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Abstract

In Pearl-Verhulst's finite difference equation, R. May showed that fractal chaos appears for
large values of the command parameter. In this paper, it is shown that, surprisingly, chaos
emerges for small values of the command parameter when Laplacian spatial diffirsion is taken
into account. For small diffirsion the space pattern is uniform and stable and for large diffirsion,
discrete space-time structures emerge and then a chaotic patchiness. A mathematical
demonstration by incursion shows that the emergence of such structures is due to the space
diffiision parameter which gives rise to a bifurcation cascade and chaos. This is a new type of
emerg€nce of space-time structures what I suggest to call "difRrsive chaos" different from the
Turing "morphogenesis by diffirsive instability". A gradient spatial transport by advection can
also give rise to bifurcations and chaos, what I call "advective chaos" depending of the velocity
intensity. A simulation with negative difrrsion shows stable fractal periodic patterns.
In Lotka-Volterra's discrete model, numerical instabilities occur. D. Dubois had found a new
method for stabilising such instabilities by the concept and method of incursion, an inclusive
recursioq where the equations are sequentially computed. With space diffirsion such incursive
equations show the emergence of a chaotic space-time patchiness which is followed by
continuous space patchiness represented by travelling waves. Diffirsive chaos could explain
space-time structures called patchiness in marine plankton.
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1. Introduction

An important subject in mathematical systems theory is the emergence of space-time
structures. Turing (1952) initiated this subject in proposing a chemical basis of morphogenesis.
His starting point was to consider space-time differential equations, that is to say differential
equations representing the chemical dynamics with a space difilsion grven by a Laplacian
(se*ond space derivative). His showed that the emergence of space patterns is due to "diffirsive
instability' in nonlinear systems. In ecology, the Volterra predator-prey model with spatial
difrrsion was firstly studied by Dubois (1975, 1979, l98l) to explain space-time structures
called patchiness in marine plankton. Numerical simulations showed prey-predator "travelling
$raves" in good agreement with experimental data. An alternative model was also proposed
from the Turing theory @uboiv 1977).It must be pointed out that the chemical autocatalysis
equation of Lotka (1925) is similar to the Volterra model. This paper deals with the
presentation of a completely new mechanism of emergence of space-time structures from
fractal chaos in discrete nonlinear equations, what I propos€ to call a "diffirsive chaos"
@ubois, 1996a). This is completely different from Turing's "diffirsive instability". Two types
of systems will be considered: the Pearl-Verhulst and the Lotka-Volterra discrete models with
space diffi,rsion.
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R. May (1976) showed that several solutions exist in the discrete Pearl-Verhulst map: a
fixed point for small values of the command parameter, a bifurcation diagram for medium value
and chaos for great values. This paper will show that space-time fractal chaos structures
emerge from the Pearl-Verhulst model for small values of the command pârameter in adding a
space diffirsion. For small diffirsion, the system is space homogeneous and in increasing only
the diffi.rsion, chaos emerges giving rise to space-time structures (Duboiq 1996a'1. This will be
mathematically demonstrated and numerical simulations will be presented.

The discrete Lotka-Volterra equations are cellular automata which give rise to
numerical instabilities. A new technique to stabilise these instabilities was proposed by the
introduction of the concept and method of incursion and hyperincursion (Dubois, 1992, 1995,
l996abcd; Dubois and Resconi, 1992,1994,1995). In adding diffirsion in the incursive Lotka-
Volterra model, it will be showed that diffi.rsion initiates space-time structures by a chaotic
behaviour. This chaos will then give rise to space continuous structures like nwaves", but with
discrete values in time.

2. Chaos in Temporal Pearl-Verhulst Equation

Pearl (1924) and Verhulst (1845, 1847) considered the Malthus growth equation with a
saturation like the following differential equation:

( l )  4 : r x ( l - x l
dt

The theory offractal chaos has been introduced in ecology by a discretisation ofthis equation
by R. May (1976). From the definition of the derivative
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the following discrete Pead-Verhulst equation is obtained:

(3) x(t+Ât): x(t) + Ât.r.x(t).(l-x(t))

It can be considered as an automaton. For -l<^t.r<0 there is a fixed point at the origin x = 0,
for 0<At.r<2 the fixed point is x = I and for 2<Ât.r<3, there are the direct cascade of
bifurcations and then chaos. The first bifurcation appears thus for Ltl:2.
A characteristic of chaos is its uncontrollability. Such a chaoic system can be controlled by
incursion, what was called "incursive control" (Dubois, 1995; Duboiq and Resconi, 1994).

