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Abstract

This paper introduces a mathematical representation of the fundamental physical
notions particles, waves, and Heisenberg's Uncertainty Relation in such a general way
that neither Hilbert spaces nor the real or complex numbers are used. This new approach
is based on the mathematical notion of a /lattice as defined by Birkhoff [2] (1940) who
introduced lattices as a generalization of hierarchies in geometry, logic and algebra. In
1982 lattice theory has been connected by Wille [22] (1982) with the philosophical
construct of a concept using a mathematical definition of formal concepts and concept
lattices.

Formal Concept Analysis (FCA), the mathematical theory of concept lattices, was
! then used by the author to introduce Temporal Concept Analysis [30] which is based on

Conceptual Time Systems where the notion of a state is introduced as a formal concept.

The conceptual definition of life tracks of objects led to a generalization of the formal
| representation of objects in Conceptual Semantic Systems [29] where distributed objects
| yield a clear mathematical representation of the idea of a wave packet together with a
| definition of particles and waves.

In this paper the author’s previous definitions of particles and waves are extended,
the notion of measurement is introduced and combined with the notion of a view and a
(distributed) object to represent “how distributed” that object is represented by the
measurement in the chosen view. That leads to a conceptual analogue of the notion of
“simultaneously measurable” in Quantum Theory and to a conceptual analogue of
| Heisenberg's Uncertainty Relation.
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1 Introduction

The purpose of this paper is to present, for physicists, some new and general ideas
concerning the notions of particles, waves, and Heisenberg's Uncertainty Relation. The
central background for these ideas is a mathematical theory called Formal Concept
Analysis [10] (FCA) which is based on a mathematization of concept and concept
hierarchy as introduced by Wille (1982) [22].

What is the purpose for introducing a new mathematical theory for physicists who
seem to be quite satisfied with classical mathematics [3,6,8,9,11,12,19,21] based on real
and complex numbers, on statistics, vector spaces, metrics, tensors and manifolds? A
short and coarse answer to this question is that the development of discrete mathematics
during the last fifty years led to new conceptual tools which are powerful also in the
foundations of physics. That yields a clear understanding of many problems around
uncertainty and precision, particles and waves, space and time, state and situation,
measurement and probability, and the identity of objects [5,6]. Some first results will be
described in this paper.

One of the main advantages of FCA is its ability to handle notions around
granularity in a simple and effective way. That covers the granularity of more or less
coarse measurement values as well as the granularity of organizational concepts like
university, department, student, of spatial concepts like point, place, country, or the
continuously fine granularity of the real numbers. Such conceptual structures can be
represented by concept lattices in FCA. The great success of the lattice of real numbers
and continuous functions in applications supported the belief that “Natura non facit
saltus" which became problematically when Max Planck introduced his quantum of
action.

1.1 Planck's Quantum of Action

When Max Planck investigated the black-body radiation in 1900 [18] he could derive
his radiation law only under the assumption that the energy is not a continuous,
infinitely divisible quantity, but a discrete quantity composed of an integral number of
finite equal parts. In his paper [18] Max Planck wrote:

It is now a matter of finding the probability W so that the N resonators
together possess the vibrational energy Uy . Moreover, it is necessary to
interpret Uy not as a continuous, infinitely divisible quantity, but as a
discrete quantity composed of an integral number of finite equal parts. Let
us call each such part the energy element €; consequently we must set

4) Uy =P¢

where P represents a large integer generally, while the value of € is yet
uncertain.
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Based on the energy element € Max Planck introduced and determined numerically
his famous quantum of action h by

€=hv

which led to Planck's energy distribution law as a continuous function of temperature
and frequency.

Since granular structures like quantized actions and quantized energies did not fit
with his well-established continuous world view Planck called his introduction of the
quantum of action an “act of desperation".

1.2 Einstein's Light-Quanta, his Granularity Remark, and Physical Objects

While Planck's introduction of the quantum of action was first understood by him “as a
formal assumption” [7], p. 49 Einstein's hypothesis of light-quanta [8], introduced to
explain the photo-electric effect, was considered by Bohr as a very important
contribution [1], p. 25. While Einstein started to investigate the wavelike phenomena of
light by the notion of light-quanta de Broglie proposed in 1926 a converse connection
between particles and waves, namely [1], p. 26

that the matter, and particularly the electrons, should be considered as wavelike.
Auletta continues [1], p. 26

The situation was now very difficult because there was evidence at the
same time of a corpuscular nature and of a wavelike nature of
microphysical entities (constituents of both radiation or matter). This is
the problem of Wave/Particle Dualism, the heart and the only mystery of
OM [Feynman et al. 1965, 1-1].

Connected to the problem of Wave/Particle Dualism are several problems related to
granularity in physics. Some of these problems are mentioned by Einstein [9] in his
footnote on page 893 (translated by the author):

The inaccuracy which lies in the concept of simultaneity of two events at
(about) the same place and which has to be bridged also by an
abstraction, shall not be discussed here.

In this paper we shall discuss this inaccuracy by a formal treatment of granularity
using conceptual semantics. That will also lead to a clear mathematical treatment of the
problems around “physical objects" as discussed in the fine collection of important
papers on that subject by Elena Castellani [6]. We quote from the beginning of her
introduction:
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Whichever are the particular descriptions employed, having mass, being
located in space and time, and persisting through time seem to constitute
the fundamental features required for something to qualify as a “physical
object”.

Many of the main problems around “identity”, “individuality”, “part/whole relation”,
“genidentity”, “space-time location” can be investigated using conceptual semantics.
Besides the problems around granularity of objects, space, and time also the
dependencies between uncertainties of different observables had been investigated.
Using Planck's quantum of action Heisenberg [13] (1927) introduced his famous
Uncertainty Relation

Aq Ap = h/4n

:
\
|
|
| where Aq and Ap are standard deviations of the Gaussian distributions for the position q
| and the momentum p of a quantum particle in one spatial dimension [1], p. 118. For
| more details the reader is referred to [31].

| In the next sections we shall introduce a conceptual analogue of Heisenberg's
| Uncertainty Relation described in the framework of Conceptual Semantic Systems
| [27,28,29,31].

2 Conceptual Semantics

A central motivation for logicians like E. Schroder and C. S. Peirce was to investigate

reality by suitable formal representations which can be used as tools for human

communication. The basic tools in human communication are statements or judgments

which are built from words denoting concepts. Usually these concepts are accepted in

the community as elements of often-used semantics. In the following we represent

concepts, their semantics and statements about these concepts in a mathematical
w structure, called a Conceptual Semantic System.

