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Abstract
This paper presents the new concept of Deterministic Anticipation which is related to
the hyperincursive discrete harmonic oscillator, as an example. The hyperincursive
discrete oscillator is, in this case, a pure recursive system which is a deterministic
system that is separable into two incursive discrete harmonic oscillators which are
characterized by a deterministic anticipation.
Keywords: hyperincursive harmonic oscillator, deterministic anticipation, incursive
harmonic oscillator, discrete systems

1 Introduction

The definition of anticipation deals with the concept of program. Indeed, the word
program, comes from "pro-gram" meaning "to write before" by anticipation, and means
a plan for the programming of a mechanism, or a sequence of coded instructions that
can be inserted into a mechanism, or a sequence of coded instructions, as genes or
behavioural responses, that is part of an organism. Any anticipatory natural and artificial
programs are thus related to rewriting systems (Dubois, 2010). The new concept of
"deterministic anticipation" in natural or artificial systems is related to many natural and
artificial systems which are characterizedby an anticipatory program, For example, an
agenda and a planning can be viewed as a pro-gram. Indeed, firstly, an agenda is a
personal organizer where man writes appointments by anticipation. Secondly, a
planning is the process of creating and maintaining a plan by anticipation, for an
organization. ln fact, the concept of "deterministic anticipation" characterizes "rewriting
systems" which work with a "deterministic program". Thus, the genetic code of living
systems is a program, which is a natural anticipator (Dubois, 2010) is also related to a

"deterministic anticipation". The "deterministic anticipation" may be related to a "self-
determinated anticipation". As such, any "deterministic anticipation" is a fundamental
property of intelligent behaviour Then, the program of a Turing machine, a computer
with deterministic algorithms which defines an artificial anticipator (Dubois, 2010), is
also related to a "deterministic anticipation". It must be pointed out that the

"deterministic anticipation" can be unpredictable, as the deterministic chaos.
This paper will show that a recursive algorithm of a program may contain incursive

algorithms with "deterministic anticipation".
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A very general system of a discrete harmonic oscillator will be taken as an example
for demonstration of the concept of deterministic anticipation.

This paper is organized as follows. The section 2 deals with a survey on the incursive
and hyperincursive discrete harmonic oscillators, based on research by Adel Antippa,
Daniel M. Dubois and Eugenia Kalisz. The section 3 will present new properties of
hyperincursive discrete harmonic oscillator separable into incursive oscillators with
fonward and backward Energies. Simulations of hyperincursive and incursive oscillators
will show the conservation of energy of the discrete harmonic oscillator. The
hyperincursive discrete harmonic oscillator is a deterministic recursive system that is
separable into two incursive discrete harmonic oscillalors with deterministic
anticipation. The section 4 gives the figures of simulations with different parameters.

2 Survey on Incursive and Hyperincursive Discrete Harmonic
Oscillators

Let us recall the example of the harmonic oscillator (Dubois and Kalisz, 2004), with
m the oscillating mass and k the spring constant, represented by the ordinary differential
equations:

dx(tydt = v(t)^
dv@/dt = - al'x(t)

where x(t) is the position and v(t) th^e velocity as functions of the time t, and the
pulsation or is related to t and m by É = k/m. The solution, with the initial conditions
x(0) and v(0), is given by

x(t) = 1191 cos(<ot) + [v(0)/ro] sin(rot)
v(t) = - co x(0) sin(cot) + v(0) cos(rot) (2.2a-b)

ln the phase space, given by [x(t), v(t)], the solutions are given by closed curves
(orbital stabilify). The period of oscillations is given by T = 2n/a.