3. Diffusive Chaos in Space-time Pearl-Verhulst Equation

Let us now consider an extension of the Pearl-Verhulst equation in considering a spatial
diffi.rsion D(s) (depending eventually on the space dimension s) along a discrete space
dimension denoted by s, in taking a discrete time t (Dubois, 1996a):

(4) x(s,t+Ât) : x(s,t)+Ât.r.x(s,|.( l -x(s,t))+At.D(s)[r(s-Às,t)-2.x(s,t)+x(s+Âs,t)]/Âs2

N
(2) 

*
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Without lack of generality, we can choose a unit time step ̂ t: 1 and a unit space step Âs: l,
or dimensionless rate constant p = Ât.r and dimensionless diffirsion d(s) : ^t.D(s)/^s2 can be
defined. So the equation becomes:

(5) x(s,t+ I )=x(s,t)+p.x(s,t).( l-x(s,t))+d(s)[x(s-1,t)-2.x(s,t)+x(s+l,t)]

In taking a value of the parameter p : l, that is to say in a case where the solution of the
discrete time Pearl-Verhulst equation is a fixed point, surprisingly the solution shows
bifurcations and chaos behaviour when spatial diffirsion is taken into account.

With an initial homogeneous space distribution x(s,0)=1, s=2 to 199, with periodical boundary
conditions for x(l,t) and x(200,t)), the solution remains space homogeneous. In taking a very
small perturbation of the initial condition of one automaton x(100.0)=1a9.01, chaos emerges
as shown in Figures labcd. Figure la shows the emergence of a space-time structure at the
position of the perturbation after 50 time iterates for d:0.28.

At iterate t:200, Fig

Figure la

lb shows a spreading bifurcation of period 2

Figure lb
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Fig. I c considers the iterate I 50 with a grætet diffirsion constant d=0.36. Space-time structure
appears.

Figure lc

Fig. I d gives 8 successive iterates from t : 143 to 150 exhibiting "wave" Ou,r.rnr.

Figure ld

InFigure le, a parabolic diffirsion was considered: d(s):024+0.24 s.(l-s/200), the maximum
value being at the centre of the automata. The initial condition is x(2,0)=l+0.01 and all other
automata being equal to l. Simulation shows that chaos emerges when the di{fusion is
important. The perturbation was given in the zone of weak diffrsion: it is what is called a
sensibility to initial conditions and a butterfly effect is well seen.

Figure le
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With a negative diffirsion constant d : - 0.45 with p = 2.3 and x(2,0;:119.61, Fig. lf shows 8
successive iterates from t -- 293 Io 300: a very curious "periodically stable" fractal pattern
occurs.

Figure lf

From the Pearl-Verhulst model with space advection (gradient) where v is a velocity (for
example a biological population x in a river which flows at velocity V(s):v(s).Âs/Ât):

(6) x(st+ 1):x(s,t)+p.x(s,t).( I -x(s,t))+v(s)[x(s- I,t)-x(s,t)]

asynchronous chaos emerges (Dubois, 1996a).
Fig. lg gives the 8 successive iterates from t = 143 to 150, with initial conditions x(s,O):l
except x(50,0F1+0.01 and v:0.652, p:l.

Let us establish the mathematical proof ofthese numerical results.

Theorem (Dubois, 1996a): For the fixed point x : I solution of the Pearl-Verhulst
equation (a), i.e. for 0<Ât.r<2, the first bifurcation appears when a spatial diffusion is taken
into account for which the following relation is satisfied:

(7) Lt.r/(1-2.Lt.D(s/Âs2) > 2 or p/(1-2.d($) > 2

thug the first bifurcation appears when

(8) d(s)>(2-ù/a

In the case ofthe simulations presented here, p = I and thus d(s) > l/4.

