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Abstract
Herein a full quantum mechanical deployment is provided on the basis of the frame

drawn in the previous Pan L Thus it is sfiking to find out that occrurences taking place
at both atomic and celestial scales, can be described based on similar tools.
Accordingly, the gravitational field is quantized just like the electric field. The tools in
question in return are, as we have shown, founded on solely the energy conservation
law.

The relativistic quantum mechanical equation we land at for the hydrogen atom, is
equivalent to the corresponding Dirac's relativistic quLntum mechanical set up, but is
obtained in an incomparably easier way. Following the same path, a gravitational atom
can be formulated, in a space of Planck size, with particles bearing Planck masses.

For simplicity, we will enumerate the sections, as well as the equations, in
continuify with the corresponding sections and equations drawn in the previous Part I.
Keywords: Mass Deficiency, Gravitation, Quantization, Electric Charge, Metric
Change, Plarrck Size, Planck Mass, High Energy Cosmic Rays, Gravitational Waves

5. Full Quantum Mechanical Deployment of Our Approach

Here again we will consider for simplicity the hydrogen atom, where to begin, we
assulne the proton at rest, without however any loss of generality. We will also neglect
the spin-orbit interaction, still without any loss of generality.

Let us then evaluate the difference rD based on the usual relativistic definition of the
momentum p(ro) of the electron on the orbit, i.e.

p(ro) = m(ro)vo(ro);

recall that here m(ro) is the overall mass, defined along our Eq.(13).
Thus
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,D=m'(ro)ci-mi(r,)câ =l t3-tâ -*i-"1 l(r- 

t" '  
, ' ' l  =p'(r,)"â. (15)

It-* ,J' 
romo-roc; /

Recall on the other hand that m(ro)cfr is nothing else, but (in the relativistic sense)

the total energy Ero,u,.
Then

p'1ro)ci =Eioor -m;-"i (r- É_11' 
.

\ romo*co /

p2(rn)ci+mfr*ci (r- t"' 
, ' l '=ui"*, .

\ romo_c; /

(16)

(17)

We can compose the correct relativistic qwntum mechanical equation for a
stationary case, to replace the classical Klein-Gordon Equation" via the usual quantum
mechanical symbolisms of the momentum, and the energy, i.e.

p(ro) = -ihv '

E?*,=-nt#
(18)

(le)

Thus

-â2v2o1ro, to)câ +, , ,3- . ; [ r  -  t " '  
r ) ' ro( ro, to)=- f t '  

ô '?rD{ I r to) ,  (20)" 
\ romo*ci) " dt;

(correct relalivislic equation written out of the "overall mass"
expression, embodying the mass deficiency of the bound electron,
instead of the clussical Klein-Gordon Equation)

where iD(ro,to) denotes the space and time dependent wave function; note that by
"correct relativistic equation", we mean, "equation taking into account tre mass
deficiency of the bound electron, next to the mass dilartion of it, due to its motion".

Eq.(17), for a stationary case should be written as

'  ?F' '  I  ' (  ,- zë-l 
vtrr l  =Ef".,ry(ro) ._ft-v-y(ro)c;+mo_co[ 

.onrr_.; 7
(corre ct re lat ivist ic eigenva lue-eigenfunct ion equation)

(21)

where y(ro), in short Vo, is the eigenfunction of the relativistic description of the

stationary case in consideratioûl Erotur then becomes the corresponding eigenvalue. We

will see below that Eq.(21) well reduces to an equation involving Ero,' instead of
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Efo,., , so that at the level of this equation, one does not have to question the classical

meaning of the wave function y(6).

S.l.Derivation of the Schrodinger Equation from Our Approach
Schrodinger most likely did not think to take into account the mass decrease of the

bound electron f33,34,35,36], i.e. the term between brackets, multiplying mj-cf , at the

LHS of Eq.(21), nor seemingly did anyone after him.
We can easily derive the Schrodinger Equation, based on Eq.(21). Thus, note first

that the eigenvalue Er"n, yeld by the Schrodinger Equation is less than Ero", as much as

mo*c; , the energy equivalent of the rest mass of the electron, i.e.