In physics the most accepted formal semantics are the semantics of numbers, mainly
those of the real and complex numbers. It is well-known that Newton and Leibniz
introduced the infinitesimal calculus long before Dedekind (1872) found a
mathematically clear construction of the set of real numbers from the ordered set (Q, <
of rational numbers using so-called Dedekind cuts. That famous construction can be
understood in Formal Concept Analysis in such a way that each Dedekind cut is a
formal concept in the sense of FCA, namely an element of a concept lattice constructed
from the ordered set (Q, <) of rational numbers as described precisely in the following
sections.

Slightly more general semantics than those for numbers are the semantics for tuples
of numbers, mainly used as coordinate tuples. In the standard case of n-tuples of real
numbers for a given integer n the n-dimensional Euclidean vector space is the classical
semantics for these tuples.
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From data tables with rows representing tuples of numbers it is a straightforward step
to data tables whose values are arbitrary values, not necessarily numbers. In data base
theory the only generally used semantics for the values is the distinction whether they
are equal or not. As usual we call that a nominal semantics. In the following section we
introduce much more general conceptual semantics. They are described as formal
contexts in Formal Concept Analysis (FCA) as explained in the next section.

3 Formal Concept Analysis

FCA has its mathematical roots in the theory of ordered sets, in particular in the theory
of lattices as introduced by Birkhoff' [2] (1940). The origins of lattice theory lie in the
hierarchies of structures arising from algebra, geometry, and mathematical logic.
Examples of lattices are the Boolean lattices in logic, the lattice of all subspaces of a
vector space, and as a well-known example from physics the lattice of all closed
subspaces of a Hilbert space which is the basic structure in Quantum Logic. These
lattices can be represented in FCA as concept lattices which are used as the main tools
for a conceptual description of semantics.

By definition, a lattice is an ordered set (L, <) (i.e. < is a reflexive, antisymmetric,
and transitive relation on L) such that for any elements x, y € L there exist the infimum
inf(x,y):= the greatest lower bound of x, y and the supremum sup(x,y):= the least upper
bound of x, y.

These abstract lattices have been connected by Wille (1982) [22] with the
philosophical construct of a concept. In traditional philosophy a concept is understood
as a unit of thought consisting of two parts, the extension and the intension where the
extension consists of all objects belonging to the concept and the intension comprises all
attributes valid for all those objects.

To have a clear mathematical definition of a concept Wille introduced first the notion
of a formal context (G, M, 1) where G is a set whose elements are called (formal)
objects (Gegenstinde in German), M is a set of elements called (formal) attributes
(Merkmale in German) and 1 is a binary relation between G and M, i.e. I G X M. Ifa
formal object g and a formal attribute m are related by I, that is (g,m) € I, we say that g
has the attribute m or m is valid for g, denoted by g I m.

To define the notion of a formal concept of a formal context (G,M,I) we employ the
upper and lower derivations T, | where for any X G the upper derivation of X is the
set of common attributes of X, denoted by:

X' = fme M|VgeX gim},
and for any subset Y < M the lower derivation of Y is the set of all objects which have
all attributes of Y, denoted by:

Y= lge G | YmeY gim}.
The following definition of a formal concept is the basic definition in FCA:

Definition: A formal concept of a formal context K := (G, M, ) is a pair (A,B) where
AcG,BcMandA'=B and B = A.
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For any formal concept (A,B) the set A is called the extent, the set B the intent of (A,B).
The set of all formal concepts of K is denoted by B(K).

The conceptual hierarchy among concepts is defined by set inclusion:
| For (A, By), (Az,B;) e B(K) let
| (A1,B1)<(A;,B;): < A cA; (whichis equivalentto B, < By).
‘ An important role is played by the object concepts Y(g) = (g} + 5 4 g}T Yforge G
| and dually the attribute concepts (m) = ({m} ", im}*") forme M.
: The ordered set (B(K), <) is a complete lattice, called the concept lattice of K. By
| definition, a complete lattice is an ordered set such that any subset has an infimum and a
} supremum [2]. In (B(K), <) the infimum of a subset S ¢ B(K) is the formal concept
| whose extent is the intersection of the extents of the formal concepts in S; the
} supremum of S is the formal concept whose intent is the intersection of the intents of
| the formal concepts in S. It is shown in the Basic Theorem of FCA [10] that any
} complete lattice is isomorphic to a concept lattice.
| For example, the complete lattice (R U {oo, - oo}, <) consisting of the ordered set of
} real numbers together with o and - ~ is isomorphic to the concept lattice of the
| context (Q, Q, <o) where (Q, <q) is the rational order. For further details the reader is
} referred to the textbook on FCA [10].
| In the following section we use formal contexts to describe hierarchies which are
} used as semantics for knowledge domains.
|
|
\
\
\
\
\
\
|
\
i
\
\
;
\

4 Conceptual Semantic Systems

We now recall the basic definitions for Conceptual Semantic Systems as introduced by
the author [27,28,29].

4.1 Basic Definitions

Definition: “Conceptual Semantic System”
Let M be a set and, for each m e M, let S, := (G, N, I1y) be a formal context and
B(Sw) := (B(Sm), <m) its concept lattice; let G be a set and

K GxXM = UpemB(Sm)
be a mapping such that x(g,m) € B(Sy).
Then the quadruple C := (G, M, (B(Sm))m em, X) is called a Conceptual Semantic System
(CSS) with semantic scales Sy (m € M). The elements of M are called many-valued
attributes; the elements of G are called instances. We write m(g) := x(g,m) and m(G) :=
{m(g)| g € G } and mention that « can be represented by a data table whose values
m(g) “in column m” are formal concepts of the given semantic scale S,

We interpret the concepts of the semantic scales as “types” and the concept lattice of
| a semantic scale as a “type hierarchy”. The equation “m(g) = ¢” is interpreted as

| 152




“instance g tells something about the concept ¢ € B(Sy,)”. For any instance g the tuple
(m(g)] m € M) is interpreted as a short description of a statement connecting the
concepts m(g) where m € M. A concept m(g) may denote for example the grammatical
subject, or the grammatical object, or the grammatical predicate of a statement. That
allows for the representation of arbitrary, not only binary, relations. A special example
is the parametric representation of the unit circle by triples (t, cos(t), sin(t)) where
0<t<2m. In that sense a CSS is a parametric representation of relational conceptual
knowledge.

