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Abstract Stochastic differential equations are widely used to model noiseaffected
phenomena in nature, technology and economy [12] . As these equations are usually
hard to represent by a computer and hard to resolve we express them in simplified
manner. We introduce an approximation by discretization and additive models
based on splines. Then, we construct a penalized residual sum of squares (PRSS)
for this model. We show when the related minimization program can be written as a
Tikhonov regularization problem (ridge regression), and we treat it using continuous
optimization techniques. In particular, we apply the elegant framework of conic
quadratic programming. Convex optimization problems are very well-structured,
resembling linear programs and permit the use of interior point methods [14].
Keywords : Stochastic Differential Equations, Regression, Splines, Tikhonov Reg-
ularization, Continuous Optimization.

1- Introduction

In the last decade, the development of high-throughput technologies has resulted in
an accelerated generation of massive quantities of data. Such large data sets are
often characterized by a high variation and are influenced by errors and uncertainty.
At the same time, the data need to become well understood and they have to serve as
the basis of future prediction with stochastic differential equations. Unfortunately,
both the real situation and the practical requests are often hard to balance. In fact,
related mathematical modeling faces with nondifferentiability and a high sensitivity
with respect to slightest perturbations of the data. In our paper we address ap-
proximations of stochastic differential equations and formulate a penalized residual
sum of squares problem based on an additive representation of coefficients. We dis-
cuss and elaborate the corresponding parameter estimation problem by means of
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Tikhonov regularization and conic quadratic programming. Herewith, we offer an
alternative view and approach to stochastic differential equations (SDEs).

2 Classical Additive Models

In many applied areas, regression models are of particular importance. Especially
linear regression models are widely used, but they often fail in applications because
of the nonlinear nature of the system under consideration. To characterize these
effects, flexible statistical methods lTke non-parametric regress'ion must be used [5].
However, if the number of independent variables is large in the models, many forms
of nonparametric regression do not perform well. It is also difficult to interpret non-
parametric regression depending on smoothing spline estimates. To overcome these
difficulties, Stone [15] proposed addi.ti.ue models. These models estimate an additive
approximation of the multivariate regression function. Here, the estimation of the in-
dividual terms explains how the dependent variable changes with the corresponding
independent variables and we can examine the predictor effect separately in absence
of interactions. We refer to [9, 10] for basic elements of the theory of additive mod-
els. Let us have N observations on a response (or dependent) variable Y, denoted
by y: (yr,yr, . . . ,Ux)T measured at ly '  design vectors r t :  (rn, t iz, . . . , r ;^)7. The
points ri ma! be chosen in advance, or may themselves be measurements of random
variables X* (j :1,2,...,m), or both. The additive model is defined by

^ ê "Y :  0o+ \ f i ( x i )  +  e ,  (1 )
j : t

where the errors e are independent of the factors X1, E(e):0 and Var(e):62.
Here, the functions ,fj are arbitrary unknown, univariate functions. Mostly, they are
considered to be splines, i.e., piecewise polynomial functions, because polynomials
themselves have a too strong or early asymptotic to too and by this they are not
satisfying for data fitting. We denote the estimates by .fi. The standard convention
consists in assuming at X7 that E$i6)) : 0, since otherwise there will be a
free constant in each of the functions [9]; all such constants are summarized by the
intercept (bias) Bs.

