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Abstract
Via Newton's law of gravitation between two static masses exculsively, and the

energy conservation law, in the broader sense of the concept of energy embodying the
relativistic mass & energy equivalence, on the one side, and quantum mechanics, on the
otheç one is able to derive the end results aimed by the General Theory of Relativity.
The energy conservation law, in the broader sense of the concept of "energy"
embodying the relativistic mass & energy equivalence, is anyway a common practice,
chiefly nuclear scientists make use of. Yet amazingly, besides it is not applied to
gravitational binding, it also seems to be ovedooked for atomic and molecular
descriptions. Thus herein, next to the reestablishment of celestial mechanics, we
propose to reformulate the relativistic quantum mechanics on the basis of Coulomb
Force, but assumed to be valid only for "static electric charges"; when bound though,
the rest mass of an electric charge, must be decreased as much as the "binding energy"
it delineates.

Along the same line, one can remarkably derive the de Broglie relationship, for both
electrically and gravitationally interacting objects. our results, furthermore, seem
capable to clarify the results of an experiment achieved long time ago, at the General
Physics Instifute of the Russian Academy of Sciences, but left unveiled up to now.

The frame we draw amazingly describes in an extreme simplicity, both the atomic
scale, and the celestial scale, on the basis of respectively, Coulomb Force (written for
static electric charges, exclusively), and Newton Force (written for static masses,
exclusively), in exactly the same manner. Our approach yields precisely the same metric
change and quantization, at both scales, in question.

For simplicity, the presentation is made based on just two particles, one very
massive, the other one very light, at both scales, without though any loss of generality.

Our predictions, perfectly agree with all available experimental results.
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1. Introduction

This artic.le is prepared based on the presentation the authors made at the PIRT
(Physical Interpretations of the Theory of Relativity), held in the Summer of 2005 in
Moscow [1]. The main idea consists in the "decrease of the mass" of the bound particle,
owing to the energy conservation law. A unique matter architecture cast yeld by both
"quantum mechanics", and the "Special Theory of Relativity", independently from each
otheq as we will soon unveil, tells how the metric is accordingly altered. The fact that,
"quantum mechanics" and the "Special Theory of Relativity" frame, independently
from each other, the same matter architecture, thus the same metric change, based on
the mass decrease we undertake in this article, tacitly delineates the organic interrelation
between the two disciplines. Three other articles presented by the first author to the
mentioned PIRT Conference, along with the frrst one, draw a complete picture, covering
both the micro atomistic world, and the macro celestial world, in utterly similar terms
f2,3,4f. The bound particle in consideration may be bound to any field it interacts with.
This allows us to treat all fields in the same manner (and not restrict us to consider the
gravitational field as a privileged field, a pitfall necessarily induced by the General
Theory of Relativity).

Below we first tackle with the "gravitational field" (Section 2), then with the
"electric field" (Section 3). This constitutes the content of Part I, condensed into a
partial conclusion (Section 4). In both of the cases in question, "quantization" follows
immediately and in exactly the same way; this constitutes the content of Part II
(Sections 5 and 6). Next a general conclusion is drawn (Section 7).

2. Mass Decrease of a Gravitationally Bound Particle: The End
Results of the General Theory of Relativity, via Just Newton's Law
of Gravitation, Energy Conservation and Quantum Mechanics

In a previous work [5], a whole new approach to the derivation of the Newton's
Equation of Motion was achieved; this, well led to the end results of the General Theory
of Relativity, were the velocity of the object at hand, not considered negligible as
compared to the velocity of light. Thus, one starts with the following postulate, in fact
nothing else, but the law of conservation of anergy, though in the broader relativistic
sense of fhe concept of "energy''.

Postulate: The rest mass of an object bound to a celestial body amounts to less than
its rest mass measured in empty space, the difference being, as much as
its binding energy vis-à-vis the gravitational field of concern.

A mass deficiency conversely, via quantum mechanics (whose basis, i.e. the wave
equation, together with, in a way the de Broglie relationship, is already fully consistent
with the Special Theory of Relativity), yields the "stretching of the size" of the.object at
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hand, as well as the "weakening" of its intemal energy, via quantum mechanical
theorems proven elsewhere f6,7,8,97. We summarizethem herein.

