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Abstract

This paper introduces a mathematical representation of the fundamental physical
notions particles, wuves, and Heisenberg's Uncertainty Relation in such a general way
that neither Hilbert spaces nor the real or complex numbers are used. This new approach
is based on the mathematical notion of a lattice as defined by Birkhoff [2] (1940) who
introduced lattices as a generalization of hierarchies in geomefry, logic and algebra. ln
1982 lattice theory has been connected by Wille 122) (1982) with the philosophical
consfruct of z concept using a mathematical definition of formal concepts xnd concept
lqttices.

Farmal Concept Analysis (FCA), the mathematical theory of concept lattices, was
therr used by the author to introduce Ternporal Concept Analysis [30] which is based on
Conceptual Time Sl,sysms where the notion of a state is introduced as a formal concepl.
The conceptual definition of life trachs of objects led to a generalization of the fomral
represerrtation of objects in Conceptuol Semantic Systems [29] where distributed objects
yield a clear matlematical representation of the idea of a wave packet together with a
definition of particles andwaves.

In this paper the author's previous definitions of particles and waves are extended,
the notion of measuremenr is introduced and combined with the notion of a view and a
(distributed) object to represent "how distributed" that object is represented by the
m€âsursment in the chosel view. That leads to a conc€pûtal analogue of the notion of
"simultaneously measurable" in Quantum Theory and to a conc€phtal enalogrre of
Heisenberg's Uncertainty Relation.
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l lntroduction

The purpose of this paper is to present, for physicists, some new and general ideas
conceming the notions of particles, waves, and Heisenberg's Uncertainty Relation. The
central background for these ideas is a mathematical theory called Forrnal Concept
Analysis I10] (FC,4) which is based on a mathematization of concept and concept
hierarchy as introduced by Wille (1982)1221.

What is the purpose for introducing a new mathematical theory for physicists who
seem to be quite satisfied with classical mathematics [3,6,8,9,11,12,19,21) based on real
and complex numbers, on statistics, vector spaces, metrics, tensors and manifolds? A
short and coarse answer to this question is that the development of discrete mathematics
during the last fifty years led to new conceptual tools which are powerful also in the
foundations of physics. That yields a clear understanding of many problems around
uncertaiûty and precision, particles and waves, space and time, state and situation,
measurement and probability, and the identity of objects [5,6]. Some first results will be
described in this paper.

One of the main advantages of FCA is its ability to handle notions around
granularity in a simple and effective way. That covers the granularity of more or less
coarse measursrnent values as well as the granularity of organizæional concepts like
university, department student, of spæial concepts like point, place" country. or the
continuously fine granularity of the real numbers. Such concepfual structures can be
represented by concept lattices in FCA. The great success of the lattice of real numbers
and continuous functions in applications supported the belief that "Natura non facit
saltus" which became problematically when Max Planck introduced his quantum of
action.

1.1 Planck's Quantum of Action

When Max Planck investigated the black-body radiation in 1900 [l81 he could derive
his radiation law only under the assumption that the energy is not a continuous,
infinitely divisible quantity, but a discrete quantity composed of an integral number of
finite equal parts. In his paper [18] Max Planck wrote:

It is now a matter of finding the probability ll so that the N resonators
together posse.Ts the vibrational energt Uu. Moreover, it is necessary to
interpret UN not as a continuous, infinitely divisible quantity, but as e
discrete quantity composed of an integral number offinite equal parts. Let
us call each such part the energlt element e; consequently we must set

( 4 )  U u : P t .

where P represents a large integer generally, while the value of e is yet
uncertain.
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Based on the energy element e Max Planck introduced and determined numerically
his famous quantum of action h by

e : h v

which led to Planck's energy distribution law as a continuous function of temperature
and frequency.

Since granular structures like quantized actions and quantized energies did not fit
with his well-established continuous world view Planck called his introduction of the
quantum of action an "act of desperation".

1.2 Einstein's Light-Quanta, his Granularity Remark, and Physical Obiects

While Planck's introduction of the quantum of action was first understood by him "as a
formal assumption" [7], p. 49 Einstein's hypothesis of light-quanta [8], introduced to
explain the photo-electric effect, was considered by Bohr as a very important
contribution ll), p.25. While Einstein started to investigate the wavelike phenomena of
light by the notion oflight-quanta de Broglie proposed in 1926 a converse connection
between particles and waves, namely [], p. 26

that the matter, ond particularly the electrons, should be considered as wavelike.

Aulefta continues [1], p. 26

The situation was now very dfficult because there was evidmce ot the
same time of a corpuscular nature and of a wovelike nature of
miaophysical entities (constifrients of both radiation or matter). This is
the problem of Wave/Particle Dualism, the heart and the anly mystery of

QM [Feynmon et al. 1965, |-IJ.

Connec&ed to the problem of Wave/?article Dualism me several problems related to
granùlarity in physics. Some of these problems are mentioned by Einstein [9] in his
fooûnote on page 893 (translated by the author):

The inaccaracy which lies in the concept of simultaneity of wo events ctt
(about) the some place and which has to be bridged also fu an
abstraction, shall not be discussed here.

In this paper \ile shall discuss this inaccuracy by a formal treatment of granularity
using conceptual semantics. That will also lead to a clear mathematical treatment of the
problems around 'physical objects" as discussed in the fine collection of important
papers on that subject by Elena Castellani [6]. We quote from the beginning of her
introduction:
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Whichever are the particular descriptions employed, hoving mass, being
located in space and time, and persisting through time seem to constitute
the fundamental features required for something to qualify as a "physical

object".

Many of the main problems around "identify", "individuality", "parVwhole relation",
"genidentity", "space-time location" can be investigated using conceptual semantics.
Besides the problems around granularity of objects, space, and time also the
dependencies between uncertainties of different observables had been investigated.
Using Planck's quantum of action Heisenberg [13] (1927) introduced his famous
Uncer.tainty Relation

Âq Âp >-b/4n

where Aq and Ap are stândard deviations of the Gaussian distributions for the position q

and the momentum p of a quantum particle in one spatial dimension [1], p- I 18. For
more details the reader is referred to [31].

In the next sections we shall introduce a concepûual anatogue of Heisenberg's
Uncertainty Relæion described in the framework of Conceptual Semantic Systems

î27,2829,311.