2.1 Estimation Equations for Additive Model

Additive models have a strong motivation as a useful data analytic tool. Friedman
and Stuetzle [6] proposed an algorithm for the estimation of the functions in eq. 1
that is known as backfi,tti.ng (or Gauss-Sei,del) algori,thm. Here, as an estimator for

Éo we use the mean of the response variable Y, i.e., 0o : E(Y). This procedure
depends on the partial residual against X7, given by

r j :Y -go- f l * {xo ) ,
k+i
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and it consists of estimating each smooth function by holding all the other ones
fixed [13]. Then, .E(r7lX) : fi6) which minimizes E(Y - 0o-Y' fi(X1))2. In
a framework of. cycli,ng from one to the next iteration, this means the following [7, 8]:

initializatiort Po : E(Y), îtl = 0, p:0
c y c l e  j  -  1 , . .  . , n ' 1 ,  1 , . . . ,
i t e r a t e :  p : P * 7
f o r j : 1 t o r æ d o :

r j :Y -îo-iî-t*,5,
k+i

î i fxS: E(rÀxi)

until -R5^9 : E(Y - îo - D,Lrfrïù )2 fails to decrease.

To prove the convergence of this procedure, Buja and Hastie [3] used the normal
equations. By an arbitrary solution f of that system a reduction of the problem to
the solution of a corresponding homogeneous system can be made. This algorithm
has been modified by Taylan and'Weber [16]. Here, the J-th iteration in the modi.-
fied backfitt'ing or Gauss-Sei.d,el algorithm includes an additional penalized curvature
term.

3 Stochastic DifferentialEquations

3.1 Definition (Stochastic Difierential Equations)

Many phenomena in nature, technology and economy are affected by noise and
stochastic fluctuations. In order to describe such random dynamics, stochastic dif-
ferential equations are widely used. Solutions of these equations are often diffusion
processes and, hence, they are connected to the subject of partial differential equa-
tions. To solve these problems, we apply an addi,ti.ue approximation using spline
functions as motivated in Section 2. A stochastic d,ifferenti,al equat'ion, equipped
with an initial value, is given by

(t  e [0,oo)),

where o is the deterministic part, ôôt is the stochastic part, and d; denotes a general-
ized stochastic process [12]. An example of a generalized stochastic process is white
noise. For a generalized stochastic processes, derivatives of any order can be de-
fined. Suppose that W1 is a generalized version of a Wiener process which is used to
model the motion of stock prices, which instantly responds to the numerous upcom-
ing information. A Wiener process is a time continuous process with the property

Ixa l :a (x , t )+b(x , t )6 t
[x(o) : uo, (3)
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Wt - N(A,t) (0 S t < T), usually it is differentiable almost nowhere. To obtain our
approximate and then, smoothed model, we treat Wt as 1f it was differentiable (a
first approach which is widespread in literature). Then, white noise d1 is defined as
6t: Wt: dWtldt and a Wiener process can be obtained by smoothing the white
noise. If we replace 6dtby dWtin eq. 3, an (/tô) stochast'ic differenti'al equation
can be rewritten as

dX1 : a(X1,t)dt + b(Xt,t)dwt, (4)

where a(X1,t) and b(X1,t) are drift and diffusion term, respectively, and X1 is a
soluti,on which we try to ûnd based on the experimental data. As we do not know
the distribution of Xr, we want to simulate its values. Therefore, we simulate a
di;screti,zed version of the SDE.

3.2 Discretization of SDE

For a discretization of the stochastic differential equation (4) we consider the MiI-
stein scheme. Then, an approximate for X1 is given by

X j*, : Xi * a(Xi,ti)(ti*, - t) + b(Xj,tj)(Wj*t - Wi) (5)

+ 
lr{u' u){x i J ) ((w,*, - w i)' - (ti*, - rr))

where the prime ""' denotes the derivative. Referring to the finitely many sample
(data) points (Xi,l) (J : 0, 1, . . . , N) we get

xi: o(xi,r1) +u(x,j,)++ ]toraltx-i,r,l(# 
- t), (6)

where the vector i represents difference quotients based on the jth experimental
data and on step lengths Ei :: ti,ry - 7i between neighbouring sampling times:

:  ( x t * + - , t  ' i f  i : o ' 1 ' " ' ' N - 1
X; : :  |  -  

n t -
' 

l ^#*t , if j: nr'

However, as the relations (6) include real data they cannot be expected to hold in
an exact sense, but we satisfy them best in the approrim,ate sense of least squares of
errors. For the sake of convenience, we still write ":" instead of the approximation
symbol "È", and we shall study the least squares estimation in Subsection 3.3.