The energy e(t) of the harmonic oscillator is constant and is given by

e(t) : /r x2(t) | 2 + m v2çt1 tz: r x21o; / 2 + m u2101 tz: e(0) : eo (2.3)

The numerical simulation needs the discretization of these eqs. 2.lab. \With the current
time, t, and the interval of time, Àt: h, the discrete time is defined âsi tp = to + kh with
k= 0,1,2,... where to is the initial value of the time and k is the counter of the number of
interval of time h. V/ith the discrete variables, xr = x(tr.) and yr. = y(1&), the discrete
equations have the general form

X k + r =  A  x r + B v p a n d v k * r =  C v 1 - D t o ' x 1 Q.aab)
where A, B, C, D are coefficients with values specific to the numerical algorithm. The
conditions for obtaining an orbital stability of the numerical method are given by
(Dubois and Kalisz, 2004)

(2.1a-b)
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In my paper (Dubois, 1995), I defined a generalized forward-backward discrete
derivative

D(w) = w Dç+ (1 - w) Du Q.6.1)

where w is a weight taking the values between 0 and 1, and where the discrete forward
and backward derivatives on a function f are defined by

D r ( o :  L + f  / L t : I t o r  - f y ] l h  a n d  D b ( 0 :  A - f  l L t = [ f k - f r - r  ] / h  ( 2 . 7 a - b )

The generalized incursive dismete harmonic oscillator is given by (Dubois, 1995) as:

(l-w) xr.+r + (2w-1) Xr - w xç-1: hvp and
w v111 * (l-2w) vp + (w-l) vk-l : - h(ù'xk

When w = 0, D(0): Db, this gives the first incursive equations:

X s 1 1  *  X 1 = h V 1  a n d  v t - V k - t : - h r n 2 x t

When w: l, D(l) : Dr, this gives the second incursive equations:

x r - X r < - r = h v k  a n d  v 1 + 1  - v ç : - h c o 2 x t

(2.8a-b)

(2.ea-b)

(2.1Oa-b)

From the orbital stability conditions 2.5a-b we have, in both eqs. 2.9a-b and 2.1Oa-b,
(A+C)2 = (2 - h' r')i<4, for h rrr < 2and AC +B D co2 = 1 -hz la?+h2 ro2 = I

which give an orbital stability for h ro < 2, to the two discrete incursive harmonic
oscillators.
When w = ll2,D(112) = [Dr+ DuU2, this gives the hyperincursive equations:

Xk+l - Xk,l :Zhv* and vrnr * vk-l = - 2 h ro2 x* (2.1la-b)

which behave altematively as the two incursive equations (Dubois, 1995, 2000).
The simulations of these incursive algorithms (2.9a-b, 2.10ab) are stable, and the

simulation of this hlperincursive algorithm (2.1la-b) is stable with the conservation of
energy. A complete mathematical development of incursive and hyperincursive systems
was presented by Adel F. Antippa and Daniel M. Dubois (2007,2008, 2010). Antippa
and Dubois (2010) re-discovered the forward-backward discrete derivative, and this
time-symmetric discretization of the harmonic oscillator (2.I Ia-b).

3 Hyperincursive Discrete Harmonic Oscillator Separable into Two
Incursive Discrete Oscillators with Deterministic Anticipation

For the simulations and the
hyperincursive discrete harmonic
used for variables, x, v and h:

X(k) = tl[HZf xu,
V(k):',llml2f vy,
r = ot with a="lfklml,
Âr: roÂt = rr:h: H

demonstration of the general properties of the
oscillator, dimensionless variables X, V and H, are

3

(2,I2a-b-c-d)



\ù/ith these dimensionless variables, the dimensionless energy is given by :

E(k)=X21t1+Y211; (2.r3)

With the dimensionless variables (2.12a-b-c-d), the eqs. (2.9a-b) and (2.1Oa-b) of the
two incursive dimensionless harmonic oscillators are given by

X1(k+  1 )=Xr (k )+HVr (k )
Vr(k + 1) = Vr(k) - H X'(k + l)

and

V2(k+ l )=Vz(k ) -HX2(k)
X2(k + 1) = XzG) + H V2(k + l)

X(k+1 )=  X (k - l ) +2HV(k )
v ( k+1 )=  V (k - l ) - 2HX(k )

These incursive discrete oscillators are non-recursive computing anticipatory systems.
Indeed, in eq. 32.14b of the first incursive oscillator, the velocity V1(k + l) at future
next time step, k + 1, is computed from the velocity Vr(k) at current time step, k, and
the position X1(k + 1) at the future next time step, k + l, which represents an
anticipatory system represented by an anticipation of one time step, k.
Similarly, in eq. 2.15b of the second incursive oscillator, the position Xu(k + l) at future
next time step, k + l, is computed from the position Xdk) at current time step, k, and
the velocity V2ft + 1) at the future next time step, k + 1, which represents an
anticipatory system represented by an anticipation of one time step, k.