2 Conceptual Semantics

A central motivation for logicians like E. Schrôder and C. S. Peirce rilas to investigate
reality by suitable formal representations which can be used as tools for human
communication. The basic tools in human communication are statements or judgments

which are built from words denoting concepts. Usually these concepts are accepted in
the community as elements of often-used semantics- ln the following we represent
concepts, their semantics and statements about these concepts in a mathematical
structure, called a Conceptual Semantic System.

ln physics the most accepted formal semantics are the semantics of numbers, mainly
those of the real and complex numbers. It is well-known that Newton and Leibniz
introduced the infinitesimal calculus long before Dedekind (1872) found a
mathematically clear construction of the set of real numbers from the ordered set (Q, S)
of rational numbers using so-called Dedekind cuts. That famous construction can be
understood in Formal Concept Analysis in such a way that each Dedekind cut is a

formal concept in the sense of FCA, namely an element af a concept lattice constructed
from the ordered set (Q, <) of ratiorral numbers as described precisely in the following
sections.

Slightly more general semantics than those for numbers are the semantics for tuples
of numbers, mainly used as coordinate tuples. ln the standard case of n-tuples of real
numbers for a given integer n the n-dimensional Euclidean vector space is the classical
semantics for these tuples.

150



From data tables with rows representing tuples of numbers it is a straightforward step
to data tables whose values are arbitrary values, not necessarily numbers. In data base
theory the only generally used semantics for the values is the distinction whether they
are equal or not. As usual we call that a nominal semantics. In the follorving section we
introduce much more general conceptual semantics. They are described as formal
contexts in Formal Concept Analysis (FCA) as explained in the next section.

3 Formal Concept Analysis

FCA has its mathematical roots in the theory of ordered sets, in particular in the theory
of lattices as introducedby Birkhoff [2] (1940). The origins of lattice theory lie in the
hierarchies of sffuctures arising from algebra, geometry, and mathematical logic.
Examples of lattices are the Boolean lattices in logic, the lattice of all subspaces of a
vector space, and as a well-known example from physics the lattice of all closed
subspaces of a Hilbert space which is the basic structure in Quantum Logic. These
lattices can be represented in FCA as coûcept lattices which are used as the main tools
for a conceptual description of semantics.

By definition, a lattice is an ordered set (L, <) (i.e. S is a reflexive, antisymmefric,
and transitive relation on L) such that for any elements x, y € L there exist the infimum
inf(x,y):: the greatest lower bound of x, y and the supremum sup(x,y):= the least upper
bound ofx, y.

These abstract lattices have been connected by Wille (1982) [22] with the
philosophical construct of a concept In traditional philosophy a concept is understood
as a unit of thought consisting of two parts, the extension and the intension where the
extension consists ofall objects belonging to the concept and the intension comprises all
attributes valid for all those objects.

To have a clear mathematical definition of a concept Wille introduced first the notion
of a.formal context (G, M, I) where G is a set whose elements are called (formal)
objects (Gegenstcinde in German), M is a set of elements called {formal) attributes
(Merkmale in German) and I is a binary relation between G and M, i.e. I ç G x M. Ifa
formal object g and a formal attribute m are related by I, that is (gm) e I, we say that g
hos the attribute m or m is valid J'or g, denoted by g I m.

To define the notion of tformal concept of a formal context (G'M,I) we ernploy ûre
upper and lower derivations 1, J where for any X _c G the upper derivation of X is the
set of common attributes of X, duroted by:

X '  : :  { m e  M  l V g e X  g I m  } ,
and for any subset Y E M the lower derivation of Y is the set of all objects which have
all attributes of Y, denoted by:

y ' : :  [ g e G l V m e Y g I m ] .
The following definition of a./brmal concept is the basic definition in FCA:

Definition: AJbrmal concept of a formal context K := (G,,M, I) is a pair (A,B) where
A c  G,  B  EM andA '  :B  and B* :  A .
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For any formal concept (A,B) the set A is called the extent, the set BtIrc intent of (A,B).
The set of all formal concepts of K is denoted by B(K).

The conceptual hierarchy among concepts is defined by set inclusion:
For (Ar , Br ), (Az, Bz ) € B(K) let
(Ar , Br ) < (Az ,Bz) : <+ A1 ç A2 (which is equivalent to Bz çBr ). ô

An important role is played by the object co,nceprs,;(S) :: ({g} '', {g}' ) for g e G
and dually the qtribute concepts tt(m) :: ({m}". 1m}" ) for m e M.
The ordered set (B(K), () is a complete lattice, called the concept lattice of K. By
definition, a complete lattice is an ordered set such that any subset has an infimum and a
supremum [2]. In (B(K), <) the infimum of a subset S E B(K) is the formal concept
whose ext€nt is the intersection of the extents of the formal concepb in S; the
s{rprernum of S is ûre formal concept whose intent is the intersection of the intents of
the formal concepts in S. It is shown in the Basic Theorem of FCA [10] that any
complete lattice is isomorphic to a concept lattice.

For exarnple, the complete lattice (R u {-, - -}, <) consisting of the ordered set of
real numbers together with - and - æ is isomorphic to the concept lattice of the
context (Q, Q, <q) where (Q, fu) is the rational order. For further details the reader is
referred to tte textbook on FCA [0].

In the following section we usie formal contexts to describe hierarchies which are
used as semantics for knowledge domains.

4 Conceptual Semantic Systems

We now recall the basic definitions for Conceptual Semantic Systems as introduced by
the author [27,28,291.

4.1 Basic Defrnitions

Defrnition: "Conceptual Semantic System"
Let M be a set and, for each m eM, let S* :: (G*, N*, I.) be a formal context and

B(S,) := (B(S.), <n') its concept lattice; let G be a set and

r: Gx M -+ \J..r,,rB(S.)

be a mapping such that r(g,m) e B(S*).
Then the quadruple C := (G, M, (E(S.))*.y, x) is called a Conceptual Semantic System
(CSS) with semantic scales S* (m € M). The elements of M are called many-valued
attributes; the elements of G are called instances. We write m(g) := r(g,m) and m(G) ::

{m(g)l g € G } and mention that r can be represented by a data table whose values
m(g) "in column m" are formal concepts of the given semantic scale S..

We interpret the concepts of the semantic scales as "qpes" and the concept lattice of
a semantic scale as a "type hierarchy''. The equation "m(g) : c" is interpreted as
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"instance g tells something about the concept c e B(S')". For any instance g the tuple
(rn(g)l m e M) is interpreted as a short description of a statement connecting the
concepts m(g) where m e M. A concept m(g) may denote for example the grammatical
subject, or the grammatical object, or the grammatical predicate of a statement. That
allows for the representation of arbinary, not ûnly binary, relations. A special example
is the parametric representation of the unit circle by triples (t, cos(t), sin(t)) where
0<t<2rt- tn that sense a CSS is a parametric representation of relational conceptual
knowledge.