Proof: The first bifurcation is defined bv

(9) x(s,t): x(s,t+2)

The simpler non-homogeneous spatial pattern can be defined by

(10) x(s-l,t):x(s+l,1)
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Let us assume that the state of x at position s at time t+l will be equal to tle state x at an
adjacent position s+l (or s-1, from eq. (10) at the preceding time t:

(l l) x(s,t+l) : x(s+l,t) : x(s-l,t)

ln replacing eq.(11) in eq. (a) with eq. (10), the following incursive equation is obtained:

(12) x(s,t+l):x(s,t)+p.x(s,t).(l-x(s,t))+d(s)[x(s,t+l)-2.x(s,t)+x(s,t+l)]

which can be transformed to the recursive equation:

( I 2b) x(s,t+l ):x(s,t)+[p/( I -2. d(s))].x(s,t).( I -x(s,t))

This eq.(l2b), defined at position s does no more depend on the adjacent positions s-l and
s+1. It is identical to the Pearl-Verhulst equation without difrrsion but the growth rate p is
now divided by (l-2.d(s)): the effective growth rate iircreases with the diffirsion parameter.
As the first bifurcation appears when the growth rate is equal to 2, the eq. (7) is thus
demonstrated 

I

The numerical simulations on computer given in Figs. labcdef confirm this theorem. It means
that the simpler space-time patten! for p : I and d = ll4, is grven by a period-2 time
oscillation coupled with a period-2 space oscillation. When the diffilsion d increases,
bifurcations appear and then chaos.

For the Pearl-Verhulst equation (6) with advection, a similar incursive demonstration as for
difRrsive chaos can be made. In such an "advective chaos". the condition to obtain the first
bifurcation is given by the following relation, similar to eq. (7):

( 13) p(l-v(s)) > 2

For p = l, the first bifurcation appears when v(s) = 0.5. Figure lg shows 8 succesive time
iterates from t = 93 to 100 starting with a perturbation at x(50,0)=l+0.01, with v--0.652. The
pattern is chaotic.

Figure lg

56



Evidently, diffirsion and advection can be considered together for simulating more real systems.
Fig. lh shows 8 successive iterates from 93 to 100 with d=0.28 and v:0.17, the initial
pertuôation being at x( I 00,0):1a9.9 1.

Figurr lh

In this case, the same incursive demonstration can be made for calculating the critical values of
both diffi.rsion and velocity

(14) p/(l-2d(s)-v(s)) > 2

for obtaining bifurcations and then chaos.

4. Hyperincurcive Discrete Temporal Lotka-Volterra Equations

This section deals with the discretization of differential equations of the non-linear Lotka-Volterra
differential equations model. Recall ttnt these equations are related to the Volterra predator-prey
ecological system and to the tntka auto-catalytic chemical reactions systern. The solutions ofthe
original differential equations system are given by periodic oscillations (oôital stability; Analytical
solutions exist only for small distances ûom the steady state, which are identical to the harmonic
oscillator. It is well-known that some discretization schemes of these equations gives insabilities.
We will show that some incursive schemes of discretization give stationary solutions. but also
chaotic behaviours.
Let us first consiiFr 1Ié non-linear model given by the discretized Lotka-Volterra equations:

(l5a) x(t+^ù = x(t) + ̂ t [a xo - b x(t) Y(t)]
(15b) Y(t+^t) = Y(r) + ̂ t.[-c.Y(r) + d.X(t).Y(t)]

where t is a discrete time with steps Ât, and qb,c,d æe the paxam€t€rs.
These equations are related to the Volterra predator-prey ecological system and to the Lotka auto-
catalytic chemical reactions system. The solutions ofthe original differential equations syster\ at the
limit ̂ F0, is given by periodic oscillations (oôital rtubility). For Ât different of zero, the solutions
are unstable. Analytical solutions o<ist only for small oscillations from the steady state )G: c/d and
Yo:aô, which are identical to the harmonic linear oscillator. In taking X:)G + x and Y:Y6 + y,
when x and y æe small, the linearization ofthe equations l5a-b gives

(l6a) x(t+Ât) = x(t) - ̂ t.(bc/d).(t)
(l6b) y(t+40 =(t) + Ât (ad/b).x(t)
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and the discrete harmonic oscillator equation is obtained:

(17) x(t+2Ât) - 2x(t+Ât)+x(t)=- Âtz.ro2.x(t)

with r,r2 = ac, where o is the fiequency. The solutions of eqs. l6a-b and l7 are unstable.
At the limit ^t={, the analytical solution is given by

(18) x(t) = )ft + aslN(rrrt+$)

where the amplitude A and the phase ô are defined by the initial conditions at time F0,
where co2: ac. The variable y has a phase delay of n/2 on the variable x.