With the dimensionless variables (2.12a-b-c-d), the eqs. (2.1la-b) of the
hyperincursive dimensionless harmonic oscillator are given by

Q.raa)
(2.14b)

(2.15a)
(2. r 5b)

(2.r6a)
(2.r6b)

(3.1a-b)

This hyperincutsive discrete oscillator is a recursive computing system including a
deterministic anticipation.

Indeed, let us demonstrate that the hyperincursive discrete harmonic oscillator, given
by the eqs. (2.16a-b), is separable into two independent incursive harmonic oscillators,
as shown in table 1A and table 1B:
The first Incursive Harmonic Oscillator with initial conditions, X(0), V(1), is given by

x(2k) : x(2k- 2) + 2[v(2k- 1) and
V(2k + 1) = V(2t< - t) -2 H x(2k)

second Incursive Harmonic Oscillator with initial conditions, V(0), X(1), is

V(2k) = V(2k - 2) - 2HX(2k- 1) and
X(2k+ 1) = X(2k- 1) + Z H V(2k) (3.2a-b)

f o r k =  1 , 2 , 3 , . . .
Let us remark that these two incursive discrete oscillators (3.1a-b) and (3.2a-b) are

identical to the two incursive discrete oscillators (z.laa-b) and (2.15a-b), as we will
explain.

and the
given by



These incursive oscillators are incursive, that means implicit non-recursive, because
the order in which the iterations are made is important. Indeed, for the first incursive
oscillator, (3.1a-b), the position X(k+l) is initially computed and then the velocity
V(k+2) is sequentially computed, in taking into account the computed value of X(k+l).
And for the second incursive oscillator, (3.2a-b), the velocity V(k+l) is initially
computed and then the position X(k+2) is sequentially computed, in taking into account
the computed value of V(k+l).
Thus the incursive systems are both characlenzed by a deterministic anticipation.

The Table lA gives the iterations of the hyperincursive harmonic oscillator given by
eqs.2.16a-b.

TABLE 1A: Hyperincursive harmonic oscillator, separable into two incursive
harmonic oscillators (see table 18)

TABLE 1B: Separation of the hyperincursive harmonic oscillator (see table 1A)
into two independent incursive oscillators, with different initial conditions.

TIYPERINCURSIVE HARMONIC OSCILLATOR

Xfk+1 )=X(k -1 )+2HV(k ) V f t+1 )=V(k - l ) - 2HX(k )
Initial conditions: X(0) = Cr, V(l) = Cr, V(0): C:, X(l) = C+

k Iterations
x(p\= x(0)+2HV(1) V(2 )=  V (0 ) -2HX(1 )

2 X(3 )=  X ( l )+2HV(2 \ V(3)= V(1)-2Hx(2)
3 X(4 )=  X (2 )+2HV(3 ) V (4 )=  V (2 ) -2HX(3 )
4 X(5 )=  X (3 )+2HVG) V(5)= V(3)-zHX{d.\
5 X(6)= X(4)+2HV(5) V(6)= V(4)-2HX(5)
6 X(7)= X(5)+2HV(6) V(7)= V(5)-2HX6\
ETC

FIRST INCURSIVE
HARMONIC OSCILLATOR

SECOND INCURSIVE
HARMONIC OSCILLATOR

Initial conditions:
X(0) = Cr.  V(1):  Cz

Initial conditions:
V(0) :  Cr .  X( l ) :  C+

k Iterations Iterations
x(2 \=  x (0)+2HV(1) V(2 )=  V (0 ) -2HX(1 )

2 V ( 3 ) =  V ( l ) - 2 H X Q \ X(3 )=  X ( t )+2HV(2 \
J X(4)= x:(É\+2HV(3) V(4)= V(2)-2HX(3)
4 V(5)= V(3)-zHX(d.\ X (5 )=  X (3 )+zHV@\
) X(6)= X(4)+2HV(5) V(6)= V(4)-2HX(5)
6 V(7 )=  V (s ) -2HX(6 ) X(7 )=  X (5 )+2HV(6 )
ETC



