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Abstract

In Pearl-Verhulst's finite difference equation, R. May showed that fractal chaos appears for
large values of the command parameter. In this paper, it is shown that, surprisingly, chaos
emerges for small values of the command parameter when Laplacian spatial diffusion is taken
into account. For small diffusion the space pattern is uniform and stable and for large diffusion,
discrete space-time structures emerge and then a chaotic patchiness. A mathematical
demonstration by incursion shows that the emergence of such structures is due to the space
diffusion parameter which gives rise to a bifurcation cascade and chaos. This is a new type of
emergence of space-time structures what I suggest to call "diffusive chaos" different from the
Turing "morphogenesis by diffusive instability". A gradient spatial transport by advection can
also give rise to bifurcations and chaos, what I call "advective chaos" depending of the velocity
intensity. A simulation with negative diffusion shows stable fractal periodic patterns.

In Lotka-Volterra's discrete model, numerical instabilities occur. D. Dubois had found a new
method for stabilising such instabilities by the concept and method of incursion, an inclusive
recursion, where the equations are sequentially computed. With space diffusion such incursive
equations show the emergence of a chaotic space-time patchiness which is followed by
continuous space patchiness represented by travelling waves. Diffusive chaos could explain
space-time structures called patchiness in marine plankton.
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1. Introduction

An important subject in mathematical systems theory is the emergence of space-time
structures. Turing (1952) initiated this subject in proposing a chemical basis of morphogenesis.
His starting point was to consider space-time differential equations, that is to say differential
equations representing the chemical dynamics with a space diffusion given by a Laplacian
(second space derivative). His showed that the emergence of space patterns is due to "diffusive
instability" in non-linear systems. In ecology, the Volterra predator-prey model with spatial
diffusion was firstly studied by Dubois (1975, 1979, 1981) to explain space-time structures
called patchiness in marine plankton. Numerical simulations showed prey-predator "travelling
waves" in good agreement with experimental data. An alternative model was also proposed
from the Turing theory (Dubois, 1977). It must be pointed out that the chemical autocatalysis
equation of Lotka (1925) is similar to the Volterra model. This paper deals with the
presentation of a completely new mechanism of emergence of space-time structures from
fractal chaos in discrete non-linear equations, what I propose to call a "diffusive chaos"
(Dubois, 1996a). This is completely different from Turing 's "diffusive instability". Two types
of systems will be considered: the Pearl-Verhulst and the Lotka-Volterra discrete models with
space diffusion.
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R. May (1976) showed that several solutions exist in the discrete Pearl-Verhulst map: a
fixed point for small values of the command parameter, a bifurcation diagram for medium value
and chaos for great values. This paper will show that space-time fractal chaos structures
emerge from the Pearl-Verhulst model for small values of the command parameter in adding a
space diffusion. For small diffusion, the system is space homogeneous and in increasing only
the diffusion, chaos emerges giving rise to space-time structures (Dubois, 1996a). This will be
mathematically demonstrated and numerical simulations will be presented.

The discrete Lotka-Volterra equations are cellular automata which give rise to
numerical instabilities. A new technique to stabilise these instabilities was proposed by the
introduction of the concept and method of incursion and hyperincursion (Dubois, 1992, 1995,
1996abcd; Dubois and Resconi, 1992, 1994, 1995). In adding diffusion in the incursive Lotka-
Volterra model, it will be showed that diffusion initiates space-time structures by a chaotic
behaviour. This chaos will then give rise to space continuous structures like "waves", but with
discrete values in time.

2. Chaos in Temporal Pearl-Verhulst Equation

Pearl (1924) and Verhulst (1845, 1847) considered the Malthus growth equation with a
saturation like the following differential equation:
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The theory of fractal chaos has been introduced in ecology by a discretisation of this equation
by R. May (1976). From the definition of the derivative
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the following discrete Pearl-Verhulst equation is obtained:
3) X(t+At) = x(t) + At.r.x(t).(1-x(t))

It can be considered as an automaton. For -1<At.r<0 there is a fixed point at the origin x = 0,
for 0<At.r<2 the fixed point is x = 1 and for 2<At.r<3, there are the direct cascade of
bifurcations and then chaos. The first bifurcation appears thus for At.r = 2.