Theorem 1: In a "real rvave-like description" (thus, not embodying artificial
potential energies), if the masses ûlis, i : l, ..., I of different
constituents involved by the object, are all over multiplied by the
arbitrary number 1, then concurrently, a) the total energy Es
associated with the given clock's internal motion of the object, is
increased as much, or the same, the period To of the motion
associated with this energy, is decreased as much, and b) the
characteristic length or the size 4.e to be associated with the given
clock's*motion [10] of the object conûacts as much; in mathematjcal
words,*

[ ( m i o ,  i  :  l ,  - . . , I )  +  ( 1 4 6 ,  i  :  1 , . . . ,  D ]  = { [ E o  + 1 E 6 ) , 1  T o  - & 1 , [ R . o  + 3 t t l
xx

This, together with the above postulate, yields at once the next two theorems.
Theorenr 2: A wave-like clock in a gravitational field, retards via quantum

mechanics, due to the mass deficiency it develops in there, and this,
as much as the binding energy it displays in the gravitational field; at
the same time and for the same reâsoq the space size in which it is
installed, stretches as much.

Theorem 3: A wave-like clock interacting with any field, electric, nuclear,
gravitational, or else (without loosing its "identity"), retards as much
as its binding energy, developed in this field; at the same time and for
the same reason, the space size in which it is installed, stretches as
much.

This can further be grasped rather easily, as follows. The mass deficiency the wave-
like object displays in the gravitational field (or in fact, any field with which it
interacts), weakens its intemal dynamics as much, which makes it slow down. Thence,
one arrives at the principal results, stated above. In order to calculate the binding energy
of concem, we make use of the classical Newbnian gravitational attraction law, yet
with the restriction that, it can only be considered for "static masses". Luckily we are
able to derive the lll dependency-of the "classical gravitational force" between "two
static masses", here again, based on just the Special Theory of Relativity Q]. This can
be achieved easily by noting that the quantity [force] x [mass] x [distance]' is Lorentz

; Note that as the "overall mass" ofthe object increases by the arbitrary lactor f, and this aheôdy at rest,
its internal dynamics speeds up as much; or the same, its de Broglie wave-like frequency is increased as
much [2]. One can show that, only if such a characteristic is drawn, the internal dynamics slows down
as much, in the case where the object is brought to a uniform translational motion, J( then becoming
the usual Lorentz dilation factor.
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invariant.$ (ln fact, dimensionally speaking, it amounts to the square of the Planck
Constant, which in retum is Lorentz invariant.) On the other hand, it is known that the
electric charges are Lorentz invariant. ([f not, say in excited atoms, energetic electrons
would exhibit electric charge intensities different than the electric charge intensity of the
electrons at the ground level, which is not the case.)

Now suppose we have a "dipole" of a given mass at rest, bearing a given length r at
rest. Coulomb Force reigns between the electric charges. Suppose we assume that
Coulomb Force is, as usual, expressed as proportional to the electric charges coming
into consideration, also to l/rn, where though we do not know, a priori the exponent n.
Suppose then we bring the dipole to a uniform translational motion, along the direction
delineated by the line connecting the electric charges making it. Since then, [mass] x
flength] remains inv-ariant, it becomes evident that the Lorentz invariance of [force] x
[mass] x [distance]' shall hold, only if Coulomb Force, dimensionally behaves as
[ctrare.]'/r", n being exclusively 2, given that charges areLorentz invariant.

Note that the same holds, if "charges", in question, are gravitational charges; in this
case however, the product of charges should be considered together with the universal
gravitational constant.

Thus, the framework in consideration is fundamentally based on the Special Theory
of Relativity.

The related metric (just like the one used by the General Theory of Relativity) is
altered by the gravitational freld (in fact, by any field the "measuremant unit" in hand
interacts with); though in the present approach, this occurs via quantum mechanics
(anyway nailed to the Planck Constant, a universal Lorentz invariant constant).

Henceforth, one does not require the "principle of equivalence" assumed by the
General Theory of Relativity, as a precept, in order to predict the end results of this
theory.

Let then mo- be the mass of the object in consideration, at infinity. When it is

bound at rest, to a celestial body of mass ?l , assumed for simplicity infinitely large as
compared to mo-; this latter will be diminished as much as the binding energy coming

into play, to become m(r) [r being the distance of mo- to the center of ftl f, so that [5]

where crlr; is

G is the'hniversal gravitational constant"; r is the distance of m(r) to the center of ful-,
as assessed by the distant observer.