Es"t, = Ero, -m*cl (22)

(definition we make in conformity
*-i4h the eigenvalue oJ the Schrddinger Equation)

Recall that Eroo, is, by definition [cf. Eq.(13)] apositive quantity. Therefore E*n, is

a negative quantity, and as a first approach, should expected to be, as usual

E*, 3mo*ci1t -) ;Z'o '1-mn*ci  =-^*"6# (forsmal l  Z's),  (23-al

n being the usual principal quantum number, and the fine structure constant ctr.

2fie' I
û " ^  = - = -  ." hco 13"7

Eq{22\ thus can be rewritten as 
\

/ F \

Eroor =-o-ci l  l *  " t"n ' ;  |  .
\  mo-c; /

YiaBq.(22), Eq.(21) will be written as
( .  z e z  ) '  _  . (  E ^ ,  ) '-h'Y'\ ,nci +mfr-cl  I  t ---- :-  I  Vn =t i- .âl  t*--51 V, .
\ romo_c; / \ mo*cô ,/

(23-b)

(24)

(2s)

(26-a)

(26-b)

(correct relativistic quantum mechanical equation written based on his
overall mass expression, to be set to a constant, on a given energy level)
Note that this equation is rigorous; thus so, at this stage, is E..n..

Now, let us arrange the brackets at both sides of this equation, noting that both
Zez l(mr*rrcfr) and Er"n. /(mo-cfr) are generally very small as compared to unity.

Thus:

-|_'o'v'\yo - z" 
vo = Es"n,vo ,

/ffin_ ro

-=L -|'y2ryo + V(ro)ryo = Es*.Vo (c.q.f.d.) ,
ZrDo*

or the same
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fclassical Schrodinger Equation derivedfrom the correct
relativistic equation, with the approximaîion that Ze2 /(mo-rocf )
and E*n /(mo*cfr ) ore very smoll as compared to unityJ

where V(r;), as usual denote the potential energy - Zez I ro.

5.2.Correcl Simple, Relativistic Quantum Mechanical Equation
Via taking into account the terms we have neglected in Eq.(25), we arrive at an

equation which can be considered well equivalent to Dirac's relativistic equation,
incorporating though the mass decrease of the bound electron:

(27)

(conect relativistic quantum mechanical equation, derived from
the correct relativistic equotion omitting the spin-orbit interacîion)

where E* is the 'lgorous total energy" (diminished by the energy content of the rest
mass), i.e.

En = Eroor - mo-ci ; (28)
this is the same definition as the one we provided viaBq.(22), rvith the difference that
ER of Eq.Q7), now points to the "rigorous result" [whereas Er"n, of Eq.(26-a)
constituted a first approximation to it].
For the reason which will become clear soon, we will wriæ Eq.(27) in a simpler form:

- *** = [r. . ;*. + - +ffi).*

--!l-gr*o *UrVo= ErVo ,
/Bo-

where we define E, and U, as
p 2

Es  =E*  + : *  ,
zmo*co

u"=-2"' *! -z'"0 -
" ro 2 r(mo_ci

Note that once E, is knowU interestingly there are lwo roots

(2e)

(30-a)

(30-b)

E* , conesponding to it.

S.3.Equation Equivalent to that of Dirac's Relativistic Equation
Above we preferred to define the quantities E. and Ur, for the following reason:

On the basis of the classical Schrodinger Equation [Eq.(26-a)], E* [from Eq.(30-a)]
wouldbe straight Er; thus in this case E' E* and E*n. are all the same quantity.
Through a better approach, but where we neglect the second term of the RHS of Eq.(30-
b); E* of Eq.(30-a) becomes
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F 2  (  ç  \  f  T "  
r \

E*  =E* r , -=  " i  ,  =E*n , f  1 - - - t r * - l=Er * , [  t * " ,o r l l ,  (31 )' 2mo*ci -- 
t 2mo*cf ) 

^" 
\ 4n' ) 

'

(in the case where we neglect the potential energ/ alterqtion
due to the mass decrease of the bound electron)

where n is the principal quantum number.
E* can further be refined via calculating the nvo roots of Eq.(30-a):

(32-a)

Thus the root ERr*) for the positive sign yields

(32-b)

which strikingly tums out to be the exact Dirac solution were (the second temr at the
RHS of Eq.(31) neglected, and) the spin-orbit interaction not taken into account [l].

We can right away estimâte that, in this case the magnitude of E* is larger than that
of the corresponding Schrodinger eigenvalue, as much as Ei làmo*cf; (yielding a
downward shift) [cf. Eq.(23-a)].