One of the central points in our intended interpretation of Conceptual Semantic
Systems is that the instances are not interpreted as concepts, as for example objects like
persons or particles. That differs strongly from the usual interpretation of many-valued
contexts [10] where the formal objects are used to represent objects like persons or
other entities which then have to form a key in the data table of the many-valued
context. In Conceptual Semantic Systems we are much more free in practical
applications since we do not need an object domain whose objects form a key in the
data table. That freedom allows for the representation of “distributed concepts” which
will be introduced in the following. But first of all we represent the information given in
a data table of x by a single formal context, called the semantically derived context.

Definition: “Semantically Derived Context”

Let C == (G, M, (B(Sm))mem, ¥) be a Conceptual Semantic System with semantic
scales S = (Gm, Nm, Im) and let int(c) denote the intent of a concept ¢. Then the formal
context K := (G, N, J) where N := {(m,n) jme M,neNy } and

g J (m,n) : & n € int(m(g))
is called the semantically derived context of C.

To express this definition in a short tabular language we can say that we construct a
data table of the formal context K from a data table of k by the rule: “Replace each m €
M (in the head of each column) by the set {(m,n)| n € Ny} and replace each concept
m(g) by its (characteristic function of the) intent”. Therefore the CSS
(G, M, (B(Sm))m <M, ¥) can be reconstructed from K and (Sm)mem-

It is easy to see that the semantically derived context of a CSS can be obtained also
by plain scaling as the usual derived context [8]. Therefore we write in the following
only “derived context” instead of “semantically derived context”.

4.2 Occuring Concepts and Realizations

Definition: “occuring scale concepts”
Let C = (G, M, (B(Sm))mem, K) be a Conceptual Semantic System with derived
context K = (G, N, J), and for m € M let ¥y, be the object concept mapping of
K = (G, {m}XNp, J N (GX({m}xNy,))), the m-part of K.
For m € M and a concept ¢ = (A. , Bc) € B(Sp) and g € G we say that
e ¢ occurs at instance g in Kn, 1< int(Ym(g)) = {m}xB;

153




e ¢ co-occurs at instance g in Ky :& int(Ym(g)) 2 {m}xB,.
Form € M and a concept ¢ = (A, , Be) € B(Sy) we say that

e ¢ occurs in Ky & int(ym(g)) = {m}xB for some instance g

e ¢ co-occurs in Ky & int(Yy(g)) 2 {m}xB, for some instance g.

By definition of the derived context m(g) = ¢ < int(Ym(g)) = {m}xB.. Hence
m(g) = m(h) & Ym(g) = ¥m(h),
m(g) < m(h) & Yn(8) < Ym(h)
forallmeM, g, heG.
Clearly, m(g) < ¢ & int(ym(g)) 2 {m}xBe..

It is obvious that these notions are very useful for a conceptual investigation of
reasoning with granularity, for example to conclude from “My father took a flight from
Frankfurt to London” that the statement “A man travelled from Germany to Great
Britain” also holds.

The formal concepts of the semantic scales yield “realized concepts” in the derived
context K = (G, N, J) as introduced in the following definition.

Definition: “Realization of a concept of a semantic scale”
Let (G, M, (B(Sm))mem, X) be a Conceptual Semantic System with derived context K
=(G, N, J). Then for m € M the following mapping
Im: B(Sm) = B(K)
which maps ¢ = (A¢, Bc) € B(Sp) to
tm(©) = ( (fm}xBo)", (fm}xBo)'")
is called the m-realization of c¢. Let Ry := {rm(¢) | ¢ € B(Sm)} be the set of all m-

realizations and R := {rp(c) | me M, ¢ € B(Sm)} the set of all realizations. We call
L(R) := {AD | D c R} the lattice of realizations.

The m-realization of ¢ is the greatest concept in B(K) containing {m}xB. in its
intent. We emphasize to use the m-realization of a concept ¢ in B(Sy) as a formal
description of a “really observed concept”, as for example a “really observed whale” as
opposed to the semantic concept “whale”; the “really observed whale” is connected
with the instances which “tell something about this whale” since these instances form
the extent of the realization of the semantic concept.

Lemma 1:
Let (G, M, (B(Sm))me M, K) be a Conceptual Semantic System with derived context K.
Letme M, ¢; =(Ay, Bi), ¢2=(Az B2) € B(Sm). Then
G<e & rm(cl) < I'm(Cz).

Proof: ¢; < ¢; © {m}xB) 2 {mjxB; & ({m}xB.)l c ({m}sz)i © (c)) < r(er)

where the second equivalence holds since {m}xB,; and {m}xB, are intents of concepts
in Ky, and for ie {1,2} the Ki,-extent ({m}xB;) ™ equals the K-extent ({m}xB{)l.
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The instances in the extent of the realization of a concept ¢ € B(Sy,) are characterized
in the following Lemma 2 which connects occuring concepts and their realizations.

Lemma 2:

Let (G, M, (B(Sm)mewm, K) be a Conceptual Semantic System with derived context K.
Letge G,me M, ¢ =(A., B.) € B(Sy), Y the object concept mapping of K, and ¥ the
lower derivation in K. Then

m(g)<c & ge ({m}ch)l S Yg) < tm(c).

Proof: The first equivalence holds by definition of the derived context. The second
equivalence holds since

ge (ImxBo)' & Vieo (2'ch’ = h e ({m}xBo)’ ) & ext(Y(g)) < ext(rm(c))

where = denotes the upper derivation in K.

In spite of the equivalence in Lemma 2 it is not true that (m(g) =¢ = Y(g) = tm(c))
since there are examples with m(g) = ¢ and ¥(g) < rm(c). Also the converse implication
(Y(g) = rm(c) = m(g) = ¢) does not hold, which can be easily shown by counterexamples
where Y(g) = t(c) and m(g) < ¢ and ¢ does not occur in Ky, But if ¢ occurs at some
instance h in K, and m(g) < m(h) = c then X(g) T< (), since m(g) < m(h) implies that
there exists an n € Ny, such that (m,n) € g \ h', hence (m,n) € int(Yg)) and (m,n) ¢
int(r,(c)), hence Y(g) # rm(c), but Y(g) < rm(c) by Lemma 2, therefore Y(g) < rm(c).

4.3 Locations

The purpose for the introduction of the following notations is to define in Conceptual
Semantic Systems the notion of “particles” in the physical sense that “each particle is at
each moment at exactly one place” and to distinguish these “particles” from “distributed
objects” like waves or wave packets which “occupy at each moment the whole space or
some part of the space”.