A characteristic of chaos is its uncontrollability. Such a chaoic system can be controlled by
incursion, what was called "incursive control" (Dubois, 1995; Dubois, and Resconi, 1994).

3. Diffusive Chaos in Space-time Pearl-Verhulst Equation

Let us now consider an extension of the Pearl-Verhulst equation in considering a spatial
diffusion D(s) (depending eventually on the space dimension s) along a discrete space
dimension denoted by s, in taking a discrete time t (Dubois, 1996a):

(4)  x(s,t+At) = x(s,t)+At.r.x(s,t).(1-x(s,t))+At. D(s)[%(s-As, t)-2 X(s,t)+x(s+As, 1) /As®
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Without lack of generality, we can choose a unit time step At = 1 and a unit space step As = 1,
or dimensionless rate constant p = At.r and dimensionless diffusion d(s) = At.D(s)/As” can be
defined. So the equation becomes:

5) X(s,t+1)=x(s,t)+p.x(s,t).(1-x(s,t))+d(s)[x(s-1,t)-2.x(s,t ) +x(s+1,t)]

In taking a value of the parameter p = 1, that is to say in a case where the solution of the
discrete time Pearl-Verhulst equation is a fixed point, surprisingly the solution shows
bifurcations and chaos behaviour when spatial diffusion is taken into account.

With an initial homogeneous space distribution x(s,0)=1, s=2 to 199, with periodical boundary
conditions for x(1,t) and x(200,t)), the solution remains space homogeneous. In taking a very
small perturbation of the initial condition of one automaton x(100,0)=1+0.01, chaos emerges
as shown in Figures labcd. Figure 1a shows the emergence of a space-time structure at the
position of the perturbation after 50 time iterates for d=0.28.

Figure 1a

At iterate t=200, Fig. 1b shows a spreading bifurcation of period 2.

Figure 1b
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Fig. 1c considers the iterate 150 with a greater diffusion constant d=0.36. Space-time structure
appears.

Figure 1¢

Fig. 1d gives 8 successive iterates from t = 143 to 150 exhibiting "wave" patterns.

Figure 1d

In Figure le, a parabolic diffusion was considered: d(s)=0.24+0.24 s.(1-5/200), the maximum
value being at the centre of the automata. The initial condition is x(2,0)=1+0.01 and all other
automata being equal to 1. Simulation shows that chaos emerges when the diffusion is
important. The perturbation was given in the zone of weak diffusion: it is what is called a
sensibility to initial conditions and a butterfly effect is well seen.
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Figure 1e
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With a negative diffusion constant d = - 0.45 with p = 2.3 and x(2,0)=1+0.01, Fig. 1f shows 8
successive iterates from t = 293 to 300: a very curious "periodically stable" fractal pattern
occurs.
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Figure 1f

From the Pearl-Verhulst model with space advection (gradient) where v is a velocity (for
example a biological population x in a river which flows at velocity V(s)=v(s).As/At):

6)  x(s,t+1)=x(s,t)+p.x(s,t).(1-x(s,t))+v(s)[x(s-1,t)-x(s,t)]

asynchronous chaos emerges (Dubois, 1996a).

Fig. 1g gives the 8 successive iterates from t = 143 to 150, with initial conditions x(s,0)=1
except x(50,0)=1+0.01 and v=0.652, p=1.

Let us establish the mathematical proof of these numerical results.

Theorem (Dubois, 1996a): For the fixed point x = 1 solution of the Pearl-Verhulst
equation (4), i.e. for 0<At.r<2, the first bifurcation appears when a spatial diffusion is taken
into account for which the following relation is satisfied:

(7)  Atr/(1-2.AtD(s)/As’) >2  or p/(1-2.d(s)) > 2

thus, the first bifurcation appears when

®) d(s)=(2-p)/4

In the case of the simulations presented here, p = 1 and thus d(s) > 1/4.
Proof: The first bifurcation is defined by

Q)  x(s,t) =x(s,t+2)

The simpler non-homogeneous spatial pattern can be defined by

(10)  x(s-1,t) =x(st1,t)




Let us assume that the state of x at position s at time t+1 will be equal to the state x at an
adjacent position s+1 (or s-1, from eq. (10) at the preceding time t:

(11)  x(s,t+1) = x(st+1,t) = x(s-1,t)

In replacing eq.(11) in eq. (4) with eq. (10), the following incursive equation is obtained:
(12)  x(s,t+1)=x(s,t)+p.x(s,t).(1-x(s,t))+d(s)[x(s,t+1)-2.x(s,t)+x(s,t+1)]

which can be transformed to the recursive equation:

(12b) x(s,t+1)=x(s,t)+[p/(1-2.d(s))].x(s,t).(1-x(s,t))

This eq.(12b), defined at position s does no more depend on the adjacent positions s-1 and
s+1. It is identical to the Pearl-Verhulst equation without diffusion but the growth rate p is
now divided by (1-2.d(s)): the effective growth rate increases with the diffusion parameter.

As the first bifurcation appears when the growth rate is equal to 2, the eq. (7) is thus

demonstrated.
| |

The numerical simulations on computer given in Figs. 1abcdef confirm this theorem. It means
that the simpler space-time pattern, for p = 1 and d = 1/4, is given by a period-2 time
oscillation coupled with a period-2 space oscillation. When the diffusion d increases,
bifurcations appear and then chaos.

For the Pearl-Verhulst equation (6) with advection, a similar incursive demonstration as for
diffusive chaos can be made. In such an "advective chaos", the condition to obtain the first
bifurcation is given by the following relation, similar to eq. (7):

(13)  p/(1-v(s)) =2
For p = 1, the first bifurcation appears when v(s) = 0.5. Figure 1g shows 8 succesive time

iterates from t = 93 to 100 starting with a perturbation at x(50,0)=1+0.01, with v=0.652. The
pattern is chaotic.

Figure 1g




Evidently, diffusion and advection can be considered together for simulating more real systems.
Fig. 1h shows 8 successive iterates from 93 to 100 with d=0.28 and v=0.17, the initial
perturbation being at x(100,0)=1+0.01.

Figure 1h

In this case, the same incursive demonstration can be made for calculating the critical values of
both diffusion and velocity

(14)  p/(1-2d(s)-v(s)) =2
for obtaining bifurcations and then chaos.

4. Hyperincursive Discrete Temporal Lotka-Volterra Equations

This section deals with the discretization of differential equations of the non-linear Lotka-Volterra
differential equations model. Recall that these equations are related to the Volterra predator-prey
ecological system and to the Lotka auto-catalytic chemical reactions system. The solutions of the
original differential equations system are given by periodic oscillations (orbital stability). Analytical
solutions exist only for small distances from the steady state, which are identical to the harmonic
oscillator. It is well-known that some discretization schemes of these equations gives instabilities.
We will show that some incursive schemes of discretization give stationary solutions, but also
chaotic behaviours.

Let us first consider the non-linear model given by the discretized Lotka-Volterra equations:

(152) X(t+At) = X(t) + At.[a.X(t) - b.X(t). Y(©)]
(15b)  Y(t+At) = Y(t) + At.[-c.Y(t) + d.X(1).Y(1)]

where t is a discrete time with steps At, and a,b,c,d are the parameters.

These equations are related to the Volterra predator-prey ecological system and to the Lotka auto-
catalytic chemical reactions system. The solutions of the original differential equations system, at the
limit At=0, is given by periodic oscillations (orbital stability). For At different of zero, the solutions
are unstable. Analytical solutions exist only for small oscillations from the steady state Xo= c/d and
Yo=a/b, which are identical to the harmonic linear oscillator. In taking X=X, + x and Y=Y, +y,
when x and y are small, the linearization of the equations 15a-b gives

(16a) x(t+At) =x(t) - At.(bc/d).y(t)
(16b) y(t+At) = y(t) + At.(ad/b).x(t)
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and the discrete harmonic oscillator equation is obtained:
(17)  x(t+2At) - 2x(t+At) + x(t) = - At’.0° x(t)

with o” = ac, where o is the frequency. The solutions of eqs. 16a-b and 17 are unstable.
At the limit At=0, the analytical solution is given by

(18)  x(t)=Xo + A.SIN(ot+d)

where the amplitude A and the phase ¢ are defined by the initial conditions at time t=0,
where ” = ac. The variable y has a phase delay of 7/2 on the variable x.

