims to transfer a signal g(^At) into a carrier referenrial (oc)

to provide G(arc t ÂQ) which is better matched for long distance emission. The used
carrier is an exponential with an imaginary exponent because this has a uniry magnitude
what avoids to alter the transfered signal: I exp(oct) I = I
We note also that a carrier with an imaginary exponent can extract the periodic oscillations
In modulation the functional carrier exp(crct) is sweeping the whole time basis of the

signal for transfering information into the neighbourhoud of the frequency (oc) (Fig.a).
Mathematical modeling of a frequency modulation:
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"[ g(Clt) exp(oct) dt = G(oc t ÀQ) ( 1 )

It is to observe that the canier is working simultaneously in the both spaces (0 &(alc) and

is performing a bridge from the source space (t) into the anival one ( or).This observation
shows the operational similarity between a modulation and a referential change.The
relation (1) is analogous to each component of a FourierTransformation.
Fourier Transformation aims to retrieve from any signal shape the weights of the source
frequencies. Indeed Fourier is using a large lot of carriers and therefore is performing a
set of frequency modulations. In Fourier Transformation the (t) sweeping is the more
speedy incrementation because the whole time distribution has to contribute to each
frequency (ro). This is done by the time integral. All these transfers are working by means
of a convolution of the sigrral g(t) with the specific carriers.
Mathematical modeling of a FourierTrandormation:

-f gtO 
"*(-jalt) 

dt = G(0)

or in discrete form: Ip s(k) expf-j k I (2nA{)] = G(l)
where: k istime parameter, I frequency pammeter and N = lmar kmax

(2\
(2a)

main incrementation

G(orc r ÂA)
o - - o - - o S l

incremenrarion 
T*r-1'  t  

exPl

Fig.S : Working ofJexp(iroct) dt Fig.6 : Frequency modulation

2. 4 Operational Specilicities of the Laplace Carrier (Fig. 7)
The (Lp.sp.) is ernbedded by a real axis which supports the frequency decay ( o) or
increase and by an imaginary axis which supports the frequency set (ur)

The Laplace carrier is: exp(- st ) = exp[- (o + jor)t] = exp(-ot) exp(- jot) (3)

" where exp(-ot), real operator, is extracting the aperiodic trends from the signal to put
them on the rcal axis by means of a real convolution.
Consequently the Real laplace transformation: "[ 

g(t) exp(-ot) dt = G(o) (4)

" where exp(- jart), imaginary operator, is extracting the periodic behaviour from the
signal to put them on the imaginary axis by means of an imaginary convolution. Indeed
this is the Fourier carrier which is identical to the imagin ary Laplace transformation.
Consequently the Imaginary Laplace transformation:J g(t) exp(-jrut) dt = 61r; (4a or 2)
The Laplace Transformation is more powerful than the Fourier because it contains more
informations along the (o) axis and so can record the rates of time evolutions.
Laplace variable (s) is a complex frequency and consequently possesses an apparent
magnitude: lst = [(6)2 + @)2112 and a direction in (Lp.sp.): tan(0) = (<rr) / (o) (5 -5a)
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heliphpors

exp(-Âo) (-orl) - rol

The corresponding trander relation with I causality : ( Ls + R) I = V (6)
where I and V are the l-aplace tranformations of I and V. When V disappears this relation

2. S Fosrier subspaces in (Lp.sp.) (Fig.8)

On each fixed (ok) value is locating a vertical altered Fourier space (Âo), where in each

phasorthe rotating magnitude is multiplied by the same exp(-o$: danping in the 2o & 3o
quadrantsor ampli{icationinthe 1" &4"ones. Itresultsfrornthereal graduation.

On each fixed (oil) value is locating an horizontal heliphasor (Ào). where the rotating

magnitude, of fixed velocity (rol), varies with the operator exp(-Âo). Besides the
heliphasors must be associated in conjugate pairs because of the symmetry with respect to
the real axis caused by any realizable signal. It results from the imaginary graduation.
Each Fourier subspace displays the frequency composition for each fixed damping. Here
is underlined the common substance between laplace and Fourier spaces.