In Conceptual Semantic Systems the notions of “moment” and “place” can be
defined with respect to a suitable granularity as formal concepts of semantic scales of
many-valued attributes for “time” and “space”.

As opposed to classical space-time theories we also represent objects, as for example
“particles”, “waves”, “systems”, “diseases” and so on, as formal concepts of semantic
scales which yields a simple representation of sub-systems or of parts of objects.

A basic example for the combination of only three kinds of things, namely “objects”,
“moments”, and “places” is the formal representation of movements in spatio-temporal
systems. For that purpose the author has introduced spatio-temporal Conceptual
Semantic Systems where three many-valued attributes P, T, L for “persons” (or
“objects™), for “time” and for “locations” are specified (cf. Wolff [27]).

In the special case that the set {P,T} forms a key, which means that the mapping PxT
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|

|

|

|

|

: which maps each instance g € G to the pair (P(g), T(g)) is injective, the spatio-temporal
j Conceptual Semantic Systems have been investigated by the author using the name
; “Conceptual Time Systems with actual Objects and Time relation (CTSOT)”. In a
| CTSOT each object p is at each moment t (time granule) at exactly one place, namely at
| the object concept of the formal object (p,t) in the space part. For applications of
} CTSOTs the reader is referred to [30].

| A crucial step on the way to a formal definition of “particles” and “waves” was the
| introduction of Conceptual Semantic Systems where we do not assume that a subset of
| the set of many-valued attributes forms a key. Clearly the singleton set {G} consisting

of the set G of instances of a CSS is used as an “artificial key”.

The main consequence of the introduction of the key of instances is that an instance g
can tell that an object p was at time t at place x and another instance h can tell that the
same object p was at the same time t at another place y. That is very unusual if we
interpret objects as it is usually done in physics; but it is very common if we say for
example that a person p was during the last year at place x and at place y. In that sense a
person may be understood as a “distributed object”. To introduce the definition of a
“particle” we need some notion for the set of places where an object was during some
time. For that purpuse we use Conceptual Semantic Systems with three many-valued
attributes P, T, L where we interpret the tuple (P(g), T(g), L(g)) as the statement that the
“person” P(g) was at “time granule” T(g) at “place” L(g) without a formal
representation of the relation “was”. Clearly we could represented the relation “was” as

} a formal concept of some semantic scale for relations.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\
\

Definition: “L-location, occuring places, occuring time granules”

Let (G, M, (B(Sm))mem, K) be a Conceptual Semantic System with derived context K.
Let P, T, L are elements of M, p € B(Sp), t e B(St), and yi (resp. ¥r) the object concept
mapping of K; (resp. Ky) the L-part (T-part ) of the derived context K. Then

Aup,t) = {v.(g)| P(g) =p, T(g) = t}
is called the L-location of the actual object (p,t). The set Y.(G) :={y.(g) | ge G} is called
the set of occuring places in K, the set yr(G) :={w(g) | ge G} is called the set of
occuring time granules in Kr.

The L-location A (p,t) is defined as the set of places in K; which occur at instances g
where also p and t occur. We remark that the occuring place v (g) has as intent the set
{L}xB. where B, = int(L(g)), hence y.(g) determines the “place” L(g) in the concept
lattice of the semantic scale S since y.(g) = 11.(h) < L(g) = L(h).

In the following we generalize the notion of an L-location slightly to a location with
respect to a view O where Q c N and N is the set of attributes of the derived context K
= (G,N,J). We use the concept lattice B(Kq) of the Q-part Kq := (G, Q, J (G x Q)) of
K like a map in which the Q-locations of actual objects (p,t) or more generally of
tuples of scale concepts are represented. Tuples of scale concepts can be used to
describe “concatenations of concepts” in colloquial speech.
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Let (G, M, (B(Sm))mem. K) be a Conceptual Semantic System with derived context
K = (G,)N,J)). For M* ¢ M we call {(M*) := X(B(Sm) | me M¥*) the set of tuples of
concepts over M*, hence a tuple (c| me M¥*) € ©(M¥*) iff Ve mr ¢ € B(Sw).
If M* = {m} we replace the 1-tuple (cn) by the single concept cp,.
Let Q < N and o the object concept mapping of the Q-part Kq := (G, Q, J n(G X Q))
of K. Then

:
| Definition: “Q-location of a tuple of scale concepts”
|
\
\

Ao(em| meM*) :=Yo({g € G| Vimems m(g) =€ })
is called the Q-location of the tuple (cm| me M*) of scale concepts.

4.4 Aspects of Concepts and Instance Selections

Closely related to the Q-locations are the aspects of concepts with respect to a view
which can be defined in an arbitrary formal context.

Definition: “Q-aspect of a concept”
Let K :=(G, N, J) be a formal context, Q < N, and 7o the object concept mapping of
the Q-part Kq = (G, Q, I (G x Q)) of K. For any d = (A4, Bq) € B(K) the set

ao(d) = {Yo(g) | g€Aa} (=7Yolext(d)))
is called the aspect of the concept d with respect to the view Q or the Q-aspect of d.

| In this paper we use the notion of a “Q-aspect of a concept” only for the concepts of
the derived context K := (G, N, J) of a CSS. Then the extent Aq of a concept d € B(K)
is a subset of the set G of instances. For any view Q — N this extent A4 is mapped by the
object concept mapping Yo onto the Q-aspect of d. The introduction of views allows not
only for combining different parts of the derived context, but also for many kinds of
“factorizations” by selecting special attributes of the derived context.

The following Lemma 3 relates the Q-aspects and the Q-locations of a tuple of
concepts.

Lemma 3:

Let (G, M, (B(Sm))mem, ¥) be a Conceptual Semantic System with derived context K
= (G, N, J). Let M* ¢ M, and for each me M* let ¢,, € B(Sy,). Let Q < N and Y, the
object concept mapping of the Q-part Kq of K. Then

6] OQ(A {TnfCm)] meM*}) = {Yo(g)] Vimem+ m(g) < €m } 2 Ao(Cm| me M¥),
and equality holds in the inclusion in (1) if

(3] Vmem* ‘V,g,eG (m(g) < ey — m(g) = ¢m).