We will show that incursive discrete Lotka-Volterra equations give stationary solutions (orbital
stability), but also chaotic behaviours (Dubois, 1992, 1995, 1996b; Dubois and Resconi, 1994,
1995). Different incursive discrete equations systems exist to stabilzed numerically these discretized
equations (15a-b). A few models are now presented and numerically simulated on computer.

4.1. Model I

The iterative values of X(t+At) of the first equation (15a) can be propagated to the second equation
(15b), in an incursive way, as proposed by Dubois (1992, 1993):

(192)  X(t+At) = X(t) + At.[a. X(t) - b.X(t). Y(1)]
(19b)  Y(t+At) = Y(t) + At [-c.Y(t) + d X(t+At).Y(1)]

where we compute the value Y(t+At) in function of the value of X(t+At) at the same time step,
instead of the value at its preceding step as it is classically done with a recursive parallel way. The
incursive discretization corresponds to anticipatory asynchronous iterations. Notice that for small
values of the time step At, which correspond to the continuous case, we obtain the same results as
the original Lotka-Volterra equations. Indeed, in replacing the variable X(t+At) in eq. (19b) by the
eq. (19a), we obtain:

(19¢c) Y(t+At) =Y(t) - At.c.Y(t) + d. At. X(t).Y(t) + dAAtZ.X(t).[a-b.Y(t)].Y(t)

where the new term is of the second order in time step, At?, which means that the predator contains
an anticipatory model of the prey at the next time step.

We can interpret the incursion in the following way. The first two computing steps of iterations,
starting with the initial conditions X(0) and Y(0), can be written as (Dubois 1992, p. 133):

Irststep  X(t+1) = X(t) + At.[a.X(t) - b.X(t). Y(t)]
Y(t+2) = Y(t) + At.[-c. Y(t) + d. X(t+1).Y(1)]
2ndstep  X(t+3) = X(t+1) + At [a. X(t+1) - b. X(t+1).Y(t+2)]
Y(t+4) = Y(t+2) + At [-c. Y (t+2) + d. X(t+3). Y (t+2)]
etc...

We see that X and Y are not computed at the time steps: we cannot know the values of X and Y
simultaneously at the same time step.
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Figures 2ab show an example of the simulation (Dubois, 1992) of the incursive discrete equations
(19a-b) in the phase space (X,Y), for successive values of the initial contions. For initial conditions
not too far from the steady state, the numerical solutions show stabilized oscillations (orbital
stability) by incursion. For medium values of the initial conditions, multiple stable oscillations appear
and then, for lager values, again the orbital stability and then the chaos appears. This behaviour of
the incursive solutions is due to phase shifts: advanced or delayed phases between X and Y.

Let us notice that for a lot of values of the parameters, the incursive solutions give stable oscillations
meanwhile the recursive ones give numerically explosive and very unstable solutions.

Figure 2a: in the phase space, the horizontal axis gives the X values
and the vertical axis gives the Y values.

Figure 2b: values of X (from left to right) for successive initial conditions (from top to bottom).
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When we defined the hyperincursion in the Fractal Machine, we said that several solutions exist at
each path, meanwhile for the incursion, only one path. In fact, it exists a second path for the
incursive discrete Lotka-Volterra equations system in inversing the order in which the two
equations are computed. The second path is given by

(202) Y(t+At) = Y(t) + At[-c.Y(t) + d X(t). Y(t)]
(20b)  X(t+At) = X(t) + At.[a. X(t) - b.X(t). Y(t+At)]

where now we propagate the value of Y(t+At) in the equation of X(t+At). In replacing Y(t+At) in
eq. 20b by eq. 20a, we obtain

(20c)  X(t+At) = X(t) + At.[a.X(t) - b.X().Y(®)] + AL b.X(t).[c - d X(1)].Y(®)

where we recognize a factor similar to the Pearl-Verhulst model, for discrete values of the time step.
The prey has an anticipatory_model of the predator.

Figure 2c gives the numerical simulations of these equations with the same initial conditions as for
the Figure 1a. The general behaviour is qualitatively identical, but not quantatively for medium and
large values of the initial conditions.

Figure 2¢

The difference of values between the two hyperincursive solutions given in Figs 2a and 2¢ measures
the uncertainty of the real values of the variables X and Y.