3 Location of Memories

3.1 Reactivity and Memories
The reactive elements such as generalized inductances and capacitances perform time
derivatives or integrals acting over various ûme levels of potential and therefore reactivity
plays as memory support.To construct forecasting schemes it is necessary to use past
records for extrapolating future strategies and this underlines the high value of reactivity
to bridge from the past to the fuurre.We rnust remark that reactivity is inserted everywhere
in the universe because any mass is inertial reactive. On an other side reactivity as
memory support is essential for progress. Scripture and engraving rvere the first
elementary reactive procedures because they have stabilized our memory. The reactivity
advantages are poinæd out in the table 2
Time differential Â1 g = g(t) - g( t - ôt) and Time integral g(t) + X11 g(t -k ôt) use
various time records.

3. 2 Pairs of Poles and Zeros (Figs.9- lO)
The poles and zeros are introduced from the mathematical description of the reactive
behaviours. For instance an inductance L and its resistance R imply the differential
relation: (LDt + R )l = V where the tension V is valuating from the current I.

damped Fourier r exp(-ok)

exp(- Âo) (ol)

o - - o - - o - - o - - o

Fig.7: laplacecarner Fig.t: Fourier Subspaces in (Lp- sp.)
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becomes ( Ls + R) I = Owhatis reachedfor s= - (RlL),which gives the zero of this
relation, equivalent to the inverse of the time constant, related to the system size .
It is also possible to invert the (6) relation for evaluating I from Y.
l = Y l ( L s + R )

Table 2 : Reactiviw InfluencesinourWorld

Reactivity and Memory Reactive elements can storc energy and
information during the system evolutions what
relates memory gain to reactvity

Reacti vity and Poùential level The reactive levels in any system supply the
internal energy what makes the system working

Reactivity and Behaviour
Forccasting

Because reactivity is storing the past in{Iuences, it
permits to establish an operational connection
between past, present and future. It gives the
essential guidance for future extrapolation

Reactivity and Learning
hocedures

To progess along the scale of any science we need
to deduce additional topics from the knowledges
already assimilated

Reactivity and Computers The essential advantage between a digital compuûer
andacalculating machine is the ability to retain
atgorithms in memories. The development of more
andmore condensed longtime memories was the
main stimulus of the computing procedures

Reactivity and Progress It is necessary to keep in mind or in æchnlogical
memories the previous realizations with their
advantages and failures to improve the next ones
and to conceive following inventions.

Reactivity and dynamical
Stability

Because any matter carries mass which provides
inertia or mechanical reactivity, it brings about a
few smoothing effects on the tr4jectories.
Reactivity is inserted in any portion of the
unlverse.

Reacti vity and Oscillations Any oscillating phenomenon results from energy
exchange between a pair of reactive elements out
of phase. These oscillations very often damped
are stable fl uctuations.

Reactivity and Mathematical
Operators

The derivative and integral operators are necessary
to evaluate the reactivity effects

In this (7) rel.with V causality, the value s = - (R/L) is a pole and l/( Ls + R) is an

(7)
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integrator. The causality exchange has transformeÀ a zero into a pole.

O{tH s+(R/L) F>Or-v
I causality: Derivative Op.=> z= - {

V = (R + jwl-)  I  or l  = V i  (R +jwl)

Fig.9:DescriptionofaReactive Fig.10:Transferfunction
system composed of R & L Compos. with exchange of Causality

Conclusion: a derivative operator produces a zero and an integrator gives a pole.
Besides pole and zero are the same root of a reactive operator respectively considered as a
derivative or an integrator by exchange of causality what is shown on the reactive (B G).
These well known considerations underline the importance of (pole- zero) in (Lp. sp.).