Note thaî m(r) becomes the "gravitational mass"o if the object remains at rest.
Otherwise, classically speaking, it is neither the "gravitational mass", nor the "inertial

5 The dimension of "force", is as usual, [mass] x flength] x [period of time]''.

fir(r) = û10*g-c('l ,

G%
Cr(r) = --; ;

rc;

(l-a)

( l -b)
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mass"; it is the" rest mass" of the gravitationally bound object (at rest). This will be
clarified at the level of Theorem 4, stated below.

An explanation regarding the reason, for which energy should be retrieved from the
mass of the tiny bound object, and not from the infinitely more massive celestial body
hosting it, is provided in Appendix A.

We would like to recall that G is not Lorentz invariant, though classified as a
universal constant. [One can immediately see this, as follows: Dimensionally speaking
GMm(r) is equivalent to (electric charge)'; but the electric charge intensify is Lorentz
invariant; thus so must be the quantity GMm(r); mass is not a Lorentz invariant
quantity; hence neither G can be, though the product GMm(r)is].

Via difïerentiating Eq.(l-a), along with Eq.(l-b), it can be checked that we are
indeed dealing with nothing else, but an "energy conservation equation", i.e.

dm(r)ci=6-(?fla' ; Q)
t '

in other words, the RHS of this equation is the "energy", one would have to fumish to
m(r) at r, in order to carry it away from fl4., as much as dr, and the LHS is the "energy,
equivalent of the mass increase" dm(r), the mass m(r) delineates throughout, as imposed
by the Special Theory of Relativity; "energy conservation" imposes that the two
quantities of energy [the two sides of Eq.(2)], are equal to each other (c.q.f.d.).

Now suppose that the object of concern is in a given motion around %.; T}:ie motion
in question, thus can be conceived as made of two steps:

i) Bring the object "quasistatically", from infinity to a given location r, on its
orbit, but keep it still at rest.

ii) Deliver to the object at fhe given location, its motion on the given orbit.

The first step yields a decrease in the mass of mu- as delineated by Eq.(10). The

second step yields the Lorentz dilation of the rest mass m(r) at r, so that the overall mass
mr(r), or the same th€ total relativistic energy of the object in orbit becomes

m,(r)c i=+g=mo-c3$^; (3)
I '  vô I '  vô

{ '-  " i  1/ '-A
vo is the "local tangential velocity" of the object at r.

The total energy of the object in orbit 1i.e. mr(r)ci ] must remain constant

[ 1,12,13], so that for the motion of the object in a given orbit, one finaily has..

'. 
Amazingly the General Theory of Relativity predicts (as furnished by Reference 7)

mr(r)cfr = moci Ut -'? 
=aorr*on t (retation-ûip ptesented 61 Lanlauan[ Lifsfritz\,'  

l r - v ô
]J' cl

( i)
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mr(r)c; = mo-ci $ =cot stant ; (4)

i r -5
lcfr

(basis of the equation of gravitational motion)
vo (the relative velocity of mo in regards to tut), and co, in our approach, if written in

terms of lengths and periods of time picked up along the trajectories in consideration,
remain the same for both the local observer and the distant observer, similarly to what is
framed by the Special Theory of Relativity.

The differentiation of the above equation leads to

* ( r -4 . l *=vodvu.r -  \  c o )

This equation can be put into the form

Gn( e-"" \(, u; )ro - or3(t,)-T_t *%JI.'-AJ;-=C- '
written in terms of the "proper quantities", via the relationship

r = r o e  = r o e o o ,

as induced by Theorem 2; qo is the vector bearing the magrritude

outwæd.

(5)

(6-a)

(6-b)

rn, and directed

Eq.(5) is the classical Newton's Equation of Motion, were v0 negligible as

compared to co.