It is only when the frequency (or the time step At) of the oscillations around the steady state is very

weak that the two hyperincursive solutions become identical to the solution of the original Lotka-
Volterra differential equations.
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It would be interesting to simulate the intermediate equations between the two above hyperincursive
discrete Lotka-Volterra equations. What we mean is, for example, to consider the following discrete
equations

(21a) X(t+At) = X(t) + At.[a.X(t) - b.X(t). Y(t+At/2)]
(21b)  Y(t+At) = Y(t) + At.[-c.Y(t) + d X(t+At/2). Y(1)]

in view of obtaining the more predictable values of the two variables at the same time steps At/2. To
do this, it is necessary to know 4 initial conditions, X(0), X(At/2), Y(0) and Y(At/2), instead of 2
(X(0) and Y(0)).

Figures 3abcd give the numerical solutions for 4 successive initial conditions for which
X(AV/2)=X(0) and Y(At/2)=Y(0).

|
|
|
|
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|

Figure 3a Figure 3b

Figure3c Figure 3d

Finally, in Dubois & Resconi (1992), the following hyperincursive Lotka-Volterra discrete
equations were considered:

(22a)  X(t+At) = X(t) + At.[a.X(t) - b.X(t+At).Y(t+At)]
(22b)  Y(t+At) = Y(t) + At[-c.Y(t) + d X(t+At).Y(t+At)]

It was demonstrated that it is not possible to transform these hyperincursive equations (with one
path of computation, i. e. a parallel computation), to simple recursive equations. Moreover, at each
time step At, 2 values of each of the variables X and Y exist, so that an exponential number of
values must be computed.

Let us notice that we can choose, at each step, only one particular value for each variable, we select
a particular solution. If one considers the time reverse equations (22a-b), the successive values of
the two variables are those chosen in the direct time direction.
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A very important conclusion is so obtained.

For this type of hyperincursive discrete equations systems, many solutions exist in the direction of
the future meanwhile only one solution exists in the reverse direction of the time. These systems
behave with a memory of the choices made during their evolution towards the future.

4.2. Model 2
In 1973, I proposed (Dubois, 1973) to generate non-linear differential equations from an invariant, a
Lyapounov function related to the Hamiltonian in Mechanics. Starting from such a well-known

invariant (conservative systems) for the Lotka-Volterra model, I generate the other following
canonical model written with discrete equations:

(232) X(t+At) = X(t) + AtIn(Y(t))
(23b)  Y(t+At) = Y(t) - At.In(X(t))

where In is the Neperian logarithm. These equations are only stable at the limit of At=0.
One hyperincursive version of these equations is (Dubois, 1996b):

(23¢) X(t+At) = X(t) + At.In(Y(t))
(23d)  Y(t+A) = Y(t) - At In(X(t+1))

The Figure 4 gives the numerical solutions for different initial conditions X(0)=1 to 0.15 and
Y(0)=1, for At=0.45. The behaviour is qualitatively similar to the behaviour of the hyperincursive
discrete Lotka-Volterra equations given in Figures 2a and 2c.

Figure 4




4.3. Model 3

Another hyperincursive Lotka-Volterra discrete equation model (Dubois, 1996b) is given by

(242)  X(t+At) = X(t) + At.[a. X(t) - bX(t+A).Y(t)]
(24b)  Y(t+At) = Y(t) + At [-c.Y(t) + d X(t+At). Y(1)]

for which eq. (24a) can be transformed in the recursive equation

(24c) X(t+At) = X(t) + Ata. X(E)(1 + Atb.Y (1)

The simulations of these equations in the phase space (X, Y) are given in Figs 5ab, with a=b=c=d=1
with a time step At=1.. In Figure 5b, the different initial conditions are far from the steady state. The
solutions are given by a chaotic sea with a lot of islands which look similar to the patterns of
Figures 2a and 2c. In Figure Sa, different initial conditions are considered near the steady state. This
Fig. 5a is a simulation corresponding to the bottom-left of Fig. 5b.