Proof: Since ext(Af{rm(cm) meM*}) = (M{ext(rn(cm))] meM*} (by the Basic
Theorem of FCA, cf. [10], p. 20) we obtain from Lemma 2

QA {tm(em)l MEM*}) = {Yo(8) | Vmem* g € extltm(Cm))} =
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Yo(@) | Vmems g € ({m}x int(en))'} = (Yo(g) | Vmem m(g) < €n } 2
{Yo(8)l Vmems m(g) = €m } = Ao(em| me M¥).

Remark 1: Condition (2) in Lemma 3 is not necessary for the equality in the inclusion in
(1), since y. may be not injective.

Remark 2: Condition (2) holds if for all me M* the semantic scale S, is a nominal scale
and ¢, is an object concept and only object concepts of Sy, occur in K,

Corollary:

Let (G, M, (B(Sm))mem, K) be a Conceptual Semantic System. Let P, T, L are
elements of M, p € B(Sp), t € B(St), and let oy denote the aspect function with
respect to the view {(L,n)| n € N} where N is the set of attributes of the scale S;.
Then
(Ch) ow(re(p) A rr(t)) = {11.(g)| P(g) < p, T(g) < t} 2 {v(2)| P(g) =p, T(g) =t}
and equality holds in the inclusion in (1) if
(C2) Veea (P(g) < p — P(g) = p) and Ve (T(g) St - T(g) = 1).

Remark 3: That the aspect o (re(p) A ri(t)) may be a proper superset of the location
AL(p,t) = {v.(g)| P(g) = p, T(g) = t} of the “actual person (p, t)” had not been made
explicit in previous publications of the author. But the distinction between

o (rp(p) A rr(t)) and A (p,t) led the author to the following definition of an instance
selection.

Definition: “instance selection”

Let C := (G, M, (B(Sm))mem, K) be a Conceptual Semantic System. For M* < M any
mapping o: T(M*) = P(G) := {X | X < G} is called an instance selection on (M*) and
for ¢ € T(M*) the set 6(¢) < G is called the instance selection of ¢ or the selection of c.

|

|

|

|

|

|

|

|

|

\ The following two examples of instance selections 6, and o) which are defined for
| = (cm| meM*) € T(M*) by
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1. ou(e) = {ge G| Vimem+ m(g) < cn }
2. oae) = 1{ge€ G| Vmem= m(g) =€ }

yield for the Q-aspect 0o(A{rm(cm)| me M*}) = yo(ou(c)) and for the Q-location
Aq(e) = Yo(oa(c)). Clearly, oy is the usual selection in data base theory.

4.5 Precise and Distributed Tuples of Concepts
As a preparation for the definition of particles and waves in Conceptual Semantic
Systems we now introduce the notions that a tuple ¢ is represented precisely

respectively distributed in some view Q. The main example is that a particle p is at each
time granule t at exactly one place which will be formally expressed as “the tuple (p,t)
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is precise in B(Kq) with respect to the instance selection 6”.

Definition: “o-precise, o-distributed, fully o-distributed tuples of scale concepts”
Let (G, M, (B(Sm))mem, K) be a Conceptual Semantic System with derived context
K =(G,N,J), M* c M and c: ®(M*) — P(G) an instance selection on T(M*).
Let Q c N, then a tuple ¢ € T(M¥*) is called
o g precise in B(Kg) if [yo(o(e))| = 1;
o cdistributed in B(Kg) if [Yo(o(c))| 2 2;
s fully o-distributed in B(K) if Yo(0(¢)) = Yo(G).

This definition generalizes a definition introduced in [31] by the author:
A tuple ¢ € T(M*) is o4-precise, O,-distributed, fully 64-distributed in B(Kq) iff the

concept d := A{rm(cm)] me M*} is precise, distributed, fully distributed in B(Kq).
The following Lemma 4 relates the instance selections Gy and G.

Lemma 4:

Let (G, M, (B(Sm))mem, K) be a Conceptual Semantic System with derived context K :=
(G,N,]). Let M* c M, c € 1(M*), and Q = N . Then

(4.1) cisog-precise in B(Kqg) = ¢ is oy-precise in B(Kg),

(4.2) cisoy-distributed in B(Kg) = ¢ is 6,-distributed in B(Kq),

(4.3) cis fully o)-distributed in B(Kq) = ¢ is fully oy-distributed in B(Kg).

Proof: Lemma 4 follows from Lemma 3.

4.6 Particles and Waves in Conceptual Semantic Systems

In [27] the definition of particles and waves in spatio-temporal Conceptual Semantic
Systems (where three many-valued attributes P, T, L are specified for the description of
objects, time and space) was given in terms of a certain location of an actual object. We
now define that in a more general setting where only “the time attribute T” is specified,
and “objects” are represented by tuples, and instance selections are used.

Definition: “particles and waves”
Let C = (G, M, (B(Sm))meMm, X) be as CSS with derived context K =(G, N, J).
Let T € M; we call T the time attribute of the time-CSS (C.T). Let Q c N, and Ko the
Q-part of K. Let M* — M \ {T}, and let ¢ be an instance selection on T(M*U{T}); for
each tuple ¢ € T(M*) and each t € B(Sy) the set o(c,t) is called the selection of (c,t).
With respect to this instance selection ¢ we call a tuple ¢ € t(M*) a

o oparticle in B(Kg) if |yo(o(e,t))| <1 forall t e B(St) occuring in K13

o cwavein B(Kg) if yo(o(e,t))| =2 forall t € B(St) occuring in K t;

o full cwave in B(Kg) if ¢ is a o-wave in B(Kg) and Yo(o(c,t))= Yo(G) for all

t € B(St) occuring in K 1.
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The inclusion in (1) in Lemma 3 shows that each oy-particle in B(Kg) is a O)-
particle in B(Kg), and each o)-wave in B(Kq) is an 6,-wave in B(Kg), and each full
ox-wave in B(Ky) is a full og-wave in B(Kg). In the following example we show how
to apply the given definitions.

5 A Particle-Wave Example: Surfer on a Wave

The purpose of the following small example is to show how moving objects, for
example particles and waves in the sense of physics, can be represented using
Conceptual Semantic Systems. We choose a very small discrete representation of the
movement of a surfer from the crest of a propagating wave to the trough. The surfer as
well as the wave will be represented as formal concepts in a small semantics for
“objects”. Then we shall see that — with respect to some view Q — the surfer is a G-
particle, and the wave is a Ga-wave in the sense of the given definitions.