Multiplying Eq.(6-a) by the "constant overall massn' my(r) at both sides, one for,

oo (( 1, can state that (cf. Appendix B for the elucidation of a false contradiction

be*æcn the present approach and the classical approach)

(Statu çraviutiow( forcel(L - oo )"-"0 , /t - 5 = (overatr *lass)x(ncceteration) . (7)
\ l c o

rÀich coincides, up to the second order ofthe corresponding Taylor expansion" with Eq.(4); yet there
does not seem any easy way to interpret the numerator, ofEq.(i), whereas, not only that it is possiblc to
eecsrtain what the nrunerator ofEq.(a) is all about, but also, the sa up ofthis latter equation is evident.
Eq.(a), on the other hand, is firlly consistent with what Yilmaz would have written, in the same way as
that preseated by Landau and Lifshitz, leading to Eq.(t, with the exponential correction (References 7,
and 8) ftat Yilmaz proposed to Einstein's metric, i.e.

e *
mt(r)c6 = mbc6 -T:= =Constant :

I '  v;
. i r -  " ;

ll cô

(relationship that would have been wrirten by Yilmaz, had he

followed the same way as that presented by Landau and Lifshitz,

together with the correction he proposed to Einstein's metric)

(ii)
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Thence, Newton's equation of gravitational motion, i.e. [Gravitational Force = Mass

of the Planet x Acceleration], is broken, since an extra term, i.". .-".,,/il uâ l4 comes

to multiply the "gravitational force", in its classical form.
Formally, this equation can be restored, if instead, one chooses to alter the

"Newtonian gravitational force"; but then the "gravitational mass" and the "inertial
mass", as classically defined, shall not be identical.

Thus one can establish the following theorem. (A rigorous proof of it is provided in
Reference 5.)

Theorem 4: The gravitational mass mgpviatioa, and the inertial mass mi,sria' tls

classically defined, are not the same; the theory summarized herein,
to formally save Newton's equation of grovitational motion, predicts

----l

f f iF"rut ionar =mo-exp(-ol r / t -*  '  (8)

{ c ;

given that

hir*i.l =

though undetectable for most cases routinely considere4 mgnv*atrmar

and m,n*,", differ.

Thence one arrives at
1

ffimvrmimal = ffiin"niul --î 
t' ! -

I

(10)

(relatictnship predicted by the author)
this result is amazingly the same as that predicted by Mie back in 1912, as a result of his
"inverse problem set up" II4,I5,I6].

Nordstrôm too predicted it, though through still a totally different way [17,18].
It is further interesting to recall the parallelism de Haas has drawn between de

Broglie's clock-wise frequency and wave-like frequency, on the one hand, and Mie's
gravitational mass and inertial mass, on the other [9].

Theorem 4 in short, tells us that the "Newton's second law of motion" along with
'Newton's law of gravitation" can still be used, provided that the "gravitational mass"
to be input to the "Newton's law of gravitation" is taken as the one given by Eq.(8), and
the "inertial mass" to be input to the "Newton's second law of motion" is taken as the
one given by Eq.(9).

Eqs. (8), (9), and (10) are interesting, for they suggest that a moving particle in a
gravitational field would weigh less than the same particle at rest, in the same location
in that field. V. Andreev effectively reported at the mentioned PIRT Conference that, a
pendant load inadiated at the General Physics Institute of the Russian Academy of

(e)
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Sciences, by high energy electrons, comes to weigh less than its untouched twin
counterpart [20].

The first author of this article, right after Andreev's presentation, suggested that, the
effect must be due to energizing the unpaired electrons of the atoms of the load in
consideration (which happened to be duraliminium); these electrons, based on Eq.(8),
become practically weightless. A quick calculation indeed proves this point of view,
which shall be elaborated on, in a subsequent article.

Let us go back to Eq.(9). Taking into account the quantum mechanical stretching of
lengths in the gravitational field [i.e. Eq.(6-b)], Eq.(4) can be transformed into an
equation written in terms of the proper lengths [3,21], i.e.

exp ( - ooe-') = Constant , ( 1  1 )r--;
lr - \'ô

1 l  
'  

^ l
ï r o

where cln, i.e.*r

Gx4.
oo = 

'uti 
'

is now expressed in terms of the proper distance r0 ; note that the constant, appearing in
the RHS of Eq.(l l) is diffelent than the constant appearing in the RHS of Eq.(l-b); the
relationship between cto and c [via Eqs. (1-b) and (6-b)] is

0 = 0 0 Ê  
o (12-b)

The use of Eq.(ll) [instead of Eq.(4)], will lead to the replacement of exp(-cr), at
the Right Hand Sides of Eqs. (8) and (9), by the exponential function exp(-aoe-" ).