3.3 Meaning of the pairs (pole - zero)
Each reactive element introduces a zero or a pole and is also a memory container.
Consequently each pole (p) or zero 1z) points out a memory storage. The number of roots
(= zero or pole) of a transfer function eqnals the number of reactive elements contained in
this system. More roots of the transfer function, more dynamical stability of the system,
more extrapolting power and more easiness to drive this one, because the root locations
determine the time evolution.

4. Operational Characteristics of a (Lp. sp.)

4.lCompensation Elfect between a pole and a zero
Because of the g(t) Laplace Transformation takes an infiniæ value in each pole
neighbourhood and cancels at each zero, it is obvious thal these (tr2) pars deline the
profile of G(s) and consequently are the main points of the G(s) topography
distribution. If a pole and a zero are very near of each other, they form a short pair (pz)
and perform a very strong mutual compensation or cancelling.Such short pairs are
sometimes artificially constructed to improve or to suit the system behaviour.
The topography axes are the connections bctween each pole and its near€st zero ( its dual
one) to constitute compensated pairs, due to the frequency variations.
When the number of poles is different from this of zeros we have to link these isolated or
free roots to their inverted ones, virtually located on the infinite border hence virtuals.Tbe
compensation effects along these infinite connections are very weak.

4.2 Analogy between the G(s) Prolile and Electrical Fields (Fig.ll)
If we consider each pole as a positive electrical charge and each zero as an earthing point,
the (p-z) connections in this electrical analogy are assimilated to gradient lines. Between
each pair (p-z) we find a divergential or Newton's field which is :
GradfG(s) l=E(s) (8)
where G(s) is a scalar potential and E (s) the rate of (Gfrequency variation what
indicates also the intensity of compensation of its pair (pz).

Fi g. I 0 :Transfer function
with exchange of Causality
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Relat ion: Div[Grad(G)l  = Div(È)=mG(pd -mq+ (9)
Consequently the G topography is analogous to the well known electrical potential and
field and supports the same properties.This makes the G(s) explorations easier. It is to
remark that the (m)phase (RL) star forms the operational Laplace subspace and
consequently introduces space neguentropy due to their regular angular symmetry .

4.3 System Regulation by Closed Loop (Fig. 11 - 12)
Here the polynomial forms of the tranfer functions are denoted as follows:
for G = Pn : polynomial of n-order; for B = Pffi : polynomial of m-order
When a system of forward response G is introduced in a closed loop with a feedback
operator B, its regulation becomes easier but the closed-loop transferfunction wins more
additional poles which are due to the (m) zeros of B(s). This pole excess. denoted free
poles, emanate from the closed-loop transfer function which is: G/ [ I + GBI ( lO)
The poles are obtained for GB = - I what" in complex, is splitting in polar forms:
I = IGI IBI ( 11) and: r =Angl(G) + Anel(B) (1la)

The poles of G/ [ t + GBI are the (m+n) zeros of I + GB - P(m+n). Consequently the
root number of ( I + GB ) is (n+m), higher than the (n) root quantity of (G) and this
implies an excess of m free poles for the transfer function with a Pm feedback operator.

G(z) -> oo

GradlG(s) l= E(s)

G(z)  =O

p  z l
F

Fig.12: Regulated System with B
as feed back operatorFig. f 1: G(s) Profi le along a (p-z) Connection

5 Simplificntion of the (Lp. sp.) Topography

5.1 Introduction of (m) Symmetrical Star in (Lp. sp.)
Each (p-z) pair at finite distance introduces a finite connection which belongs to the{R
L). But the (m) free poles don't find finite compensations,therefore they have to emit
each one a search antenna to the infinity border of the (Lp. sp.) like in the section 4.2.
Root condensation: by comparison with the infinite distances, it seems reasonable to
condense all finite elements of {R L} on a "polygonal point" located on the gravity centre
of the roots obtained by weighting the poles with a positive unity and the zeros with a
negativeone:whatimpliesthisrelation: Xç tR(ptdl - Xt [R(zt )l= (RC) (  12 )
where R (pD & R(zl ) are the (p1ç & zl ) locations and (RC) the reactivity centre.