We start by introducing all necessary concepts as formal concepts of suitable
semantics. To make explicit that the formal representation of the surfer and the wave
only uses that the surfer and the wave are two distinct concepts such that the surfer is
not a wave and the wave is not a surfer we employ the following nominal semantics So
for the objects

= | Surfer | Wave
Surfer{ x
Wave X

Table 1: Nominal semantics Sq for Surfer and Wave

The concept lattice B(So) is ure 1.

Figure 1: The concept lattice of the nominal semantics for the objects

We denote the object concept of the formal object Surfer by the (bold-written) word
Surfer which will be used as a value in the data table of the following CSS. Similarly

160



Wave denotes the object concept of the formal object Wave.
For the representation of time we employ the following ordinal semantics

St=({0,1,2},{0,1,2},2):

X
XX

N = OV
X[ X|X o

Table 2: Ordinal semantics St for time

The concept lattice B(Sy) is represented in the coarse structure of the nested diagram in
Figure 2. The object concepts of 1, 2, 3 are denoted by 1, 2, 3.
For a simple representation of the space in which the surfer and the wave move we
employ a small discrete plane with only five points on the x-axis and three points on the
z-axis as shown in the inner diagram of Figure 2. For the conceptual representation of
the x-axis we use the ordinal semantics

Sv=({0,1,2,3,4},{0,1,2,3,4},2)
yielding a concept lattice B(Sx) which is a chain with five concepts, called 0, 1, 2, 3, 4,

| instances | objects | time |X |z
i 1 Surfer| 0 (01
i 2 Surfer| 1 |20
| 3 Surfer| 2 |4]-1
| 4 Wave | 0 (0]1
‘ 5 Wave | 0 [1]0
| 6 Wave | 0 [2]-1
1 7 Wave| 0 [3]0
| 8 Wave | 0 |4]1
i 9 Wave| 1 [0]0
; 10 Wave | 1 |1]1
i 11 Wave | 1 [2]0
| 12 Wave | 1 [3]-1
| 13 [Wave| 1 [4]0
3 14 Wave | 2 [0]-1
| 15 Wave | 2 (10
| 16 Wave | 2 (2|1

17 Wave | 2 |3]|0

18 Wave | 2 |4|-1

Table 3: Data table for CSS C; : “Surfer on a Wave”

and for the z-axis we employ the ordinal semantics
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S,:=({-1,0,1}, {-1,0,1}, <)
yielding a concept lattice (B(S,), £ ) which is a chain with three concepts ~1<0<1.

Now we construct a CSS C; :=(G, M, (B(Sm))mem, ¥) where G == {1,...,,18},

M = {objects, time, X, Z}, Sepjects := S0, Stime := S1, Sxand S, as defined above, and x is
given as in Table 3. Clearly, T = time is chosen as the specified time attribute.

We interpret instance 1 as the statement that the Surfer was at time 0 at the place
described by the x-coordinate 0 and the z-coordinate 1. Instance 4 is interpreted as the
statement that the Wave has at time 0 at the x-coordinate 0 the amplitude 1.

The derived context of the CSS C; is given in the following Table 4:

K objects time X z
instances | Surfer {Wave |0 112|0]1(2({3{4]|-1{0]1
1 X X X X
2 X X{x| |x|x|x x| %
3 X XXX XXX IX|X]| X [X]|X
4 X | X X
5 X X x| X x| X
6 X (X X|X|x X | %|X
7 X | X|X|x| X X|x
8 X |X XX |X%|%x|{x X
9 X |Ix|x| |x x| %
10 X {X{X X | X X
11 X IXIX|] [X|x|x X{X
12 X X|X| [X|x|xX|x| |x|x|x
13 X X|X] [X|x|x|x|x x| X
14 X (X|{X|X]|X X | X|X
15 X X|X[X|X|x x| X
16 X XX |X|X|{X|X X
17 X XX |X|x|x|x]|x X| %
| 18 X XX XX XX XX X | x]|x

Table 4: The derived context K of the CSS C;

Reading example: Instance 2 has in the time part the attributes (time,0) and (time, 1)
since the intent of the formal concept time(2) =1 € B(Sy) is int(1) = {0,1}. That shows
how the concepts of the semantics are represented in the derived context by their
intents.

Now we select a view, namely the spatio-temporal view
Q = {(time,0), (time, 1), (time,2),(x,0),(x,1),(X,2),(x,3),(x,4),(z,-1),(z,0),(z,1)}
consisting of the attributes in the (last 11) “spatio-temporal” columns in Table 4 and
draw the concept lattice of Kq in form of a nested line diagram (in Figure 2) where the
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Figure 2: Surfer on a Wave

\

\

|

‘ coarse diagram represents the ordinal time semantics Sr.

| As an example we consider the semantic concept ¢ = Surfer € B(Sp) and its

} realization ro,(Surfer) = ({1,2,3}, {1,2,3}") where {1,2,3} =

| {(objects,Surfer), (time,0), (x,0), (z,1)} is the upper derivation of {1,2,3} in K. We now

‘ show that the “actual object Surfer at time 07, formally described by the tuple
(Surfer,0) is oy-distributed in B(Kq), but ox-precise in B(Kg). For that purpose we
observe that ¥o(3) < ¥o(2) <o(1), hence by Lemma 3 yo(co(Surfer,0)) =
Yo({ge G | objects(g) < Surfer, time(g) < 0}) = oo(rey(Surfer)arr(0)) = vo({1,2,3})
since time(1) = 0 and 0 co-occurs at instances 2 and 3 in Kry. Therefore the tuple
(Surfer,0) is oy-distributed in B(Kg), but clearly oj-precise in B(Kg), since
Yo(oa(Surfer, 0))= {yo(1)}. Obviously the concept Surfer is a 6)-particle in B(Kg), but
not an Og-particle in B(Kq).
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| We just mention, that in the modified CSS Ci, which is obtained from C; by

| replacing the ordinal time semantics by a nominal time semantics the concept Surfer is

| not only a G)-particle, but also an o,-particle in the concept lattice of the Q-part.

| Focussing now in C; on the formal concept Wave we first mention that

: Yo(or(Wave,0)) = 1o({4,5,6,7,8}) has 5 concepts, hence (Wave,0) is 0)-distributed in

| B(Kj); indeed, the concept Wave is a full 6y-wave in B(Kg) since [yo(oa(Wave,t)| = 5

; =2 for all t € B(St) occuring in Kr, and Yo(G) = yo(G\{1,2,3}) = yo(or(Wave)), which

| can be seen in Figure 2 since Yo(1) = 1o(4), Yo(2) = Yo(11), ¥o(3) = Yo(18). These three

| places are the places where “the Surfer is on the Wave”.