It should be recalled that, though consisting in a totally different set up, than that of
the General Theory of Relativity, Eq.(ll) amazingly yields results identical to those of
this theory, within the frame of the second order of corresponding Taylor expansions.

3. Mass Decrease of an Electrically Bound Perticle: Application of the
Approach to the Hydrogen Atom

Based on the foregoing discussion, hencefortb we should take into account the
proper mass decrease of the bound electron, as implied by the Special Theory of
Relativity.

More specifically we can think that, the hydrogen atom is made in two steps:
l) We bring the electron from infinity to a given distance from the nucleus

(supposing for simplicity, yet without any loss of generality, that the proton is

" The transformation between the 'proper distance"
assessed by the observer situated at this location,
distant observer, in effect, becomes (Reference 1 l)

(r2-a)

r0, of a given location P to the center of ll , as
and the same disance r. but as assessed by the

r = r o e " = r o e " n

r79
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fixed); owing to the equivalence between mass and energy, this process reduces
the electron's proper mass as much as much as the magrritude of its (in the
classical sense) potential energy, at this location.

2) Next, we deliver to the electron its orbital kinetic energy (however, the orbit
may be conceived); this process, in the familiar relativistic way, increases the
already decreased proper mass, by the usual Lorcntz factor.

Thus Dirac, just like Sommerfeld had considered the second process, but not the
first ole.

Recall that, Dirac's theory does not cover thoroughly the experimental results
l?2,23,24,25]; the measured doublets due to spin-orbit interaction remained narower
than predicted-

Our approach yields a shift of energy levels, upward (whereas the "relativistic
quanhrm mechanics", just like "Sommerfeld's approach", predicts a shift of the Bohr
energy levels, downward)-

The upward shift in question depends on, just the principal quantum number, thus
effects in exactly the same way, the shift of the 2S,,, level, and shift of the 2P,,, level,
which makes that, it is not in any extent, responsible of the electrodynamical splifing of
these levels (i.e. the Lamb shift). Yet it should account for the discrepancy between the
theoretical prediction of the Lamb shift and the measured value of this.

We are going to base our approach on just hydrogen-like atoms. Further, for
simplicity (though without any loss of generality), we shall negiect the mass defrciency
undergone by the proton in the hydrogen atom, as compared to that displayed by the
electron; along the same line, we can consider that, the reduced mass of the electron and
the proton, is the mass of the electron, straight.

We thus make the followins definitions.

m(ro)

distance of the elecffon to the nucleus

the electron's rest mass at infinity

the electron's rest mass at a distance ro from the nucleus

the electron's overall mass (which is its mass at infinify, decreased as
much as its potential energy, and increasedbased onthe Special Theory
of Relativity, due to its "franslational" motion), on a given orbit, at the
location ro

the tangential velocity of the electron on the orbit (however the motion or

the orbit may be conceived), at the location ro
the charge intensity of the electron or that of the proton
the number of protons of the nucleus of the hydrogen - like atom

Our idea is simple; on a given orbit the total energy of the electron, i.e. m(ro)c;,
must remain constant. If the orbit is not circular, throughout the electron's journey on
the orbit, however this may be, both ro and vo shall vary; but m(ro)cj, thus m(ro)

must stay constant. Accordingly the overall mass, m(ro ) , or the total energy, m(ro )c I

ro

ûo- :

m o ( r o ) :

vo

Z
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of the electron, which we will call Eroo,, at a distance ro from the nucleus beanng Z

protons, shall be written as {26,271

m(ro)cfr

(overall relativistic energ/ of the electron, in a hydrogen-like atom,
the setting of which to a constant, detennines the given orbit's equation)

here, l*Zez/(romo*cl; isthedecreasefactorofthepropermass m0- oftheelectron,

when bound, at rest, to the nucleus of concem; thus Ze: / ro as usual, is the magnitude

of the potential energy, or the same, the binding energy at rest of the electron to this

nucleus, at a distance ro from it, \,vhich makes that Ze2 /(romo*ci) is the ratio of the

potential energy to the original proper ensrgy. O-ur approach interestingly generates, the
improved Webèr's Potential 128,,29, 30,3 1,3 2]. Ït

tl Th" differentiation of Eq.(13) yields the following noteworthy, general oôit equation, for the motion
ofthe electron around the nucleus:

ze' 
t-* 

- -. dvo (i)
____-___; ____=__ = t. __:_

mo*d 
,_ 

Ze' _ 
' dru

romo_Cô

(diferential eryression of the energt conservation law,

for the electron on the orbit)

One can hansform this equation into a v€ctor cquation" with not much pain, and show that the RHS is
accordingly traosformed into the acceleration (vector) ofthe electron on the orbit.