But, what we just have come to neglect essentially, is the effect of the mass decrease
of the bound electron, altering the potential energy input to the classical Schrodinger
Equation. ln other words, the RHS of Eq.(31) or Eq.(32-b) represents the corrected
Schrodinger eigenvalue based on only the relativistic effect due to the motion of the
elechon.

Recall yet that, along the line we pursue, Eq.(31) is incorrect, since Eq.(30-a) should
be considered together with the RHS of Eq.(30-b) including not only the first term, but
the second term, as well. This is what we will undetake below.

5.4.The Shift Discovered Along our Approach -Contrary to Dirac's Prediction-
is Upward, and not Downward, and is Twice as Important as that of Dirac

In the case we consider Eq.(30-a), together with Eq.(30-b) as a whole, the
eigenvalue E'n., in conformity with the classical Schrodinger Equation's eigenvalue
still bears the form displayed by

E** =E*.;;s3 (33)

but now on the basis of the perfubed potential, defined by the second term at the RHS
of Eq.(30-b).

The quantify E', is to be compared with the eigenvalue E$ii of the unperturbed
classical Schrodinger Equation, i.e. [cf. Eq.(23-a)]
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Ei"iT = -mo-cl I4,-_o 
2n,

But, evidently
r" =Eif;' .

(34)

(35)
Thus the pernubed Schrodinger eigenvalue E- of Eq.(21) can be expressed as

E* = Ey.i'+g$ii)' = eyglr -!4). (36)
2mo*cf, 

-schr 
f^ 4n' )

(in the cqse where we tqke into qccount the potential energl
slteration due to the mass decrease of the bound electron, along the
relativistic dilation of the mass of the electron, in motion)

Thus, it is question of - not a downward, but - an upward shift, with regards to
Ertfl', and this as much as n*Y;;2'za'1^tq+n'z1 .

Recall that, as we discussed above, the upward shift we figure oul does not interfere
with the successful quantum electrodynamical predictions, such as the prediction of
Lamb shift (since here it is question of relative distances between energy levels);
though, our finding as stated, should be expected to remedy the discrepancies between
theory and experiments.

Anyhow, it is amazing that (supposing the proton is fixed), one cm obtain the total
energy of the electron (diminished by the energy content of its proper mass), ernbodying
both its proper mass decrease due to binding, and the relativistic effect arising from its
motion around the nucleus, from a simple equation just bearing the form of the quantum
mechanical description written in the non-relativistic case, where merely the classical
eigenvalue Er.n. is altered by -E3", l(2mo*cl) while the classical potantial energy is
altered by Z2eo lçr(zmo_ci), tcf. Eqs. (27)1.

The foregoing discussion allows us to cJnsider Eq.(l) as a basis, instead of Eq.(13),
in order to develop a straightforward relativistic quantum mechanical description with
regards to gravitation, to be visualized whgnever it may be necessary, and mostly for
very strong {ields.

This is what we undertake next.

6. Full Quantum Mechanical Deployment of Our Appræch lVith
Regards to Gravitation

Here again we will consider for simplicity just two objects, one very massive and
the other one is very light, so that the former can be assumed throughout the motion at
rest vis-à-vis the very light object.

Let us then evaluate the difference O based on the usual relativistic definition of the
momentum p(ro) of the electron on the orbit, i.e.

19r

p(ro ) = m(ro )vo (ro ) ; (37)



note that here m(ro) is the overall mass, defined along our Eq.(ll) [along with Eqs.
(12-a) and (12-b)1.

Thus

o =m2(ro)câ -m;Go)câ (38)

Recall on the other hand that m(ro)cfr is nothing else, but (in the relativistic sense)

the total eûergy Eroo, . Then

p'z(ro)c; =Ei*, --3-"â (exp-croe- f , (3e)

(40)
We can compose the correct relativistic quantum mechanical equation for a

stationary case, to replace the classical Klein€ordon Equation, here again, via the usual
quantum mechanical syrrbolisms of the momentum, and the energy, i.e.

(41)

(42)

Thus

-h2Y2@1ro,to)cj  +mfr-ci(exp-ûoê-o)to1ro,to;=-o'  
à2<D(ro' tn) .1}3)

dtô
(correct relativistic equation written out of the "overall mass"
expression, embodying the mass deficiency of the bound electron
instead of the classical Klein-Gordon Equation)

where @(ro,to) denotes the space and time dependent wave function; note that by
"correct relativistic equation", we mean, "equation taking into account the mass
deficiency of the bound electron, next to the mass dilation of it, due to its motion".