We will show that incursive discrete Lotka-Volterra equations give stationary solutions (oôital
stability), but also chaotic behaviours (Dubois, 1992, 1995. 1996b; Dubois and Resconi, 1994,
1995). Diferent incursive discrete equations systems exist to stabilzed numerically these discretized
equatons (l5a-b). A few models itre now presented and numerically simulated on computer.

4.1. Model I

The iterative values ofX(t+Ât) ofthe first equation (l5a) can be propagated to the second equation
(15b), in an incursive way, as proposed by Dubois (1992, 1993):

(19a) X(r+^O: X(r) + Ât.[a.X(t) - b.X(t).Y(t)]
(leb) Y(t+^0: Y(t) + Ar.[-c.Y(t) + d.x(t+Âr).Y(t)]

where we compute the value Y(t+^| in function of the value of X(t+Ât) at the same time step,
instead of the value at its preceding step as it is classically done with a recursive parallel way. The
incursive discretization corresponds to anticipatory asynchronous iterations. Notice that for small
values of the time step At, which correspond to the continuous case, we obtain the same results as
the original Lotka-Volterra equations. Indeed, in replacing the variable X(t+^t) in eq. (l9b) by the
eq (l9a), we obtain:

(lec) Y(t+^r) = Y(t) - ̂ t.c.Y(t) + d.^t.x(t).Y(0 + d.&'z.x(r).[a-b.Y(t)].Y(t)

where the new term is ofthe second order in time step, Ât2, which means that the predator contains
an anticipatory model ofthe prey at the next time step.

We can interpret the incursion in the following way. The first two computing steps of iterationq
starting with the initial conditions X(0) and Y(0), can be written as (Dubois 1992, p. 133\:

lrsr step x(t+l): x(t) + Ât.[a.X(t) - b.x(t).Y(r)]
Y(t+2) = Y(t) + At.[-c.Y(t) + d.X(t+l).Y(t)]

2nd step x(t+3): x(r+l) + ̂ t.[a.x(t+l) - b.x(r+l) Y(r+2)]
Y(t+4) : Y(t+2) + ^r. [-c. Y(r+2) + d. X(t+3 ). Y(t+2)]

etc...

We see that X and Y are not computed at the time steps: we cannot know the values of X and Y
simultaneously at the same time step.
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Figures 2ab slrow an s<ample of the simulation (Dubois, 1992) of the incursive discrete equations
(19a-b) in the phase space (XY), for srccessive values of the initial contons. For initial conditions
not too far ûom tlrc steady statq the numerical solutions strow stabilized oscillations (oôital
stability) by inorsion. For medium values of the initial conditions, multiple sable oscillæions appear
and tlrcq for lager values, agin the oôital stability and tten the chaos appeas. This behaviour of
the incursive solutions is due to phase shifts: advanced or delayed phases berwean X and Y.
Let us notice that for a lot of'values oftlrc parameters, the incursive solutions give stable oscillations
npanwhile the recursive ones give numerically explosive and very unsable solutions.

Figurc 2a: in the phase space, the horizontal axis gives the X values
and the vertical a,xis gives the Y values.

trTgurc 2b: values ofX (from l€ft to right) for sccessive initial conditions (from top to bottom).
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Wlren we defirrcd ttn trypeftrcursion in the Fractal lvlâchine, we said that serveral sohrtions erdst at
each patb meanwhile for the incursioq only one path. In fact, it exists a secord path for ttre
incunive discrete Lotka-Volterra equations system in inversing the order in which the hvo
equations are computed. The second path is given by

Q0a) Y(t+^O = Y(t) + Âtl-c Y(t) + d.X(t).Y(t)l
(20b) x(t+^t) = x(t) + Ât.[a X(t) - b.x(t).Y(t+40]

where now we propagate the value of Y(t+^| in the equation of X(t+Ât). In replacing Y(t+^t) in
eq. 20b by eq. 20a we obtain

(20c) x(t+^t) = x(t) + ̂ t.[a x(t) - b.x(t).Y(t)] + ̂ t2.b.x(t).[c - d x(t)].Y(t)

where we recognzn afaaor glallqr to the Pead-Verhulst model, for discrete values of the time step.
The prey has an anticipatory-model ofthe predator.

Figure 2c gives the numerical simulations of these equations with the same initial conditions as for
the Figure la- The gen€ral behavior is qualitative$ identical, but not quantâtively for medium ard
large values ofthe initial conditions.

Figure 2c

The difference ofvalues between the two hyperincursive solutions given in Figs2a and 2c measres
the uncertainty ofthe real values ofthe variables X and Y.