Thus recalling that the LHS of Eq.(13), i.e. m(q')cfr, is constant, one can write

+l.F$u=mG")44;
t; Ï- ci n 

-\-ul 
dt

(equation ofmotion wrinen by the author, viajust the energt
consemation law, extended to cover the nass - energt equivalence)

here, ro is the radial vector of magritude r0, and vo is the velocity vector of the electron.

The orbit would be as customary elliptical, for a small Z, thus a small v; otherwise it is opea; in other
words, the perihelion ofit, shall precess throughout the motion.

This is anyway the same relationship as that proposed by Bohr, except that tbe electrostatic force

intensity is now decreased by the factor [48 .

(ii)
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According to our approach, it is in fact the decreased mass at rest, mo(ro) at rn,

which is increased by the Lorentz tu"to, UJt-rî4,, due to the electron's motion

around the nucleus (and not the proper ûtâss lne- , measured in empty space, free of any
field).

Dirac's theory, just like Sommerfeld's approach, misses the decrease factor
l-Ze2 /(romo-cfr) we introduced in Eq.(l). This factor, as will soon become clear, is
very small for small Z's, but may become quite important atbigZ's; anyway (as we
shall elaborate below) the inverse of it, is amazingly equal to the square of the Lorentz
factor meaning that the overall mass (contrary to the actual wisdom and related
mathematical formulation), is always smaller than mo* .

On can, based on Eq.(13), frame in a straightforward way, a corresponding quuotu-
mechanical formulation. This is what we undertake next.

4. Conclusion of Part I

Herein we have shown (based on just the energy conservation law) that, both the
atomistic and the celestial motions can be described along with similar concepts,
provided that the mass deficiency of the bound particles is taken into account. This
amazingly leads us, to all of the observed occurrences, though in a much simpler way
than that classically followed.

Thereby the Coulomb Force, or the Newton Force, holds only for, respectively,
static charges, and static mâsses.

Thus, we have shown that these force laws, are not any more valid if the test charge
moves around the source charge, or similarly, the test mass moves around a given
source mass.

ln the next part, we are going to develop a full quantum mechanical deployment
based on the findings, we have presented herein.

The cited references, are presented, altogether, at the end ofPart IL

Appendix A

Why Mass Should be Retrieved From the Tiny Object
Bound to an Infinitely More Massive Celestial Body?

Suppose indeed we set the very tiny object of mass m_ and the very massive object
(ys) (originally assumed at rest), simultaneously free, in the reference system of the
distant observer. Because of the attraction force, they will get accelerated toward each
other, and at a given distance from each other, they will come to acquire the velocities
v and v"o (supposed far below that of the speed of light), thus the kinetic energies
frt v\o I 2 and m* v' / 2 . Because of the conservation of the linear momentum, we have
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Alv"o  =m-v '  (A- l )

This makes that the fraction of the kinetic energy of m_ out of the total kinetic
energy coming into play, tums out to be

m-v2

=  2  , -  
%  = l

4{ vfno , m-v2 9vl + m-
(A-2)

likewise the fraction of the kinetic energy of *L
question, becomes

out of the total kinetic energy in

m* =0
1vt+ m-

(c.q.f.d.).

The same philosophy well applies if there are more than two particles getting bound,
since in this case, it appears sufficient to handle the problem in the frame of the center
of mass of the system (at rest throughout). At a first glance, in effect it may seem that
our result depends on the history of the recombining particles; this is not correct, in the
frame of the reference of the center of mass.

Otherwise, through say the recombination of a proton and an electron (of initially
random kinetic energies), yielding a hydrogan atom, the extra energy the systan would
acquire, in the laboratory frame of reference, exhibits itself, as the translational energy
of the center of mass. or a rotational energy around the centsr of mass, or else. It is the
mass deficit, different elements of the system displays, after the system as a whole
comes to a rest, that we must account for, and the resulting picture is well free of the
history of the recombining particles.