5. Diffusive Chaeos in Incursive Space-time Lotka-Volterra Model
With a space diffusion (Dubois, 1979), egs. (15ab) are given by

(252) X(s,t+1) = X(s,t) + a.X(s,t) - b.X(s,1). Y(s,t) + D(S)[X(s-1,8)-2. X(s,t)}+X(s+1,1)]
(25b) Y(s,t+1) = Y(5,t) -c.Y(s,t) + d.X(s,0).Y(s,t) + D(S)[Y(5-1,8)-2.Y(s,)+Y(5+1,1)]

The simulation of these space-time Lotka-Volterra equations with spatial diffusion gives rise to
wave propagation: when two waves meet, they annihilate (D. Dubois, 1975).

With a space diffusion (Dubois, 1996a), the incursive egs. (19ab) are given by

(26a) X(s,t+1) = X(s,t) + a.X(s,t) - b.X(s,1). Y(s,t) + D(s)[X(s-1,t)-2.X(s,t)+X(s+1,1)]
(26b)  Y(s,t+1) = Y(s,t) -c.Y(s,t) + d.X(5,t+1).Y(s,t) + D(s)[Y(s-1,1)-2. Y(5,)+Y(s+1,1)]

Numerical simulations of these equations are given in Figs. 6ab, 7ab, 8ab, 9ab where the
horizontal axis is the space variable s = 2 to 199 and the vertical axis the values of X and Y.
The numerical values of the parameters are the following: the number of automata s=2 to 199,
with periodical conditions, a=0.648; b=0.00432; c=0.405; d=0.00405; the diffusion constant
D=0.35 and the initial conditions are space homogeneous X(s,0)=150, except a perturbation
for X(100,0)=150+15.

Figs. 6ab give the numerical simulations of X(s,t) and Y(s,t), respectively, for s = 1 to 200 at
time iterate t=150. A first bifurcation appears which spreads in two opposite direction. Indeed,
in Figs. 7ab, continuations of Figs 6ab at time t=300, the bifurcation disappears behind the
bifurcation propagating fronts giving rise to a continuous emerging space pattern.

Figure 6a

Figure 6b
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Figure 8a
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Figure 8b
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Figures 8ab, continuation of Figs. 7ab, show 10 successive time iterates from t = 291 to 300.
Two opposite bifurcation of period 2 are followed by chaos and then space-time structures,
called patchiness. These are given by travelling waves. Emergence of space continuous
patchiness is initiated by chaos which then disappears.

This remarkable result means that the cause, represented by the chaos, of the emergence of
travelling waves, which is the effect, disappears after the installation of these travelling waves.
This is well shown in Figs. 9ab, continuation of Figs. 8ab, where chaos disappeared.
Patchiness, an emergent property, is given by stationary travelling waves. Any perturbation in
the continous travelling waves initiates again transient bifurcations.

Let us point out that without space diffusion, the incursive Lotka-Volterra model shows orbital
stability for the chosen values of parameters. This confirms, as in the space-time Pearl-Verhulst
model, that the spatial diffusion initiates chaos, which I called "diffusive chaos". =

Figure 9a

Figure 9b
6. Conclusion

In Pearl-Verhulst's finite difference equation, fractal chaos emerges for large values of the
command parameter. It is shown that, surprisingly, chaos emerges for small values of the
command parameter when spatial diffusion is taken into account. For small diffusion the
computing space is uniform and stable, and for large diffusion, discrete travelling waves occur
due to bifurcations, and then chaos, what I propose to call "diffusive chaos". The mathematical
demonstration of the first bifurcation of diffusive chaos is made from a new incursive method.
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It is also shown that advection can also give rise to bifurcations and chaos, what I call
"advective chaos". From space-time Lotka-Volterra incursive discrete equations, it was shown
that continuous space patterns emerge with discrete time iterates after a chaotic behaviour
initiated by a perturbation in the initial conditions given by an homogeneous space distribution.
Without space diffusion, the incursive Lotka-Volterra model shows orbital stability for the
chosen values of parameters. A space-time chaotic propagating front is followed by spatial
continuous travelling waves. Any perturbation in the continous travelling waves initiates again
transient bifurcations. So, in conclusion, this paper shows that diffusion initiates a chaotic
space-time structure and the incursion synchronises the automata along the space. This
"diffusive chaos" is a new type of diffusive instability different from the Turing's
morphogenesis by "diffusive instability".
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