Eq.(40), for a stationary case should be written as
-à2V2ry(ro;cfr +mj*ci ("^p-oo"-.f v(ro) =Ei,rv(ro) , (44)
(correct relativistic eigenvalue-eigenfunc tio n equat ion
written with regards to grovitation)

where ty(ro), in short Vo, is the eigenfunction of the relativistic description of the
stationary case in considerationi Ero,", then becomes the corresponding eigenvalue.
We will see below that Eq.(44) well reduces to an equation involving Eroo, instead of

Efoo,, so that at the level of this equation, one does not have to question the classical
meaning of the wave function ry(ro).

p'(ro)c; + mj-ci (e*p - oor-" )' =Eioo.

P(ro) = -ihv ,

Eioo,= -h'J 
4.
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6.l.Derivation of s Schrodinger Equation for Gravitation Based on the Present
Approach
We can easily derive a Schrodinger Equation, based on Eq.(,+4). Thus, note first that

the eigenvaluÊ Er.n yeld by the Schrodinger Equation is less than Ero,u' as much as

mo-cf , the energy equivalent of the rest mass of the electron, i.e.

8."n. =Eroor -mo-câ (45)

(definition we make in conformity
with the eigenvalue of the Schrôdinger Equation)

Recall that Eroo, is, by definition [cf. Eq.(4)] a positive quantity. Therefore E.",,. here

again, is a negative quantrty, and as a first approach, ca1 b; quickly predicted to be

E."* Ê mo-ci(l -fi z'o')- *o-"i = -mo-cô 
# 

(for small Z's) . (46-a)

where we define the dimensionless quantify Z as

in order to be able to keep the same formalism as that we used throughout the previous
section. (Recall that the gravitational quantities were defined above.)

Eq.(45) thus can be rewritten as

"=Y-,

Ero.' =.r-";ir*-E+)
\  mo*co /

Via Eq.(45), Eq.(aA) will be written as

(46-b)

(47)

(49-a)

(4e-b)

(48)

(carrect relotivistic quantum mechanical equation written with
regords to gravitation based on the overall mass expression)

Noæ that this equation is rigorous; thus so, at this stage, is Er"*.

Now, let us ilrrange the brackets at both sides of this equation, noting that both co

and E*. /(m*cfr) are generally very small as compared to unity.

Thus:

- h'Y' ry o c! + mi-cl (exp - aoe-" )' vo = -i*"; [r * J ""- l' *. .
\  m o - c o , i

- | 
h'v\tto-G4!=vo=Es"r,.vo '

2mo* ro

or the sarne

- | 
h'V'ztyo + V(ro)ryo = Er"n,Vo (c.q.f.d.) ,

2*o-

[classical Schrodinger Equation derivedfrom the correct relativistic equation,
with the approximation that -G%.mo-(romo-câ) and E**/(mo-cfr) are very

small as compared to unityJ
where V(ro) now denotes the classical gravitational potential energy -Ggrlmo* I ro.
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6.2.Correct, Simple Relativistic Quantum Mechanical Equation with Regards to
Gravitation
Via taking into account the terms we have neglected in Eq.(25), but neglecting

(without any loss of generality), terms higher than the second order term in the Taylor
expansion of the exponential term, we arrive at an equation which can be considered
well equivalent to Dirac's relativistic equation, written for gravitation:iti

-  =o' rr*o =[E* * l lL* ot** -o;t ' tq-] t , ,
zfro* \ r mo_c6 ro rtmo-c; /

(conect rel ativistic quontum mechanical equation for gravilation

(s0)

derived from t he correct relativis lic equation)
where E* is the rigorous total energy (diminished by the enerry content of t}te rest
mass):

E* = Ero,", -mo-cfi ; (s 1)
this is the same definition as the one we provided via Eq.(45), with the difference that
E* of Eq.(50), now points to the rigorous result [where6 Er"n of Eq.(49) constinræd a
first approximation to it].