The difference befween the two incursive oscillators, given by eqs. (2.14a-b,2.15a-b)
and (3.1a-b, 3.2a-b), holds in the labelling of the successive time steps. In the incursive
oscillators, (2.14a-b,2.15a-b), the position and velocity are computed at the same time
step while in the incursive oscillators, (3.1a-b,3.2a-b), the position and the velocity are
computed at successive time steps, but the numerical simulations of both give the same
values. Each incursive oscillator is the time reverse of the other incursive oscillator.
defined by time fonvard and time backward derivatives. So the two incursive oscillators
are not reversible. Thus the superposition of the two incursive oscillators given by the
hyperincursive oscillator is reversible.
For the simulations, the values of the initial conditions are g^iven by: X(0 ) : Cr = I and
V(0) : Cs : 0, so the energy 2.13 is given, E(0) = X'(0) + V'(0) : Eo : 1.
Thus the values of the position and the velocity of the harmonic oscillator are given by
the following analytical solution:

Xr = cos(2knlN) and V1: - sin(2knlN) (3.4a-b)

where N is the number of iterates for a cvcle of the oscillator.

The table 2 shows the numerical simulation of the hyperincursive oscillator.
The number of iterates is given by N : 12. So, the values for the two other initial
conditions are given by, X(1) = C4 = cos(n/6) : 0.8660 and V(l) : -sin(a/6) : - 0.5.

TABLE 2: The simulation of the hyperincursive harmonic oscillator (see eqs.
2.16a-b) gives exactly the theoretical values that represent alternatively the values
of the two incursive harmonic oscillators, given at tables 3A and 38. There is
conservation of energy, E(g=1.

HYPERINCURSIVE OSCILLATOR Analvtical solution
N H k x(k) vft) E(k) Kr. = cos(2kttll2) Vr= -sin(2krull2)
t2 0.5 0 r.0000 0.0000 1.0000 0.0000

I 0.8660 -0.5000 0.8660 -0.5000
2 0.5000 -0.8660 0.5000 -0.8660
1 0.0000 -1.0000 0.0000 -1.0000
4 -0.s000 -0.8660 -0.5000 -0.8660

5 -0.8660 -0.5000 -0.8660 -0.5000
6 -1.0000 0.0000 1.0000 0.0000

-0.8660 0.5000 -0.8660 0.5000
8 -0.5000 0.8660 -0.5000 0.8660
9 0.0000 1.0000 0.0000 1.0000
l0 0.5000 0.8660 0.5000 0.8660
u 0.8660 0.5000 0.8660 0.5000
T2 1.0000 0.0000 1.0000 0.0000
t3 0.8660 -0.s000 0.8660 -0.5000



TABLE 3A : Simulation of the first incursive oscillator (see eqs. 2.14a'b), There is
no conservation of energy, Er(k), but averaged energy on half a cycle is constant,

lErG-l)+ErG)+Er(k+1)l/N/2) = E0 = 1.0. There is a conservation of FORWARI)
ENERGY' Er(k) = Eps = 0.75 (see eq.3.4a-b-c)

TABLE 38 : Simulation of the second incursive oscillators (eqs. 2.15a-b). There is
no conservation of energ:f, Ez(k), but averaged energy on half a cycle is constant,

[Ez0r=1)+EzG)+E2G+1)l(N/2) = E0 = 1.0. Moreover, there is a conservation of
BACKWARD ENERGY, EB(k) = EBo = 0.75 (see eq. 3.5a-b-c)

For the first incursive oscillator (2.14a-b), I introduce the concept of FORWARD
ENERGY, EeG) for k : 0, 1, 2,3, ... , given by the sum of the energy, E1(k)' and the
forward H-dependent energy, FE1(k), as

Er(k) = Er(k) + FEr(k) = Epo,
Er(k) = xr'(k) + vrr(k), and FEr(k): + H Xr(k)VrG) (3.4a-b-c)

and for the second incursive oscillator (2.15a-b), the concept of BACKWARD
ENERGY, EnG) for k: 0, l, 2,3, .,. , given by the sum of the energy, E2(k), and the
backward H-dependent energy, BE2(k), as