5.2 Polygonal Distribution of the free Poles on the Reactivity Centre
The micro polygonal distribution of the (m) free poles seems the most symmetrical one.
Consequently the (m) pole asymptotical antennas will propagate also the same polygonal

q
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symmetry through the whole (Lp. sp.) to reach along their specific orientation the infinity
border where virtual zeros are induced over a similar macro polygonal structure.
The macro polygon acts like a (m) faced mirror, each face reflecting a virtual zero to its
free pole along the same direction and so induces a space neguentropy. This geometrical
argumentation seems to follow the most logical way to justify the (m) phase regular{R L}
star. "Finite geometry is reflecting over the infinity. These (m) asymptotes introduce (m)
main axes running from the (RC) to the infinity border. These axes support also the
Grad[G(s)l lines. Of this way the (Lp. sp.) may be considered as a symmetrical vector of
(m) phase asymptotes with (?r)/dn as angular opening: (Figs.13 - 14)
where dn = numtre(p) - numbe(z) = m: the multiplicity of the pole excess.

G(z) -> 0

s

,t
o0k

- o - o - o

G(RC) -> oo

-> lk' r l r

ril--l
I
s

Fig.14: (8.G.) for (pz)
compensation along each
infinite branch

Here,we have shocm that the transfer functions of any regulated systems present a 'Hill"

shape, with long stretched flanks. On the reactivity centre is the infinite peak or the
"chimney"; over the infrnity border is clamped the "0 level" by the (m) virtual zeros .
The regular star with (m) infinite branches can also be generated by a discrete Fourier
distribution of (m) order around a J axis orthogonal to (Lp. sp.) situated on ( RC).
Besides (Lp. sp.) is a mental concepton, therefore it is logical to introduce star symmetry
as geometric neguentropy increase.This is reflecting the free pole multiplicity into a virtual
division of the infinity border.

6 (Lp. sp.) Reductions

6.1 Conseqrence of the real Axis Symmetry

2tl

InfinitvMirror

Fig. l3:RootLocus:
the pole conglorneraæ and running to the infinity border

dnlD or o+ol
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The transfer functions of any physically realizable system must have real coefficients and
consequently all roots appear as real when singles or in conjugate pairs. Consequently the
{R L} must also contain real roots with additional conjugate pairs. From this we
identically apply the 3" &.4" quadrants respectively on the 2" & 7" ones. After this
geometric operation we have only to keep the l" &2" quadrants; where each non real
asymptote is in fact a double one and dispays the frequency evolution of a second-order
subsystem. If there is a real asymptote this one is single and corresponds to a first-order
subsystem.These double conjugate branches with the real ones form a regular half star.
From these laplace star conligurations any system is splitted in a set of 2o order systems
with an additional I o order one.

6.2 Delinitation of the Radial Extcnsions in the both Residual Quadrants
At present, it is also possible to limite the radial extension by considering the maximum
value of the accessible frequencies.Consequently, Rmax, the accessible radius is
determined by the max (s) value: Rmax = t(trtnax )2 + (om"x)21 l/2 - 3-"* 03)
what reduces the 1' & 2" quadrants to the "positive" fraction of a polygonal window. This
polygonal line is a homologous reflection of the infinity border, with the same
configuration.( = radial harmonic of the infinity polygon)

6.3 Elimination of the 1" quadrant
In the l"quadrant, supported by the angularinterval [0 *> nl2l,are located the transient
instable evolutions. Finally we only keep the 2o quadrant supported by the angular

interval I nl2 -> nl, where are located the damped behaviours.The imaginary axis will
play as a hermetic fence to avoid any crossing run of the susbsystem points.

nl2

max(o)
Fence for
stability

isochonous

"u*" J ttut

max(o)

Fig. 15: Reduction of (Lp. sp.) to the
accessibile window in the 2oquadrant
with time graduations of {RL}