One of the central points in our intended interpretation of Concepfual Semantic
Systems is that the instances are not interpreted as concepts, as for example objects like
perso$ or particles. That differs strongly from the usual interpretation of many-valued
contexts [10] where the formal objects are used to represent objects like persons or
other entities which then have to form a key in the data table of the many-valued
context. In Conceptual Semantic Systems we are much more free in practical
applications since we do not need an object domain whose objects form a key in the
&ta table. That freedom allows for the representation of "dtstributed concepts" which
will be introduced in the following. But first of all we represent the information given in
a 'lata table of x by a single formal context, called the semanlically derived contexl.

Delinition: "Semantically Derived Context"
I-et C :: (G, M, (E(S'))*.ru, r) be a Conceptual Semmtic System with semantic

scales S,o i= (G., N,,,, I.) and let int(c) denote the inænt of a concept c. Then the formal
context K :: (G, N, J) where N :: {(m,n) lm e M, n eN. } and

g J(m,n):€àn€ int(m(g)
is called the semantically derived context of C.

To express this definition in a short tabulæ language we cian say that we constmct a
,{ata table of the formal context K from a data table of r by tre rule: "Replace each m e
M (in thc head of each column) by the set {(n\n)l n c N"'} and replace each concept
m(g) by its (characteristic function of the) intent". Therefore the CSS
(G, M, @(Sr))r.er, r) can be reconstrucûed from K md (S*)..pr.

It is easy to see that the sernantically derived context of a CSS can be obtained also
by plain ecaling-as the usual derived context [8]. Therefore we write in the following
only "derived context" instead of"semantically derived oontext".

4.2 Occuring Concepts and Realizations

Defnition: "occuring scale concepts"
Let C :: (G, M, (E(S-)L.r,a, x) be a Conceptual Semantic System with derived

context K: (G, N, J), and for m e M let 1,' be the object concept mapping of
IÇ := (G, {m}xN*, J n (Gx({m}xN-))), the m-part of K.

For m e M and a concept c : (4", B") e B(S.) and g e G we say that
. c occurs ot instqnce g inK^ :e int(Tm(g)) = {m}xB"
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. c co-occurs at instance g in K'o :<+ in(t G)) 2 {m}xB" .
For m e M and a concept c = (4", B.) e B(S*) we say that

. c accurs in K^ :a int(y.(g)) = {m}xB" for some instance g

. c co-occurs inK^ :e int(y.(g)): {m}xB" for some instance g.

By definition of the derived context m(g) = c e int(1,o(g)) = {m}xB.. Hence
m(g) = m(h) <+ T.(g) = T*(h),
m(e) s m(h) <+ T.(e) < T.'0)

f o r a l l m e M , g , h e G .
Clearly, m(g) < c <+ in(y.(g)) > {m}xB..

It is obvious that these notions are very usefirl for a concepfiral investigation of
reasoning with gmnularity, for example to conclude from "My father took a flight from
Frankfurt to London" that the statement 'â man travelled from Germaay to Great
Britain" also holds.

The fonnal concepts of the seurantic scales leld "realized concqlb" in tbe derived
context K = (G, N, J) as introduced in the following definition-

Defïnition: "Realization of a concept of a semantic scale"
Let (G, M, (B(S*))r.y, r) be a Conceptual Semantic System with derived context I(

= (G, N, J). Then for m e M the following mapping
r"': B(Sm) -r B(K)

which maps c = (A*, B") e B(S-) to
r.(c) :: ( ({m}xB.)!, ({m}xa";Jî;

is called the m-realizotion of c. Let R. := {r.(c) | c e B(S.)} be the set of all m-
realizations and R :: {r*(c) | m€ M, c e B(S.)} the set of all realizations. We call
L(R) := {^D I D g R} the lattice of realizations.

The m-realization of c is the greatest concept in B(K) containing {m}xB" in its
intent. We emphasize to use the m-realization of a concept c in B(Sr) as a formal
description of a "really observed concept", as for example a "really observed whale" as
opposed to the semantic concept'Vhale"; the "really obsenred whale" is connected
with the instances which 'lell something about this whale" since these instances form
the extent of tIrc realization of the semantic concept.

Lemma 1:
Let (G, M, (E(S.))*.y, r) be a Conceptual Semantic System with derived context K.

Let m e M, cr : (Ar, Br), cz: (Az, Bz) e B(S.). Then
cr S cz <+ r.(c1) ( r*(cz).

Proof: cr ( cz <+ {m}xB1 : {m}xB2 e ({m}xB1)J q ({m}xB2)I c+ r.(c1) S r.(cz)
where the second equivalence holds since {m}IB' and {m}xB2 are intents of concepts
in K,n and for ie {1,2} the K,,-extent ({m}xB1)** equals the K-extent ({m}xB;)*.
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The instances in the extent ofîhe realization ofa concept c e B(S*) are characterized
in the following Lemma 2 which connects occuring concepts and their realizations.

Lemma 2:
Let (G, M, (E(Sr))..y, x) be a Conceptual Semantic System with derived context K.

Let ge G, m e M, c = (A", B.) e B(S.),lthe object concept mapping of trl and J the
lowerderivationinK'lti=c 

<+ se ({m}xB")r c+ 1(g)(r*(c).

Proof: The first equivalence holds by definition of the derived context. The second
equivalence holds since 4 + ,
g e ({m}xB")*çe V666 (g'Ç h' -+ h e ({m}xB")* ) <+ ext({g)) E ext(r.(c))
where ' denotes the upper derivation in K.

ln spite of the equivalence in Lemma 2 it is not ûue that (m(g) : c + I(g) : r-(c))
since there are examples with m(g) = c and {g) < r-(c). Also the converse implication
(fG) : r.(c) = m(g) : c) does not hold, which can be easily shown by counterexamples
u'here {g) : rn'(c) and m(g) < c and c does not occur in K-. But if c occurs at some
'nstance 

h in K, and m(g) < m(h) = c then Xg) : rn,(c), since m(g) < m(h) implies that
there exists an n € N- such that (m,n) € g' \ hr, hence (m,n) e int(ffu)) and (m,n) É
int(r*(c)), hence y(g);t r*(c), but {g) ( r.(c) by Lernma 2, therefore T(g) < r.(c).