} We now interpret the very coarse visualization of the Surfer on the Wave in Fig. 2.
At time = 0 the distribution of the five object concepts in Yy({4,5,6,7,8}) can be
understood as a discrete form of the cos-function whose first crest is the place of the
Surfer at x = 0 and z = 1. At time = 1 the distribution of the five object concepts in
Yo({9,10,11,12,13}) can be understood as a discrete sin-function which is interpreted as
the result of a “right-shift” of the previous discrete cos-function. At time = 2 we see a
discrete (—cos)-function, again interpreted as the result of a “right-shift” of the previous
discrete sin-function. The place of its last trough is the place of the Surfer at instance 3.

The CCS C; is clearly a very coarse description of the movement of a surfer from the

} crest of a propagating wave to the trough. It is obvious that temporal phenomena can be
represented with this method in any granularity, even in the granularity of the real
numbers. The purpose of this example was to show how particles and waves can be
concretely represented and generally defined in Conceptual Semantic Systems.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

:

\

|

|

\

6 A Conceptual Analogue of Heisenberg’s Uncertainty Relation

In this section some first steps are done to relate Heisenberg’s Uncertainty Relation
to Conceptual Semantic Systems. The main idea is to use the generality of concept
lattices and the flexibility of Conceptual Semantic Systems to make explicit the
granularity notions in the ideas around Heisenberg’s Uncertainty Relation.

There are three main steps which lead from Heisenberg’s Uncertainty Relation to the
conceptual analogue which will be presented in this paper.

The first step is to replace the very regular and therefore useful and simple structure
of a vector space by the structure of a concept lattice. Both structures are used as tools
for the representation of knowledge, the vector spaces with its nice algebraic structure,
usually together with a metric, serve as the standard frame for the representation of
several ideas of “spaces”; concept lattices can be used to represent the ordinal structure
of multi-dimensional real spaces; but concept lattices can also be used to represent
semantic structures as for example tree structures or nominal scales.

The second step is to replace the well-established and for many purposes very useful
idea of functional dependencies by the more general idea of relational dependencies. A
very simple example is the unit circle in the real plane which can not be described by a
function which maps the x-coordinate to the y-coordinate, but by the relation
{(x,y)] x¥* + y* = 1} — which can be expressed again by a function, namely by the
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function which maps each “parameter” t € [0, 2%] to (t, cos(t), sin(t)). In Conceptual
Semantic Systems the instances play the role of such a parameter which connects
meaningful values, or concepts, in a relational way.

The third step is the introduction of distributed objects, or more generally of
distributed concepts in Conceptual Semantic Systems. It seems to be very fruitful to
make explicit how the mathematical representation of distributed concepts can be used
to describe the ideas around Heisenberg’s Uncertainty Relation in a conceptual
framework.

In this paper we do not yet try to connect the mathematical quantum-theoretical
formalism of Hilbert spaces and the lattice of closed sub-spaces of a Hilbert space with
Conceptual Semantic Systems.

6.1 Uncertainty, Distributions, Variances

The term “Uncertainty” in “Heisenberg’s Uncertainty Relation” is a translation of the
German word “Unschirfe” which refers to “not sharp” or “not precise”. “Uncertainty”
is usually associated with a “broad” distribution of measurement values, for example a
continuous distribution like a Gaussian distribution on the real axis. Whether a
distribution is “broad” or “narrow” is usually measured by a single number, namely its
variance. The variance is used in formal representations of Heisenberg’s Uncertainty
Relation. Clearly, the definition of the variance employs addition, subtraction, the
square, the square-root, and in higher dimensions much more classical algebraical,
metrical and analytical tools which are not available in more general knowledge
representations as for example in concept lattices.

Though variances of distributions can not be defined in arbitrary concept lattices, the
distributions arising from arbitrary data are well represented, for example as the
distribution of formal objects (instances in CSSs) on the set of object concepts of the
derived context.

6.2 Conceptual Precision, Locations, Aspects

As opposed to “uncertainty” in the sense of the German word “Unschérfe”, the term
“precision” refers to some kind of exactness. A typical example of precision is the
assignment of a single number to some “measured” object, or slightly more general, the
assignment of a single concept as an element of a semantic scale to a concept of another
semantic scale. Clearly, if the chosen semantic scale is coarse, the measurement value
may be precise in the sense of being just a single concept in a semantic scale, but it may
be not very informative since some subconcept would be more appropriate. Therefore it
seems to be suitable to formalize the term “precision” with respect to a certain
granularity notion, for which we employ semantic scales.

The main idea in our formal representation of “precision” is that a formal concept
¢ € m(G) is precisely represented in the concept lattice of some view Q if the instances
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where ¢ occurs in K, have the same object concept in B(Kq)
m(g) = ¢, m(h) = ¢ = Yo(g) = Yo(h)
which is equivalent to [yo(oa(c))| = 1 (for each concept ¢ € m(G)).
The stronger condition
m(g) < ¢, m(h) < e = Yo(g) = Yo(h)
is equivalent to [Yo(ow(c))| = 1 (for each concept ¢ € m(G)).
In the Surfer-Wave example the tuple (Surfer,0) is 6)-precise in B(Kq) since
[Yo(oa(Surfer,0))| = 1 (for the chosen spatio-temporal view Q), but it is not G-precise
| in B(Kg) since [Yo(Oo(Surfer,0))| = 3.

‘ 6.3 A Conceptual Analogue of Heisenberg’s Uncertainty Relation

The following definition of a conceptual analogue of Heisenberg’s Uncertainty
| Relation is based on the idea that a certain system (or subsystem) ¢ may be “precisely
‘ measurable in two spaces” which corresponds to “simultaneously measurable” in

Quantum Theory. For that purpose we introduce “measurements” as formal concepts of
a semantic scale. Each “system” or “subsystem” is represented as a tuple ¢ of formal
‘ concepts, and for each measurement & and each tuple ¢ we introduce a selection 6(&,¢)
of the measurement & and the tuple ¢ which is interpreted as the set of those instances
‘ which “refer” to the measurement & and the tuple ¢ in the given CSS. Clearly, as in
practice, a given tuple ¢ can be measured repeatedly in different measurements. The
“space” into which a tuple is measured is represented as a view of the derived context.
| In the most famous example of Heisenberg’s Uncertainty Relation a single particle is
‘ measured with respect to two views Q and Q’ describing the x-axis and the momentum-
axis.