AXTS

J star axis

branches: IAI ex(icr) IBI exp(p)
= IABI expU(c + Ê)l

6.4 Comparison of the Durations of the Asymptotical Evolutions (Fig. 15)

When a point is moving along an asymptote it is the angular orientation (0) that
determines the rapport between the frequency variation and the frequency decay or

damping progression: (Ârl)/ (Âo) = tan ( 0). This rapport allows the determination of the
transient evolutions. because the damping is the most important along the {R L} branches
near of the negative real axis. The main {R L}branch is the nearest of the imaginary axis

Finite accessibility
borber: space radial
harmonic uf the infi
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because it corresponds to the longest duration. For a coarse analysis of a forecasting
process it is possible to only record and explore the less damped or main second-order
subsystem. This ultimate reduction of the (Lp.sp.) to a single branch allows to spare a lot
of record memory and analysis time because the determination of the slope 0 and the
radial evolution are sufficient.

6.5Polar Coordinates (R1 , 01)
Due to the operational (Lp. sp.) decompositions into star spaces it is advantageous to use
the polar coordinates to describe mathematically the evolutions of the system states.

7 Mapping of Pairs of Complex Systems

7.t Graphical key for Mappings (Fig.16)
The laplace configurations of the mappings are deduced from the complex product rule in
polarform. Considering in polarform, the well known mutiplication:

A exp(ic) B exp(p) = AB expfj(cr+Ê)l = IABI with orientation (o+Ê) ( 14)
when the complex numbers may be considered as system transfer functions. Rel.(14)
gives the operational key for mapping system interferences in (Lp.sp.). For sytems
condensed into stars we have to perform the complex multiplication of their stars what
gives a ?.b: 2 brancir multiplication, because each star is a vector of branches.Each

branch (k) of the first one turns the second star by the angle (ak), its own orientation.
Consequently this angular convolution produces max(k) second stars, each with an

angular moving of tcrk) what gives an angular location of (Fl + ctk) for each branch,
where each (k) value is linked to each (t) value.The mapping operation gives:

IA(s)I exp(crk) IB(sX exffpl) = IA(s) B(sX expU (ck + pl)l
( l5) is providing a max(ck pl) branch number, for the max. values of crk and pl.

7.2 Powrr or Autoconvolution of a System
In this particuliar case is performing the angular autoconvolution between both identical

(m)stars what provide a (m2) branches with respective orientations (2crk). This is a
tensor product. For following the evolution of the active power transPorted by 1 sign_al
we havè to perform the hermitian product what is realized by the angular convolution of a

conjugate pair of stars: IA(s)I exp(ctk) IA(s)I exp(- jc.k) = IA(s)21 ( 16)
This result is in accordance with Parseval's theorem about the power invariance.

7.3 Mapping of e Convolution of ll/orking Systems - wifù crcesing ft-otf
We havè io perform a tensor multiplication of a pair of differcnt stars and this is the
operation alrèady described by (I5)-what can be produced by a tensor prducJ of a pair
of Fourier transformations.This is used to forecast the interference between both systems.

I Introduction of Isochronous Curves (Fig.15)

8.1 Record of the deformation times of Systems.
When we quote the time of fiequency occurrences along the star branches, we can record
the past deformation velocities and accelerations of a system. This gives a time graduation
on each branch.Time record is oft restricted on the main or dominant branch. Isochronous

( l5 t
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curves are the lines linking the same time on each star branch. This time quotation is the
basis for any future extrapolation of reactive systems.This plays as an extension of the
Fourier wavelets to the (Lp. sp.).