It is only when the frequency (or the time step Àt) of the oscillations around the steady state is very
weak that the two solutions become iderûical to the solution of the original lotka-
Volterra diFerential equations.
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It would be interesting to simulate the interrnediate equations betwean tlre two above hyperincursive
discrete Lotka-Volterra equations. What we mean is, for example, to consider the following discrete
equations

(2ra) x(t+^t) = x(t) + Ât.[a.X(t) - b.x(t).Y(r+Âtlt)]
(2lb) Y(t+^t) = Y(0 + Ât.[-c.Y(t) + d.x(r+atl2).Y(t)]

in view of obtaining the more predictable values ofthe two variables at tlrc sarne time steps Âtl2. To
do this, it is necessary to know 4 initial conditiong X(0), X(^t/2), Y(0) and Y(Ltlz), insead of 2
(x(0)andY(0).
Figures 3abcd give the numerical solutions for 4 succe.ssive initial conditions for which
x(^t/2Fx(0) and Y(AI/2FY(0).

Figurc3e

Wæi:,idg

W

Figure 3c Figure fi

Finally, in Dubois & Resconi (1992), the following hyperincursive Lotka-Volterra discrete
equations were considerpd :

(22a) X(t+^o = X(t) + ̂ t.[a.X(t) - b.X(t+40.Y(r+Ât)]
(22b) Y(t+^O = Y(t) + Àt.[-c Y(t) + d.x(t+At).Y(t+At)]

It was demonstrated that it is not possible to transform these hypoincursive equations (with one
path of computatioq i. e. a parallel computation), to simple recursive equations. Moreover, æ each
time step Ât, 2 values of each of the variables X and Y enist, so that an exponential number of
values rnrst be computed.
La us notice that we can choose, at each ste,p, only one particular value for each variable, we select
a particular solution. If one considers the time reverse equations (2?â-b), the zuccessive values of
the two variables are those chosen in the dircct time dirætion.
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Avery irnportant conclusion is so obtained.

For this type of trypoincursive discrete equations systerns, many solutions e:<ist in the direction of
the trture meanwhile only one solution exists in the reverse direction of the time. These systems
behave with a memory ofthe choices made during their evolution towards the future.

4J. Model2

In 1973, I proposed (Dubois, 1973) to g€nerate non-linear differential equations from an invariant, a
Lyapounov firnction related to the Hamiltonian in Mechanics. Starting from such a well-known
invuiant (consewative systems) for the Lotka-Voltena model, I generate the other following
canonical model written with discrete equations:

(23a) X(r+^0: X(t) + ^t.ln(Y(t)
(23b) Y(t+^O: Y(t) - At ln(X(t)

where In is the Ne,perian logarithm. These equations are only stable at the limit of Âr:0.

One hyperincursive version ofthese equations is (Dubois, 1996b):

(23c) X(t+^o = X(t) + ^t ln(Y(r))
(23d) Y(t+^t): Y(t) - ^t.ln(X(t+r))

The Figure 4 gives the numerical solutions for different initial conditions X(0):1 to 0.15 and
Y(0F1, for ^t={.45. The behaviour is qualitatively similar to the behaviour of the hyperincursive
discrete Lotka-Volterra equations given in Figures2a and2c.

]:.{. -.::'.' ".,....

Figure 4
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43. Modd3

Anotlm hyperinorsive Lotka-Voltena discrete equation model (Dubois, 1996b) is given by

Q4a) X(t+^O = X(t) + Ât.[a.X(t) - b.X(t+Âr).YC)]
Q4b) Y(t+^0: Y(t) + Ât.[*.Y(t) + d.x(t+Ât).Y(t)]

for which eq. (24a) can be transformed in the recursive equation

Q4c) x(t+Ât) = x(t) + Ât.a.x(t/(l + ̂ t.b.Y(t)

The simul*ions ofthese equations in the phase space (X Y) are given in Figs 5ab, u,ith a=b--{:l
wittr a time step ̂FI.. In Figurc 5b, the diftrent initial conditions are far from tlre steady state. The
solutions are given by a cheotic sca with a lot of blends which look similar to the patterns of
Figures 2a ard 2c. In Figure 54 different initial conditions are considered near the steady state. This
Fig. 5a is a simuldion corresponding to the bottorFleft ofFig. 5b.