43 Locations

The purpose for the introduction of the following notations is to define in Conceptual
Sernantic Systems the notion of "particles" in the physical sense that "each particle is at
each momEnt at exactly one place" and to distinguish these "particles" from "distributed
objects" like waves or wave packets which "occupy at each moment the whole space or
some part of the space".

In Conceptual Ssrnantic Systems the notions of 'lnoment" and "place'o can be
defined witlr respect to a suitable granulariry as formal concepts of semantic scales of
many-valued attributes for "time" aerd'.space".

As opposed to classical space-time theoris we also rEpresent objects, as for cxanple
'larficles", '\vaves'n, o'systeg6", *diseases" æd so gn" as formal coûcspts of se,mantic
scales which yields a simple representation of sub.sysæms or of parts of objects.

A basic example for the combination of only three kinds of things, namely "objects",
"'moments", and "places" is the formal representation of movements in spatio-ternporal
systems. For that purpose the author has inhoduced spatio-temporal Conceptual
Semantic Systems where three many-valued attributes P, T, L for "persons" (or
"objects"), for "timen' and for 'olocations" are specified (cf. Wolff [27]).

In the special case that the set {P,T} forms a key, rvhich means that the mapping PxT
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which maps each instance g e G to the pair (P(g), T(g)) is injective, the spatio-temporal
Conceptual Semantic Systems have been investigated by the author using the name
"Conceptual Time Systems with actual Objects and Time relation (CTSOT)". ln a
CTSOT each object p is at each moment t (time granule) at exactly one place, namely at
the object concept of the formal object (p,t) in the space part. For applications of
CTSOTs the reader is referred to [30].

A crucial step on the way to a formal definition of "parficles" and "waves" was the
intmduction of Concqtual Semantic Systems where we do not assume that a subset of
the set of many-valued attibnrtes forms a key. Clearly the singleton set {G} consisting
of tbe set G of iustances of a CSS is used as an "artificial key''.

The main consequence of the inuoduction of the key of instances is that an instance g
cas tell that an object p was at time t at place x and another instance h can tell that the
same object p was at the same time t at anotftq place y. That is very unusual if we
interpret objects as it is usually done in physics; but it is very common if we say for
example that a person p was during the last year at place x and at place y. In that sense a
person rnay b€ understood as a "distributed object". To introduce the definition of a
"particle" we need some notion for the set of places where an object was during some
time. For that purpuse we use Conceptual Semantic Systems with three many-valued
attributes P, T, L whcre we interpret the tuple (P(g), T(g), L(g)) as the statement that the
"person" P(g) was at "time granule" T(g) at "place" L(g) without a formal
representation of the relation "was". Clearly we could represented the relation o\ilas" as
a formal concept of some semantic scale for relations.

Definition: "L-location, occuring places, occuring time granules"
Let (G, M, (D(S*)).çra, r) be a Conceptual Semantic System with derived context [C

Let P, T, L are elements of M, p e B(Sp), t e B(Sr), and Tr_ (resp. y1) the object concepr
mapping of Kp (resp. Kr) the L-part (T-part ) of the derived context K. Then

Àr-(p,t) ;: {n(e)lP(g): p, T(g): t}
is called the L-location of the actuql object (p,t\. The set yr(G) := {n(g) | ee G} is called
the set of occuring ploces in K1, the set yr{G) ::{y{g) | ge G} is called the set of
occuring time granules inKr.

The Llocation À(p,t) is defined as the set of places in Kr which occur at instances g
where also p and t occur. We remark that the occuring place n(g) has as intent the set
{L}xB" where B" : in(L(g)), hence yr(g) determines the "place" L(g) in the concept
lattice of the semantic scale Ss since 6(9) : Trû) <+ L(g) = L(h).

ln the following we generalize the notion of an L-location slightly lo a location with
respect to a vievv p where Q E N and N is the set of attributes of the derived context K
: (G,N,J). We use the concept lattice B(Ifu) of the Q-part Kq :: (G, Q, J n(G x Q)) of
K like a map in which the QJocations of actual objects (p,t) or more generally of
tuples of scale concepts are represented. Tuples of scale concepts can be used to
describe "concatenations of concepts" in colloquial speech.
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Definition: "Q-location of a tuple of scale concepts"
Let (G, M, (E(S.)).6y, r) be a Conceptual Semantic System with derived context

K : (G,N,J). For M* c M we call t(M*) :: X(B(S.) | me M*) the set of tuples of
concepts over M*, hence a tuple (c'l me M*) e t(M*) iff V.. y* c. e B(Sn').
If M* = {m} we replace the l-tuple (c.) bV the single concept cm.
Let Q e N and yq the object concept mapping of the Q-part Kq :: (G, Q, J n(G x Q))
of K. Then

h(c-lmeM*) ;: Yq({g e G I V*.y* m(g) : c* })
is called the Q-location of the tuple (c^lmeM*) of scale concepts.

4.4 Aspects of Concepts and Instance Selections

Closely related to the Q-locations are the aspects of concepts with respect to a view
which can be defined in an aôitrary formal context.

Defïnition: "Q-aspect of a concept"
læt K :=(G, N, J) be a formal context, Q c N, and Tq the object concept mapping of

the Q-part Kq = (G, Q, J n(G x Q)) of K. Forany d: (Aa , Ba) € B(K) the set
crq(d) = {yqG) | gÊAd} (:1q(ext(d)) )

is called the aspect of the concept d with resryct to the view Q or the Çaspect of d.

In this paper ure use the notion of a "Q.aspect of a concept" only for the concepts of
the derived contcxt K := (G, N, J) of a CSS. Thsn the extett Aa of a concept d e B(K)
is a subset of the set G of instances. For any view Q c N this extent Aa is rnapped by the
object concept mapping Ta onto the Q-aspect of d. The introduction of views allows not
only for combiuing different prts of the derived context, but also ftn mrry kinds of
'factorizatrons" by selecting special attributes ofthe derived context.

The following l"ermra 3 relates the Q-açects and the Q-locations of a nple of
concepts.

Lemme3:
Let (G, M, (E(S-)I'=y, r) be a Conceptual Semantic System with derived context K

:: (G, N, J). Let M* c M, and for each meM* let c' e B(S-). Let Q E N and Yq tre
object concept mapping of the Q-part Kq of K. Then

(1) c[o(A{r*(c*)lmeM*}): {fqQ)l VmeM'm(g) < c- } 2 h(c-lmeM*),
and equality holds in the inclusion in (1) if

(2) VmeM. Vruc (m(B) s c. -+ m(g): c-).