9 Laplace Topography used for the Knowledge Management

9. L l)evelopment Structure of Documentation Centres
Herc the management of the dynamical development of a documentation centre or (DC)
has to be described with accuracy and the storage level increase estimated with the best
probability. Therefore the Laplace Transpositions will be used as a graphical presentation.
At first, the documentation purposes must accurately be defined what will point out the
different related domains necessary to be collected for supporting the efficiency and the
attractivity of the centre. Each domain has to be considered as component of the field
vector which forms the basis for any itenation of the (DC) managemeni. Therefore we use
a particular (Lp.sp.) for indicating the progression of each covered knowledge domain
presented by the state point B(It,Ok ). Of this way we are performing a vector
introspection of the (DC) dynamical driving because the field vector ( = domain set) is
relaæd to a (Lp.sp.) vector.

nl2 ïmegraduation
t

B(iva 0t)

Âtok

o

[æ_>

to= o

lævel increase

Fig.l7: (Lp. sp.) forthe Evolution Analysis Fig.18:(8.C.) display of a (DC)
of a (k) Domain in a (DC) Management with (k) Domains

9.2 Structure of this Laplace Development
The common stârtpoint in each (Lp.sp.) is their origin: the common zero.Their used
quadrant is the l" one because we must draw the development of the storage levels of
each noticed domain. Here is no instability risk. The progression of each domain will be
transposed on a specific radius: B(s) trajectory. Here, the slope displays the major
infomations because its real projection indicates the storage increase and its imaginary
ones the use frequencies. The common startpoint in each (Lp.sp.) is their origin: the
common zero.Their used quadrant is the l" one because we must draw the development
of the storage levels of each noticed domain.The progression of each domain will be
transposed on a specific radius: B(s) trajectory. Here, the slope displays the major
infomations because its real projection indicates the storage increase and its imaginary
projection, the exploration frequency. In these Laplace presentations we can compare rhe
evolutions of each topic with easiness and accuracy from the reckoning of each numerical
slope indicator which is for the (k) domain :

I (^ar) / (^o)lk = tan(0k) (17)

Àcrtk
CF

D(B)k * (Ato /Ào;p

= tan (0k)
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Time planification can be inserted in each (Lp.sp.)t by quoting reached dates on the
planned time scale what allows evolution control. For the mathematical description of
these managements the polar coordinates are used to locate the (k)domain states (Rk, 0k).

Fig. 19: laplace representation when
an intercst decrease occurs

Fig.20: l-aplace
represen0ations when:
document acquirings are braked

9.3 Specific Supply of the Method
This L,aplace management intnoduces the *conviviality" and the limpidity of the geometric
configurations coupled to a vector decomposition for a more simple analysis. It is easy to
record the effects of the various disturbances when they occur in each (k) domain as
indicated on (Figs: 19 - 2O).
Fig.l9 presents a broken development due to an interest decrease for this (k) domain.
Fr!. 20^presents various evolutiôns when the document supplying is perturbed. Along
@l) for a docmrent destmction or loss; along (D2) for impossibility to acquire additional
documents; along (D3) when document depletion occurs.

10 Conclusion

Here was underlined the reactivity power for structuring the (Lp.sp.) because tbe (p-z)
pairs are issued from the operational description of the reactive subsystems.The analogy
between the I qflace distribution of the (pz) and the electrical fields allows to understand
rapidly the p'rofile of the L-aplace trander fimctions which seems essential to explore the
forecasting processes. Besides we have identified the (Lp.sp.) with a vector of Fourier
Spaces with altered radii. This is a major support for discovering the common
specificities between these both trandormations.To extend further this essential idea we
have remarked that the {R L}stars could also result from discret Fourier distibutions
whose J axis would be orthogonal to their (Lp.sp.). The star products were also used to
explain the Laplace transposition of the convolutions between system pairs.
Finatly the extension of the [:place method for the development of a (DC) has shown the
(Lp.sp.) power for the analysis of various dynamical domains.
We notice that the key methodology of this communication is founded on geometrical
deductions what gives a deep and speedy exploration of (Lp.sp.) and delivers important
didactic wins. We let remark the advantages and easiness of the polar coordinates to
follow the time evolutions of the subsysûems in (Lp. sp.).
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