Definition: “precisely measurable, Heisenberg’s Uncertainty Relation”
Let C = (G, M, (B(Sm))mem, X) be a Conceptual Semantic System with derived
context K = (G,N,J) and m, € M. We call the formal concepts of the semantic scale of
‘ m, measuremenis. For M*¥ € M\ {m,} let & be an instance selection on T({m,} L M*);
for each measurement & and each tuple ¢ € T(M*) the set o(€,c) < G is called the
| selection of (Ec). Let Q, Q* < N. With respect to ¢ we define:
e A tuple c € ©(M*) is called precisely measurable in Q and Q’ if there exists a
measurement & such that

fYo(o(&€.0))| = 1 = lyg(c(€.0))| -

e Qs called c-complementary to Q" if for all measurements &

o(o(&:0)) - Yo(o (&) > 1.
We call the last inequality the conceptual analogue of Heisenberg’s Uncertainty
Relation with respect to the chosen instance selection o-
e Qs called complementary to Q* in M* if for all ¢ € T(M¥*)
Q is c-complementary to Q’.
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Special choices for the instance selection:
Let € be a measurement, ¢ = (¢l me M*) € ©t(M*):
1. Forow&.e) = {g€ G| mo(g) =& Vimem+ m(g) = e } the set Yolou€,c))
is called the O-location of ¢ in measurement &.
2. For 0g(&e) = {ge G| my(g) <& Vimemr m(g) < €n } the set Yo(Ou(€,¢))
is called the Q-aspect of ¢ in measurement &.
Clearly many other instance selections can be defined similarly.

6.4 An Example

The following small example serves to connect the conceptual analogue of Heisenberg’s
Uncertainty Relation with the classical application of Heisenberg’s Uncertainty Relation
where a particle moves along the x-axis. Instead of taking into account all possible
measurements we take only two measurements A and B. Each measurement yields a
distribution in the so-called “phase space” spanned by the x-axis and the momentum
axis. In the following CSS C; we choose G = {1,...,20}, M = {m,, P, x, v} where m, is
used as “measurement attribute” which has a nominal semantic scale ({A,B},{A,B}, =)
whose two object concepts are interpreted as two measurements, called “A” and “B”.

P is an attribute with a semantic scale ({c}, {c},{(c,c)}) with only one formal concept ¢
denoting “the single moving particle”. The attributes x (for the x-coordinates) and v (for
the momentum) have the same formal context ({0,1,2,34,5}, {0,1,2,3,4,5}, 2) as
semantic scale. Its six formal concepts are the object concepts i of the formal objects i.
The mapping x is given in Table 5.

In Figure 3 a nested line diagram shows the direct product of the concept lattices of
the m,-, x-, and v-scales into which the concept lattice of the “(m,,Xx,v)-part” of the
derived context of C, is represented by the bold points. The inner part of the nested line
diagram is the “phase space” which is the direct product of the concept lattices of the x-
and v-scales. Each object concept is marked by the labels of those instances which have
this concept as its object concept. The bold points without instance marks represent
suprema of object concepts.

Now we develop in this example the conceptual analogue of Heisenberg’s
Uncertainty Relation. We choose M* :={P}, then (c) is the only tuple in T(M*), denoted
just by “c¢” (without brackets). For each measurement § € {A,B} and ¢ we use owEe) =
{g e G|myg)=E, P(g)=c } as selection, hence on(A,c) = {1,...,10} and ox(B,c) =
{11,...,20}. We now choose
Q= {(x,i)]ie {0,12,3,4,5}} and Q" = {(v.)| i€ {0,1,2,3,4,5}} as the sets of attributes
of the x-part respectively v-part of the derived context of C,. In the line diagram, fori €
{0,1,2,3,4,5} the attribute (x,i) is denoted by “x = i7, and “x > 0” is omuitted,
analogously for the attribute (v,1).
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G m, P X v
I A C 2 0
2 A c 2 1
3 A c 2 3
| 4 A ¢ 2 4
| 5 A c 3 1
| 6 A c 3 2
| 7 A c 3 3
| 8 A c 3 4
} 9 A ¢ 3 5
| 10 A c 3 5
| 11 B c 1 2
} 12 B c 2 2
13 B c 3 2
14 B c 5 2
15 B c 0 3
16 B ¢ 1 3
| 17 B c 2 3
| 18 B c 3 3
19 B ¢ 5 3
20 B ¢ 5 3

Table 5: The data table of the CSS C;

|

|

|

|

|

|

|

i

| The concept lattices of the Q-part and of the Q’-part of the derived context are
| chains. It can be easily seen, for example from the inner diagram of measurement A (by
} “projecting the object concepts to the Q-border line in the left”) that [Yo(oi(A,¢))| =
| Yo({1,...,10})| = 2. Hence we get that Q is c-complementary to Q’ since |Yo(Ci(A,¢))| -
| No(oa(A,e)l =26 =12 > 1 and [yo(ou(B,0))] - [Yo(oa(B,e))| =52 = 10 > 1. Since ¢ is
| the only tuple in ©(M*) we get that Q is complementary to Q.
\

|

|

|

|

|

\

|

\

\

\

\

\

7 Conclusion and Future Research

This paper shows a new mathematical representation of some basic notions in
physics concerning particles, waves, measurements, and Heisenberg’s Uncertainty
Relation. This new approach is based on the mathematical theory of Formal Concept
Analysis. As opposed to classical physics which is based on mathematical tools related
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Figure 3: A typical example for Heisenberg’s Uncertainty Relation

to real numbers this new approach is based on the general notion of a concepr.

The main result is that in Conceptual Semantic Systems notions like “object”,
“particle”, “wave”, and “measurement” can be represented in a contextual-conceptual
way which includes the continuous descriptions in physics, but without using the
algebraical and metrical structure of classical spaces. In my actual understanding, the
“problem of the Wave/Particle Dualism” as mentioned in section 1.2 disappears in the
mathematical framework of Conceptual Semantic Systems since this framework
contains an explicit notion of granularity and a relational knowledge representation
which is based on formal concepts refering to accepted contextual data.

Hence Planck’s desperation concerning discrete quanta in the continuum is based on
an obsolete viewpoint, and Einstein’s wish for a granularity theory in physics starts to
become true.

Future research will focus on the application of conceptual methods to the classical
mathematical structures as they are used in physics. For that purpose the connection of
conceptual and algebraical structures has to be developed.
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