Proof: Since ext(Â1r'(c-)l meM*)) : Ô{ex(r.(c.))l meM*} (by the Basic

Theorem of FCA, cf. [10], p.20) we obtain from Lemma2
aq(Â{r,"(c'o)lmeM*}): {yq(g) I V*errr. g € ext(rm(c')} :
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{yq(g) l  VmeM.ge ({m}xin(c.)) ' }  = {Ta(g) l  V..u.m(g)sc, } : )
{TaG)l VmeM' m(g) = c, } : Àq(c.l meM*).

Remark l: Condition (2) in Lemma 3 is not Decessary for the equality in the inclusion in
(l), since Wmay be not injective.
Remark 2: Condition (2) holds if for all meM* the semantic scale S. is a nominal scale
and c, is an object concept and only object concepts of S. occur in K-.

Corollary:
Let (G, M, (E(S-)).erra, K) be a Conceptual Semantic System. Let P, T, L are

elements of M, p e B(Se), t e B(Sr), and let crr denote the aspeA function with
respect to the view {(L,n)l n e Ns} where N1 is the set of atffiutes of tùe scale Sr.
Then
(cl) cr,L(rp(p) ^ rr,(t)): {TLG)I P(g) < p, T(e) < t} = {n(g)l P(g) = p, T(g): t}
and equality holds in the inclusion in (l) if
(cz) vr.c G(s) ( p -+ P(g) : p) and vr.c (T(e) < t -+ T(g):q.

Remark 3: That tùe aspect crL(rp(p) n r(t)) may be a proper superset of the lautian
trr(p,t) := {yl(g}l P(g} = p" T(g) = t} of the "actual persotr (p, t)" had not been made
explicit in previous publicæions of the author. But the distinction betweer
ar-(rdp) ^ rdt)) and Ir(pI) led the author to the following defrnition of an irctance
selection.

Definition: "instance selection"
Let C :: (G, M, (B(S.))*ev, r) be a Conceptual Semantic System. For M* c M any

mapping o: t(M*) + P(G) :: {X I X E G} is called an instance selection on t(M*) and
for c e (M*) the set o(c) E G is called the instance selection of c orthe selection of c.

The following two examples of instance selections oo and or whic-tr ae defined for
c := (c*l meM*) e (M*) by

1. oo(c) := {g e Gl VmeM* m(g) < c. }
2. o(c) := tg e Gl VmeM. m(g) = c* )

yield for the Q-aspect aq(A{rn'(c*)l meM*}) :1q(o"(c)) and for the Q-location
Àq(c) = yo(o).(c)). Clearly, o1 is the usual selection in data base theory.

4.5 Precise and Distributed Tuples of Concepts

As a preparation for the definition of particles and waves in Conceptual Semantic
Systems we now introduce the notions that a tuple c is represented precisely
respectively distributed in some view Q. The main example is that a particle p is at each
time granule t at exactly one place which will be formally expressed as 'othe tuple (p,t)
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is precise in B(Kq) with respect to the instance selection d'.

Definition: "o-precise, o-distributed, fully o-distributed tuples of scale concepts"
Let (G, M, (E(Sr)),n.y, r) be a Conceptual Semantic System with derived context

K: (G,N,J), M* c M and o: T(M*) -+ P(G) an instance selection on (M*).
Let Q c N, then a tuple c e r(M+) is called

. cFprecise tn B(Kq) if l1q(o(c))l: t;

. Gdistributed in B(Ka) if lTa(o(c))l> 2;
c fulfu o-distributed tr B(Ko) if yq(o(c)) : yq(G).

This definition generalizes a definition introduced in [31] by the author:
A tuple c e t(M*) is oo-precise, oo-disfibuted, fully oa-distributed in B(Kq) iffthe

concept d := Â{r'n(c'n)l me M* } is precise, distributed, fully distributed in B(Kq).

The following Lemma 4 relates the instance selections o,r and oi.

Lemma 4:
Let (G, M, @(S.))-ev, K) be a Conceptual Semantic Systern with derived context K::
(G, N, J). LetM* c M, c e t(M*). andQ C N. Then
(4.1) c is oo-precise in B(Kq) > c is or-precise in B(Kq),
(4.2) c is oi-disributed in B(Kq) = c is oa-distributed in B(Kq),
(4.3) c is fully or-distributed in B(Ko) =+ c is fully o.6distributed in B(Ka).

Proof: Lemma4 follows from Lemma 3.

4.6 Particles and Waves in Conceptual Semantic Systems

lnl27l the defrnition of particles and waves in spatio-ternporal Conceptual Semantic
Systerns (where three many-valued atkibutes P, T, L are specified for the description of
objects, time and space) was given in terms of a certain location of an achral object. We
now define that in a more general setting where only "the time attribuæ î' is specified,
and "objects" are represented by hrples, ard instance selections are used.

Delinition: '?articles and waves"
Let C : (G, M, (E(S,))..r,,1, r) be as CSS with derived context K: (G, N, J).
Let T e M; we call T the time attribute of the time-CSS (C,T). Let Q C N, and Kq the
Q-part of K. Let M* c M \ {T}, and let o be an instance selection on T(M*\r{T}); for
each tuple c e (M*) and each t e B(Sr) the set o(c,t) is called the selection of (c,t).
With respect to this instance selection o we call a tuple c e (M*) a

. Gparticle ;n B(Kq) if lyq(o(c,t))i S I for all t e B(Sr) occuring in Kr;

. Gwcve in B(Kq) if l1q(o(c,t))l à 2 for all t e B(Sr) occuring in Kr;

. full Gwave,n B(Ko) if c is a o-wave in B(Kq) and yq(o(c,t)): yq(G) for all
t e B(S1) occuring in Kr.
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The inclusion in (l) in Lemma 3 shows that each ocrparticle in B(Kq) is a ol-
particle in B(Kq), and each orr-wave in B(Kq) is an oo-wave in B(Kq), and each full
or-wave in B(Ko) is a full oo-wave in B(Kq). In the following example we show how
to apply the given definitions.