We can write Eq.(50) in a simpler form:
h 2-  ^ V'Vo + U.Vo = EsVo ,

/ûn*

where we define E, and U, as

E, =E* *=q , ,
zmo_c;

r T  _  G g r l m o * , G ' w = m i *
_s_---.--=----.----;_

(s2)

(53-a)

(s3-b)
ro rtmo_c6

Once again, our approach, allowed us to deploy, in a straightforward way, the
quantum mechanical version of it. It is still amazing that (supposing % is fixed), one
can obtain the total energy of the light mass (diminished by the energy content of its
proper mass at infinity), embodying both its proper mass decrease due to binding, and
the relativistic effect arising from its motion around tul , from a simple equation just
bearing the form of the quantum mechanical description written in the non-relativistic
case, where merely the classical eigenvalue E* is altered bV - Et* / (2mo*c!) while the

classical potential energy is altered by Gtn'mi-l(ro'zmo-ci).

"* The.igorous equation is

- l1o'* , ,  ={r"  * l  t i  
,  + l [ r -exp- izo,r- ' )ùv, ,

l rn6_  [  lmo_c;  z  ]
together with [cf. Eq.(12-b)1

ct = cne-o .

(i)
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6.3.A Quick Estimation of the Outcome
We can develop a feeling about the outcome of Eq.(50).

Eqs. (3). (5) and (6-a), for a circular orbit
For this. let us consider

Gî *n*"-".[ "; = g]9&1 = *(.)Sr_ v cô 
J,_* 

or r (s4)

Next, we should write the Bohr's postulate in an appropriate way. For this, it would
be useful to recall de Broglie's doctorate thesis [2].

Along this approach, Bohr's postulate reduces to the expression of de Broglie wave
(associated with the electron's motion), confined (thus, like any classical waveo bound
to be quantized), on the orbit. But the momentum of the electron entering the de
Broglie's relationship, must be the local relativistic momentum, where then, the "mass"
should be taken as the overall mass, we defined at the stage of Eq.(l).
ln fact, the first author was recently able to derive the de Broglie relationship, based on
the main idea presented herein, i.e. the mass deficiency delineated by the bound particle,
regarding either an electric field or a gravitational field, though inevitably inducing an
interaction, at taclryonic speeds [37,38]. -.-

lii Bu...l on Just rhe energy conservation iaw, we have come to figure out that, the gravitational motion

depicts a "rcst mass variation", throughout [cf. Eqs. (4) and (5)]. Consider for instance, the case ofa
planet in an elliptic motion around the sun; according to our appro:æh, an "infinitesimal portion of
the rest mass" ofthe planet. is trans{brmed into "extra kinetic energy", as the planet approaches the
sun, and an "infinitesimal ponion of the kinetic energy" of it, is transformed into "extra rest mass", as
it slows down away from the sun, while the total relativistic energy remains constant throughout. The
same applies to a motion driven by electrical charges.
One way to conceive the mass exchange phenomenon we disclosed, is to consider a'Jet effect".
Accordingly, an object on a given orbit, through its joumey, must eject mass to accelerate, or must
piie up mass. to decelerate.

The speed U of the jet. strikingly points to the de Broglie wavelength l,u, unavoidably coupled with

the period oftime ln, inverse ofthe frequency vn, delineated by the electrornagnetic energy content

hvn, ofthe object; 1ryu is originally set by de Broglie, equal to the total filass nt oftbe object (were

the speed of light raken to be unitl t. This makes that, the 'Jet speed' becornes

U  =  À e  / T , ,  - . t . i l  - t , t ,  * ; Â , ,  .

This result seems to be imponanr in many ways. Amongst other things, it may mean that, either
gravitationally interacting macroscopic bodics, or electrically interacting microscopic objects, sense
each other, with a speed much greatcr than that of light. and this, in exactly the same way.

Furthermore, it induces immediately the quantization of the "gravitational field", in exactly the same
mann€r, the "electric field" is quantized.
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Thus we are to propose
2nm(r )vor  =nh,  n :1 ,  2 ,3 ,  . . .  .