EsG) = Edk) + BE2G): EBo,
Ez(k) = xzt(k)+ v22(k), and BE2(k) : - H Xz(k)Vz(k) (3.5a-b-c)

FIRST INCURSIVE HARMONIC OSCILLATOR
N H k X'(k) Vrft) Erft) FE'ft) Er(k)
6 1 .0 0 1.0000 -0.5000 r.25 -0.50 0.75

0.5000 1.0000 t .2s -0.50 0,75
2 -0.5000 -0.5000 0.50 0.25 0.75
3 1.0000 0.5000 1,.25 -0.50 0.75
4 -0.5000 1.0000 r .25 -0.50 0.75
5 0.5000 0.5000 0.50 0.25 0.75
6 r.0000 -0.s000 1.25 -0.50 a.75

0.5000 -1.0000 1.25 -0.50 0.75

SECOND INCURSIVE HARMONIC OSCILLATOR
N H k Xr(k) Vr(k) Erft) BEz(k) Es(k)

6 1 .0 0 0.8660 0.0000 0.75 0.00 0.75
I 0.0000 -0.8660 0.75 0.00 0.75
2 -0.8660 -0.8660 1.50 -0.75 0.75
a
J -0.8660 0.0000 0.75 0.00 0.75
4 0.0000 0.8660 0.75 0.00 4.75
5 0.8660 0.8660 1.50 -0.75 0.75
6 0.8660 0.0000 0.75 0.00 t.75
7 0.8660 0.0000 4.75 0.00 0.75



Let us remark that in the expression of the H-dependent energy, the interval of time, H,
is positive for the forward oscillator and negative for the backward oscillator.
Let us notice that the averaged energies on the two incursive oscillators give the
constant energy,

[ErG) + Ez(k)]12 = constant: E0 = 1.0 (3.5)

There is the conservation of this remarkable uncertainty relation, depending on discrete
time, H,

BFE(k): [-BE2G)-FEr(k)] /2:HlXz(k)Vz(k)-XrG)Vr(k) l /2:constant:0.25(3.6)

Moreover. there is a conservation of FORWARD and BACKWARD ENERGIES,

E(k) = Ep6 = 0.75 and Es(k) = Ego = 0.75 (3.7a-b)

These functions are constants of motion for the two incursive discrete harmonic
oscillators.

4 Simulations of the Hyperincursive and the Two Incursive Discrete
Harmonic Oscillators rvith Different Parameters

This last section gives Figures 1 to 6 of the simulation of the hyperincursive discrete
harmonic oscillator from eqs. 2.16a-b, with N = 3,4,6, 12,24 and 48 time steps.

t0



Figure 1: Figure of the simulation of the hyperincursive discrete harmonic
oscillator with eqs. 2.16a-b, with N = 3 time steps. The horizontal axis represents
the position X(k), and the vertical axis represents the velocity V(k) of the oscillator.

Figure 2: continuation of Figure I with N = 4 time steps.
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Figure 3: continuation of Figure 2 with N = 6 time steps.

Figure 4: continuation of Figure 3 with N = 12 time steps, and this case
corresponds to the numerical values given in Table 2.
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tr'igure 5: continuation of Figure 4 with N = 24 time steps.

Figure 6: continuation of Figure 5 with N = 48 time steps.



The figures of the simulations of the hyperincursive discrete harmonic oscillator sow
the stability and the precision of the algorithm for values of time steps N = 3, 4, 6, 12,
24 and,48.
The representation of the harmonic oscillator tends to a circle when the number of time
steps increases

5 Conclusion

This paper deals with the concept of deterministic anticipation.
The general case of the discrete harmonic oscillator is taken as a typical example of a
discrete deterministic anticipation given by the hyperincursive discrete oscillator that is
separable into two incursive discrete oscillators.
The hyperincursive oscillator shows a conservation of energy.
The incursive oscillators do not show such a conservation of energy but show a
deterministic anticipation.
It is proposed to add, to the energy equation, a forward energy depending on the
positive discrete time, +fl, for the first incursive oscillator, and a backward energy
depending on the negative discrete time, - H.
The figures of the simulations of the hyperincursive discrete harmonic oscillation show
the stability of the oscillator and the high precision of the numerical computed values,
even for very small values of time steps.
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