5 A Particle-Wave Example: Surfer on a Wave

The purpose of the following small example is to show how moving objects, for
exarnple particles and waves in the sense of physics, can be represented using
Conceptual Semantic Systems. We choose a very small discrete representation of the
movement of a surfer from the crest of a propagating wave to the fough. The surfer as
well as the wave will be repræented as formal concepû$ in a small semantics for
"objeÇts". Then we shall see that - with respect to some view Q - the surfer is a o1-
particlg and tfte wave is a or-wave in the sense of the given defnitions.

We start by introducing all necessary concepts as f,ormal coûcepts of suitable
semantics. To make explicit that the formal representation of the surfer and the wave
only uses that the surfer and ûre wave are two distinct concepts such that the surfer is
not a wave and the wave is not a surfer we employ the following nominal semantics So
for the objects

Surfer Wave
Surfer X

Wave X

Table l: Nominal semantics So for Surfer and Wave

The concept lattice E(Se) is ure I.

Figure l: The concept lattice of the nominal semantics for the objects

We denote the object concept of the formal object Surfer by the (bold-written) word
Surfer which will be used as a value in the data table of the followine CSS. Similarlv
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Wave denotes the object concept of the formal object Wave.
For the representation of time we employ the following ordinal semantics

51 :=  ( {0 ,  1 ,21 ,  10 ,1 ,  2 } ,  >  ) :

Table 2: Ordinal semantics Sr for time

The concept lattice !(S1) is represented in the coarse structure of the nested diagram in
Figure 2. The object concepts of l, 2, 3 are denoted by 1,2 ,3-
For a simple representation of the space in which the surfer and the wave move \ile
employ a small discrete plane wittr only five points on the x-axis and three points on the
z-axis as shown in the inner diagram of Figure 2. For the conceptual representation of
the x-axis we use the ordinal semantics

S * : =  ( { 0 ,  l ,  2 ,  3 , 4 } ,  { 0 ,  I , 2 , 3 , 4 } ,  >  )
yielding a concept lattice E(S^) which is a chain with five concepts, called 0, 1,2,3, 4,

rnstancesobiests fime x z
I Surfer 0 0 t
2 Surfer I ., 0
J Surfer 2 4 -t
4 Wave 0 0 I
5 lVeve 0 I 0
6 lVsve 0 2 -l
7 lileve 0 3 0
I lVavc 0 4 I
9 Weve I 0 0
10 Wave I I I
l l lVave I 2 0
12 lVrve I 3 -l
13 lVave 1 4 0
t4 lVave 2 0 - l

l 5 Wave 2 I 0
1 6 'lVave 2 2 I
17 lVave 2 3 0
L 8 Wave 2 4 -1

Table 3: Data table for CSS Cr : o'Surfer on a Wave"

and for the z-axis we employ the ordinal semantics
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S, :=  ( { -1 ,  0 ,  I  } ,  { -1 ,  0 ,  I  } ,  <  )
yielding a concept lattice (B(S,), S ) which is a chain with three concepts -fS 0 S l.

Now we consfruct a CSS Cr :: (G, M, (p(S.))*.r,r, r) where G :: {1,...,18},
114 ;: {objects, time, x, z}, 5o6.1o1" := Ss, Sû-g := 51, S* and Sz as defined above, and r is
given as in Table 3. Clearly, T: time is chosen as the specified time attribute.

We interpret instance I as the statement that the Surfer was at time 0 at the place
described by the x-coordinate 0 and the z-coordinate 1. Instance 4 is interpreted as the
statement that the Wave has at time 0 at the x-coordinate 0 the amplitude l.

The derived context of the CSS C1 is given in the following Table 4:

Table 4: The derived context K of the CSS Ct

Reading example: Instance 2 has in the time part the attributes (time,O) and (time,l)
since the intent of the formal concept time(2) = I e B(Sr) is ifi(f ) = {0,1}. That shows
how the concepts of the semantics are represented in the derived context by their
intents.

Now we select a view, namely the spatio-temporal view
Q := {(time,0), (time, I ), (time,2),(x,0),(x, I ),(x,2),(x,3),(x,4),(z ,-l),(2,0),(z,l)l
consisting of the attributes in the (last ll) "spatio-temporal" columns in Table 4 and
draw the concept lattice of Kq in form of a nested line diagram (in Figure 2) where the

K obiects time x z
lnstances Surfer Wave 0 I 2 0 I 2 3 4 0 I

I X X X x
2 x x x X x X x x
a
J x X X x x X X x X x X X
4 X X x x
5 x x x X X x
6 X x X X X X x x
7 X X X X x x X X

8 X x X X X X X X
9 X x X X X X

l 0 X X X X x X

1 l x X X X x x X X

l 2 X X X X X x x x X X
l 3 X X X X X x X X X X
1 À
I I x X X X X X x X
l 5 X X x x x X X X

l 6 x X X X x X x x
t7 X X x x X x X X X X

l 8 X X x X X X x X X X X X
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Figure 2: Surfer on a Wave

coarse diagram represents the ordinal time semantics 51.
As an example we considsr the semantic concept c := Surfer e B(So) and iæ

realization ro6;(Surfer): ({1,2,3}, 112,3} 
' 
I where {1,2,3}r =

{(objects,Surfer), (time,O), (x,0), (z,l)} is the upper derivation of {1,2,3} in K. We now
show that the "actual object Surfer at time 0", formally described by the tuple
(Surfer,0) is oo-distributed in B(Ka), but o1-precise in B(Kq). For that pupose we
observe that Ta(3) < Tq(2) < Ta,(l), hence by Lemma 3 yq(or(Surfer,0)) =

Tq({eeG lobjects(g) < Surfer, time(g) < 0}): uq(r"5(Surfer)nrr(0)): yq({1,2,31)
since time(l) : 0 and 0 co-occurs at instances 2 and 3 in Kr. Therefore the tuple
(Surfer,0) is o"-distributed in B(Ka), but clearly or-precise in B(Kq), since
ya(or(Surfer, 0)): {Ta(l)}. Obviously the concept Surfer is a o1-particle in B(Kq), but
not an oû-particle in B(Kq).
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We just mention, that in the modified CSS Cro which is obtained from C1 by
replacing the ordinal time semantics by a nominal time semantics the concept Surf'er is
not only a or-particle, but also an oa-particle in the concept lauice of the Q-part.