The essential idea is anyway that the overall mass of the bound particles, is less than
the total mass of these particles when weighed at infinity, and this is less than the
former, as much as t}re total binding energy coming into play.

One other issue has to be elaborated on, though. Suppose, around the gravitational
athactor location of a galactic cloud, hydrogen atoms start to get closer anci closer to
make a star. In order to model this occurrence through a linearized approach, we should
start up with just two atoms. Then, exactly half of the gravitational binding energy that
will come into play, is to be subtracted (as the mass deficit), frorn the mass of each
atom. Suppose we continue to manufacture the gedanken star, by bringing one by one
hydrogen atoms, from infinity to the immediate neighborhood of the star's original
seed. Based on the foregoing discussion; when the star is close to be built entirely, then,
an hydrogen atom that we bring from infinity, to merge with it, i) will experience a
much too greater binding energy as compared to that displayed by the very first uniting
atoms (since the atom in question is now getting bound to practically the whole star, and
not just a couple of hydrogen atoms making the very beginning of it), ii) the atom we
visualize will further experience a mass deficit, practically the same as the entire
binding energy, since (according to the foregoing discussion), in this latter case we

(A-3)
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ought to retrieve the equivalent of the binding energy coming into play, from just the
single atom, and not the huge star.

The conclusion we land at is that, items gravitationally bound to each other, should
exhibit different mass deficits. But at the same time, it seems legitimate to expect some
sort of an energy exchange to take place, between these items (given that they can lend
or gain the amount of energies that would have come into play, while getting bound or
getting dissociated). Such an energy exchange process should be expected to insure a
thermodynamic equilibrium, which should lead to a full (Maxwellian type o0 spectrum
of a gravitational red shift, and not just one classical red shift, to be associated with the
star. And this is strikingly what is observed (References 3 and 4).

Appendix B

Elucidation of a False Contradiction Arising Between
the Present Approach and the Classical Approach

Classically (cf. Reference 7); defining as usual, the momentum ! uod the force r

(as vector quantities), for an object of mass ."_, moving with the instantaneous velocity

v , under the influence of the force of strength F, as

(B- l )

(B-2)

p=--,Eryu ,

l'-*

one can wnte

9=r=-g!=--E* -o-. , .- :4a,
d t  

-  
/ .  v j  d t  ( .  v j ' ) " ' c f , d t -

{'-4 ['-4]
For a circular motion. v is constant thus

d ! - r -  m o -  d Y

d t  
- t - l  

. , , \ 3 ' 2  d t
I r -*  I
\  c ; /

_ d p
l = :  I

dr

9=p=-g! I .
d t  

-  
I  v l d tn - "

Ï c l

(B-3)

(B-4)

(B-5)

For a free fall, v and dv/dt, are in the same direction; thus
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At the fint strike, this outcome seems to be contradictory in comparison with
Eq.(7), if the gravitational force is considered to be

n  n * t n 1 s _r  =u-- -  '

where 9t{ is the mass of the celestial body, acting on the bound particle of original mass

ûo- '

However the foregoing derivation ignores the fact that the rest mass is altered due to
binding; this means that ."_ cannot be kept constant throughout the differentiation

operations we have achieved. The momentum should thus be written as

(B-7)

instead of Eq.(B-l); this makes that, based on Eq.(3) of the text, the term multiplying y

is constant, and we have straight

(B-8)

Henceforth, contrary to what is formulated in Eq.(B-3) we have no terms in v. Our

force strength on the other hand, clearly, is not given by this classical expression;
Eq.(B-6), based on our cpproach, is only valid for static masses, further assuming that
they are not perturbed due to binding with each other. The static gravitational force ç
acting on B*, s fræned by ttre gresent 4pproach [cf. Eq.(7) of the text], is

F ^ gdmo-exP(-o)
r- =u__r_

(static gravitationalforce asframed by the present approach)

In other ærms Eq.(7) of the text, can explicitly be written as

(B-6)

(B-e)

(B-10)

here 1is the inward looking vector, of length r.

Once again Eq.(B-3), as well as Eqs. (B-5) and (8-6) are invalid; the correct
expression for the'thange of the momenhrm with respect time" (i.e. "force"), is Eq.(B-
l0).
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