(de Broglie's relationship rewritten bv the author, instead
of Bohr's postulate, taking into account the overqll rnqss
decrease ofthe bound electron, confined on the given orbit)

The two unknowns v.n and ron (to be associated with the nth quantum
circular orbits can then be found to be [27]

1
von =

and

c o '

(ss)

level), for

(56)

(s7)

Here, the term in n", next to unity, in between brackets, for common celestial bodies,
is infinitely small. This makes that the velocity of the rotating object for n:1, as well as
for enormously high quantum numbers, easily attains the speed of light. Its oôit radius
r, accordingly, becomes

r=GY :
cf

r becomes sensitive to n, only around values of n, satisffing the relationship
n th tc i-----.l-------'-- = untfY-

4n2(Gnmo*e-"f
For a binary system, each of the stars bearing about the mass of our sun, one has

Gae " l  .  n 'h tc i  I
^- :----:--t t ï------------------ t ." ci | +n'lc*tmn- e-" )'_J

,  2nGwmn- _ 6.28x6.67x10-r 'x(2x30301r
-  u ^  I  v

hco 6.62x10-Yx3xl08

m =.,8 - 6'-6?Ilg-3ix3xl98 : 2.x10-sks ,
I2æG 6.28x6.67x10-rr

which interestingly, tums to_be the Planck mass.
The size of such a system based on Eq.(57), becomes

^Gev,t ^ l-ch'=2?*=' l t=3'2xlo-35m '

which is twice the Planck lensth.

for which r becomes only twice as that furnished by Eq.(58), and the rotational speed of
thebound object is about Jicol2.

Based on Eq.(59), we can further have an estimate about the mass m of relatively
light objects, gravitationally bound to each other, on a quantized state. Thus let us
consider a binary system, at n:I. Thus

(58)

(5e)

(60)

( 6 1 )

(62)
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The total energy of such a massive atomic system, can further be estimated quickly,
noting the following points:

i) It seems to be question of atoms made of Planck masses, bound to each other
gravitationally. We would like to call such a system a gravitational atom. Thus,
suppose, it is question of two Planck masses, bound to each other
gravitationally.

ii) The total energy of such a system, as well as energies related to the transitions
between states (ust like in fhe hydrogen atom), is proportional to the reduced
mass of the system, which evidently points to the order of magnitude of Planck
mass.

iii) Consequently, the total energy of the gravitational atom, as well as energies
related to the transitions between its states must be greater than those of
hydrogen atom, as much as [the mass of the Planck mass] / [the mass of the
eiectronl, i.e. about 2xl0-8 / 1ô-30, or 2xlt2.

The energies in question in hydrogen atom, are few electron volts; this frame yields,
energies for a gravitational atom, in the order of l022ev, which may clarify, the origin
of so very high energies encountered amongst cosmic rays.

Note that otn ftnding about the gravitational quantum states, necessarily induces the
tendency of an object in motion at a higlr err€rgy level, to move to lower energy levels.
Here may be a clue for the sreation of gravitational waves, in fact, according to the
prescnt approach, nothing but electromagnetic waves we expect to be emitted via
transitions in question.

7. General Conclusion

The energy conservation law, in the broader sense of the concep of energy
embodying the relativistic mass & energy equivalence, has been a coûlmon practice,
chiefly nuclear scientists make use of.

Yet amazingly, besides it is not applied to gravitational binding, it also seems to be
overlooked for atomic and molecular descriptions.

Thus, via Newton's law of gravitation btween two static masses, and the energy
conservation law, in the broader sense of the concept of energy embodying the
relativistic mass & energy equivalence, on the one side, and quanhrm mechanics, on the
other side, we have shown that one is able to derive the end results aimed by the
General Theory of Relativity.

Likewise, we proposed to reformulate the relativistic quantum mechanics on the
basis of Coulomb Force, but assumed to be valid only for static electric charges.

When bound though, the total mass, or the same, the overall energy of the electric
charges at infrnity, must be decreased as much as the binding energy coming into play.
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The frame we draw amazingly describes in an extreme simplicity, both the atomic
scale, and the celestial scale, on the basis of respectively, Coulomb Force (written for
static electric charges), and Newton Force (written for static masses).

The decrease of the mass of the bound particle, via Theorem l, this time applied to
the intemal dynamics of the bound particle, changes both the period of time and the size
of space to be associated with the internal dynamics in question, in exactly the same
manner, at either an atomistic scale or a celestial scale.

Thus, the frame we draw, felds exactly the same metric change and quantization, at
both scales.

One important conclusion is that the metric change nearùy a nucleus in reg;ards to a
charge is exactly the same as the metric change nearby a celestial body wift respect to a
mass.

For simplicity, we made our presentation on the basis ofjust two particles, one very
heavy, the other one very light, at both scales, without though any loss of generality.

All of our predictions, perfectly agree with the experimental results.
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