Focussing now in C1 on the formal concept Wave we first mention that

Ta(or0ilave,0)) = Tq({4,5,6,7,8}) has 5 concepts, hence (Wave,O) is or-distributed in
B(IQ); indeed, the concept Wave is a full o1-wave in B(Kq) since lyq(o1(Wave,t)l :5
> 2 for all t e B(S1) occuring in K1, and Te(G) : 1q(G\ { I ,2,3 } ) : yo(cr(Wave)), which
can be seen in Figure 2 since Tq(l) = Ta(4), Ta(2) = yq(l l), Ta(3) = yq(18). These three
places are the places where "the Surfer is on the Wave".

We now inteqpret the very coarse visualization of the Surfer on the Wave in Fig. 2.
At time : 0 the distribution of the five object concepts in 7q({4,5,6,7,8}) can be
understood as a discrete form of the cos-function whose first crest is the place of the
Surfer at x : 0 and z: l. At time = I the distribution of the five object concepts in
yq({9,10,11,12,13}) can be understood as a discrete sin-function which is interpreted as
t}te result of a 'light-shift" of the previous discrete cos-firnction. At time : 2 we see a
discrete (-cos)-function, again interpreted as the result of a "right-shift" of the previous
discrete sin-function. The place of iA last trough is the place of the Surfer at instance 3.

The CCS C1 is clearly a very coarse description of the movernent of a surfer from the
crest of a propagating rvave to the trough. It is obvious that temporal phenomena can be
represented with this method in any granularity, even in the granularity of the real
numbers. The purpose of this example was to show how particles and waves can be
concretely represented and generally defined in Conceptual Semantic Systems.

6 A Conceptual Analogue of Heisenberg's Uncertainty Relation

In this section some first steps are done to relate Heisenberg's Uncertainty Relation
to Conceptual Semantic Systems. The main idea is to use the generality of concept
lattices and the flexibility of Conceptual Semantic Systems to make explicit the
granularity notions in the ideas around Heisenberg's Uncertainty Relation.

There are three main sreps which lead from Heisenberg's Uncertainty Relation to the
conceptual analogue which will be presented in this paper.

The first step is to replace the very regular and therefore useful and simple structure
of a vector space by the structure of a concept lattice. Both structures are used as tools
for the representation of knowledge, the vector spaces with its nice algebraic structure,
usually together with a metric, serve as the standard frame for the representation of
several ideas of"spaces"; concept lattices can be used to represent the ordinal structure
of multi-dimensional real spaces; but concept lattices can also be used to represent
semantic structures as for example tree structures or nominal scales.

The second step is to replace the well-established and for many purposes very useful
idea of functional dependencies by the more general idea of relational dependencies. A
very simple example is the unit circle in the real plane which cân not be described by a
firnction which maps the x-coordinate to the y-coordinate, but by the relation
{(x,y)l x" + t' = l} - which can be expressed again by a function, namely by the
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function which maps each "parameter" t e [0, 2r] to (t, cos(t), sin(t)). ln Conceprual
Semantic Systems the instances play the role of such a parameter which connects
meaningful values, or concepts, in a relational way.

The third step is the introduction of distributed objects, or more generally of
distributed concepts in Conceptual Semantic Systems. It seems to be very fruitful to
make explicit how the mathematical representation of distributed concepts can be used
to describe the ideas around Heisenberg's Uncertainfy Relation in a conceptual
framework.

In this paper we do not yet try to connect the matheniatical quantum-theoretical
formalism of Hilbert spaces and the lattice of closed sub-spaces of a Hilbert space with
Conceptual Sernantic Systems.

6.1 Uncertainty, Distributiong Variences

The term "Uncertainty" in "Heisenberg's Uncertainty Relation" is a translation of the
German word "LJnschiirfe" which refers to'trot sharp" or "not precise". "Uncertainlr"
is usrnlly associated with a "broad' distribution of measurement values, for example a
continuous distribution like a Gaussian distribution on the real axis. Whether a
distribution is "broad" or "narrow" is usually measured by a single number, namely its
variance. The variance is used in formal representations of Heisetrberg's Uncertamty
Relation. Clearly, the definition of the vaiance employs addition, subtraction, the
square, the square-root" and in higher dimensions much more classical algebraical,
metrical and amalytical tools which are not available in more general knowledge
representations as for exançle in concept lattices.

Though variances of distributions can not be defined in arbitrary concept laftices, the
distributions arising from arbitrary data are well represented, for example as the
distribution of formal objects (instances in CSSs) on the set of object concepts of the
derived context.

6J Conceptual Precision, Locationg Aspæts

As opposed to 'hncertainty" in the sense of the German word "Unschârfe", the term
'lrecision" refers to some kind of exactness. A typical example of precision is the
assignment of a single number to s,ome "measured" object, or sliglrtly more general, the
assignment of a single concept as an element of a semantic scale to a concept of another
semantic scale. Clearly, if the chosen semantic scale is coarse, the measurement value
may be precise in the sense of being just a single concept in a semantic scale, but it may
be not very informative since some subconcept would be more appropriate. Therefore it
seems to be suitable to formalize the temr "precision" with respect to a certain
granularity notion, for which we employ semantic scales.

The main idea in our formal representation of "precision" is that a formal concept
c e m(G) is precisely represented in the concept lattice of some view Q if the instances
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where c occurs in K- have the same object concept in B(Ka)
m(g): c, m(h): c :? Ta(g) : TaO)

which is equivalent to lTo(or(c))l : I (for each concept c e m(G)).
The stronger condition

m(g) < c, m(h) ( c = YoG) : Ya&)
is equivalent to [q(o"(c))l: I (for each concept c e m(G)).

In the Surfer-Wave example the tuple (Surfer,O) is o1-precise in B(Kq) since
lyq(o1(Surfer,0))l : I (for the chosen spatio-temporal view Q), but it is not oo-precise
in B(Ka) since l1q(o,(Surfer,0))l : 3.

6.3 A Conceptual Analogue of Heisenberg's Uncertainty Relation

The following definition of a conceptual analogue of Heisenberg's Uncertainty
Relation is based on the idea that a certain systÊm (or subsystem) c may be "precisely
measurable in two spaces" which corresponds to *simultaneously measurable" in
Quantum Theory. For that purpose we introduce "measurernents" as forrral concepts of
a semantic scale. Each "system" or "subsystem" is represented as a tuple c of formal
concepts, and for each measurement ( and each tuple c we introducê a selection o(Ë,c)
of the measurement 6 o"d the tuple c which is interpreted as the set of those instances
which "refer" to the measurernent € and the tuple c in the given CSS. Clearly, as in
practice, a given tuple c can be measured repeatedly in different measurements. The
o'space" into which a tuple is measured is represented as a view of the derived context.
In the most famous example of Heisenberg's Uncertainty Relation a single particle is
measured with respect to two views Q and Q' describing the x-axis and the momentum-
axis.