Ftgurt 5b
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5. Diffusive Chaos in Incursive Spacetime Lotka-Volterra Model

With a space diffilsion (Dubois, 1979), eqs. (l5ab) are given by

(25a) X(s,t+l): X(s,| + a.X(s,t) - b.X(s,t).Y(s,t) + D(s)[X(s-l,t)-2.X(s,t)+X(s+l,t)]
(2sb) Y(s,t+l) = Y(s,t) -c.Y(s,t) + d"X(s,t).Y(s,t) + D(s)[Y(s-l,t)-2.Y(s,t)+Y(s+t,t)]

The simulation ofthese space-time Lotka-Volterra equations with spatial diffirsion gives rise to
wave propagation: when two waves meet, they annihilate (D. Dubois, 1975).

With a space diffiision (Dubois, 1996a), the incursive eqs. (l9ab) are given by

(26a) X(s,t+1) = X(s,$ + a.X(s,t) - b.X(s,t).Y(s,t) + D(s)[X(s-l,t)-2.X(s,t)+X(s+l,t)]
(26b) Y(s,t+l): Y(s,$ -c.Y(s,t) + d.X(s,t+1).Y(s,t) + D(s)[Y(s-l,t)-2.Y(s,t)+Y(s+t,t)]

Numerical simulations of these equations are given in Figs. 6ab, 7ab, 8ab, 9ab where the
horizontal axis is the space variable s:2 to 199 and the vertical axis the values ofX and Y.
The numerical values of the par:rmeters are the following: the mrmber of automata s:2 to 199,
with periodical conditions, a4.648;b=0.0O432; c:0.405; d:0.00405; the diftrsion constant
D=0.35 and the initial conditions are space homogeneous X(s,0):150, except a perturbation
for X(100.0):150+15.
Figs. 6ab give the numerical simulations of X(s,t) and Y(s,t), respectively, for s : I to 200 at
time iterate t=I50. A first bifurcation appears which spreads in two opposite direction. Indeed,
in Figs. 7ab, continuations of Figs 6ab at time t:300, the bifurcation disappears behind the
bifurcation propagating fronts giving rise to a continuous emerging space pattern.

Figure 6a
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Figure 7a

Figure Ea
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Figures Eab, continuation of Figs. 7ab, show l0 successive time iterates from t : 2gl to 300.
Two opposite bifurcation of period 2 are followed by chaos and then space-time structures,
callgd latchi19s1. These are given by travelling waves. Emergence of space continuous
patchiness is initiated by chaos which then disappears.

This remarkable result means that the cause, represented by the chaos, of the emergence of
travelling waves, which is the effect, disappears after the installation of these travelling waves.
This is well shown in Figs. 9ab, continuation of Figs. 8ab, where chaos disappeared.
Patchiness, an emergent property, is given by stationary travelling waves. Any perturbâtion in
the continous travelling waves initiates again transient bifurcations.

Let us point out that without space diflusion, the incursive Lotka-Volterra model shows orbital
stability for the chosen values of parameters. This confirms, as in the space-time pearl-Verhulst
model, that the spatial diffi.rsion initiates chaos, which I called "diffi.rsive chaos,'.

6. Conclusion

In Pearl-Verhulst's finite difference equation, ftactal chaos emerges for large values of the
command parameter. It is shown that, surprisingly, chaos emerges for small values of the
command parameter when spatial diffrsion is taken into account. For small diffi.rsion the
computing space is uniform and stable, and for large diffirsion, discrete travelling waves occur
due to bifurcations, and then chaos, what I propose to call "diffirsive chaos". The mathematical
demonstration of the first bifurcation of diffirsive chaos is made from a new incursive method.
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It is also shown that advection can also give rise to bifurcations and chaos, what I call
"advective chaos". From space-time Lotka-Volterra incursive discrete equations, it was shown
that continuous space patterns emerge with discrete time iterates after a chaotic behaviour
initiated by a perturbation in the initial condilions given by an homogeneous space distribution.
Without space diffirsion" the incursive Lotka-Volterra model shows oôital stability for the
chosen values of paf,ameters. A space-time chaotic propagating front is followed by spatial
continuous travelling waves. Any perturbation in the continous travelling waves initiates again
transient bifrrrcations. So, in conclusion, this paper shows that diffirsion initiates a chaotic
space-time structure and the incursion synchronises the automata along the space. This
'diffirsive chaos" is a new type of difRrsive instability different from the Turing's
morphogenesis by "diff.rsive instability".
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