Definition : "preci sely measurable, Heisenberg' s Uncertainty Relation"
Let C :: (G, M, @(S-)L.rvr, r) be a Conceptual Semantic System with derived

context K : (G,N,J) and m" e M. We call the formal concepts of the semantic scale of
mo meqsurements. For M* C M \ {m"} let o be an instance selection on t({m.} u M*);
for each measurement ( and each tuple c e (M*) the set o(Ë,c) E G is called the
selection of (6c). Let Q, Q' E N. With respect to o we define:

o A tuple c e t(M*) is called precisely measurable in Q and Q' if there exists a
measurement Ç such that

lya(o(g,c))l : I = i7q'(o(€,c))i .
r Q is called, c-complementary to Q' if for all measurements Ç

lTa(o(€,c))l . lyq,(o(Ë"c))l> l.
We call the last inequality the conceptual analogue of Heisenberg's Uncertainty
Relation with respect 1o the chosen instance selection o.

o Q is called, complementary to Q' in M* if for all c e t(M*)
Q is c-complementary to Q'.

r66



Special choices for the instance selection:
Let f be a measurement, c = (c*l meM*) e t(M*):

1. For o1(Ç,c) := {g € G I rn"(g) = Ç, Vmeu* m(g) = c-
is called the Q-location of c in measurement f.

2. For oo(Çc) := {g € G I m"(g) S f, Vmeru* m(g) ( c.
is called the Q-aspect of c in measurement €-

Clearly many other instance selections can be defined similarly.

6"4 An Example

) the set Ta(or(E,c))

) the set ya(o"(Ë,c))

The following small example serves to connect the conceptual analogue of Heisenberg's
Uncertainty Relation with the classical application of Heisenberg's Uncertainty Relation
where a particle moves along the x-axis. Instead of taking into account all possible

measurements we take only two measurements A and B. Each measurement yields a
distribution in the so-called "phase space" spanned by the x-axis and the momentum
axis. In the following CSS C2 we choose G: {1,...,20}, M = {mo, P, x, v} where mo is
used as "measurement attribute" which has a nominal semantic scale ({A,B},{A,B}, : )
whoSe trvo Object conçepts are interpreted aS two measurements, Called "A" and '0B,".

P is an attribute with a semantic scale ({ci, {c},{(c,c)}) with only one formal concept c
denoting "the single moving particle". The attributes x (for the x-coordinates) and v (for

the momentum) have the same fonnal context (10,1,2,3,4,5\, {0,1,2,3,4'5},2) as

semantic scale. Its six formal concepts are the object concepts i of the formal objects i.

The mapping r is given in Table 5.
In Figure 3 a nested line diagram shows the direct product of the coneept lattices of

the m,-, x-, and v-scales into which the concept lattice of the "(mo,x,v)-prt" of the

derived contexr of Cz is represented by the bold points. The inner part ofthe nested line

diagram is the "phase space" which is the direct product of the concept lattices of the x-

and v-scales. Each object concept is marked by the labels of those instances which have

this concept as its object concept. The bold points without instance marks reprcsent

suprema of object concepts.
Now we develop in this example the conceptual analogUe of Heisenberg's

uncertainty Relation. we choose M* ::{P}, then (c) is the only tuple in t(M*), denoæd
just by "c" (without brackets). For each measurement ( e {a,B} and c we use or(€"c) :

{g. G lm"(g) = E, P(g) = c } as selection, hence o1(A,c) = {1,..,,10} and o1($c) =

{ I 1,. . .,20 } . We now choose

Q := {(x,i)li e {0,1,2,3,4,5}} and Q' :: {(v,i)li e {0,1,2,3,4,5}} as the sets ofattributes

of the x-part respectively v-part of the derived context of Cz. In the line diagram, for i e

{0,1,2,3,4,5\ the attribute {x,i) is denoted by "x ) i", and 'ox ) 0" is omitted,
analogously for the attribute (v,i).
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G m" P x v

I A c t 0
2 A c J I
J A c ,, 3
4 A c t 4
5 A c 3 I
6 A c 3 t

7 A c 3 3
8 A c 3 4
9 A c 3 5

0 A c 3 5

I B c I 1

2 B c ) t

J B c 3 2
4 B c t ,
) B c 0 3
6 B c I 3

B c t 3
8 B c 3 3
9 B c 3

20 B c J 3

Table 5: The data table of the CSS Cz

The concept lattices of the Q-part and of the Q'-part of the derived context are
chains. It can be easily seen, for example from the inner diagram of measurement A (by
"projecting the object conceprs to the Q-border line in the leff') that 176(o1(A,c))l :

lTa({1,...,10})l = 2. Hence we get that Q is c-complementary to Q' since lTo(or(A,c))l .

l1a'(or(A,c))l:2.6= 12> I and lyq(o1(B,c))l -lTa'(oÀ(B,c))l=5.2 = t0> l. Since c is
the only tuple in (M*) we get that Q is complementary to Q'.

7 Conclusion and Future Research

This paper shows a new mathematical representation of some basic notions in
physics concerning particles, waves, measurements, and Heisenberg's Uncertainty
Relation. This new approach is based on the mathematical theory of Formal Concept
Analysis. As opposed to classical physics which is based on mathematical tools relatcd
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Figure 3: A flpical example for Heisenberg,s Uncertainty Relation

to real nlnnbers this nEw approach is based on the general notion or a concept.
The main result is that in Concepfual Semantic Systems notions like "object",'!article", '\vave", and o'measurgment'o can be represented in a contextual-concçfual

way which includes the continuous descriptions in physics, but without using the
atgebraical and metrical structure of classical spaces. In my actual understanding, the
"problem of the WaveÆarticle Dualism" as mentioned in section 1.2 disappears in the
mathematical framework of Concçtual Sernantic Systems since this framework
contains an explicit notion of granularity and a relational knowledge representation
which is based on formal concepts refering to accepted contextual datâ.

Hence Planck's desperation concerning discrete quanùa in the continuum is based on
an obsolete viewpoint, and Einstein's wish for a granularity theory in physics stârts to
become true.

Future research will focus on the application of conceptual methods to ttre classical
mathematical sfuctures as they are used in physics. For that purpose the connection of
conceptual and algebraical stmctures has to be developed.
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