Since trfi - 1f(0, t), the increments LWi are independent on non-overlapping

intervals and moreover, Var(LW) : J& (classical notation; here, AIi ,:Ei),
hence, the increments having normal distribution can be simulated with the help of
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standard normal distributed random numbers Z;. Herewith, we obtain a discrete
model for a Wiener process:

r_
LW j :  Z j \ f  A , t j ,  Z i  -  N(0 ,7) .

If we use this value in our discretized equation, we obtain

: 7 1
X i : a(X i,r) + b(X 1,rt)fr + olu' u){T i,lj)(z: - r)

lnt 
'

For simplicity we write eq. 8 as

L

Xi: Gi -f Hici * Fid,i,

where Ci :: a(Xi,î), Hi ,: b(Xi,Ii),Fi :: Q'b)(Xi,Ii), ci i: Zil1fi and
d1 : :112(Z j  -  1 ) .

3.3 Estimation of Parameters

In this section we turn to an estimation of parameters in the Milstein model. To
determine the unknown values G7 and E i of eq. 9, we consider the optimization
problem

(7)

(8)

(e)

n/
. l - -  t t :  tz

m,in L ll* t 
- (Gi + H ici -r Fid)llr, (10)

where the vector y comprises all the parameters in the Milstein model. We know that
data coming, e.g., from the stock market, have a high variation. Indeed, for example,
investors may temporarily pull financial prices away from their long-term trend level.
Over-reactions may occur so that excessive optimism can drive prices unduly high
or excessive pessimism may drive prices unduly low, new theoretical and empirical
arguments can have an effect on share prices to fall dramatically, even though, to
this day, it is impossible to fix a definite cause. Indeed, a thorough search failed
to detect any specific or unexpected development that might account for the crash
and, many studies have shown a marked tendency for the stock market to trend over
time periods of weeks or longer, sometimes the market tends to react irrationally
to economic nelvs, even if that news has no real effect on the technical value of
securities itself, etc.. For this rea.son, we must use a parameter estimation method
which will diminish thi.s hi,gh aariat'ion and will give a smoother approrimat'ion to
the data. Splines are more flexible and they allow us to avoid large oscillation
observed for high degree polynomial approximation. We recall that these functions
can be described as linear combinations of basis splines and approximate the data
(Xi,î) smoothly. Therefore, we approximate each function underlying the values
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Gi : a(Xi,l),Eici : b(Xi,I)ci and Frd, : b'b(Xj,ti)dj in an addi't'iue way
established on basis splines. This treatment is very useful for the stability of the
model in the presence of the many and highly varying data. We use basis splines
for each function characterized by a separation of variables (coordinates) in eq. 9.
By this we obtain

2  2 d g

c j : o6i,l) : oo * lrr(tià: oo * tt atoî!o(ti,à,

E jcj : b(X i,l i)c1 : 0o * f s,@,,,) : 0o *f.i,0i cT(û i,,), (11)

p:7

3= l

P: l  l=1

r--L rn:l

2 d,{

Fid'i : ub(T j, l j)d' j: ro + f h"(tià: eot II pT D?(ti),

where tli: (ti,r,Ûi,2):: (Xi,li). Here, if we denote the kth order base spline by
8,1,*, a polynomial of degree k - 1, with knots, sàiu rrlt then a great benefit of using
the base splines is provided by the following recursive algorithm [4]:

( ' t  ; f -  l o z +

B - , ( * \  :  ) L ' i f  
x '  1  r  I  r a 4 1

|.0 , otherwise,

(12)

Bn.xQ) :  
r - tn  

Bn.x - r@)*  
rn+k- r  

Bn+r , * - r (z ) .
Ir.ak_t - Tn Zrlak - fq+r

3.4 The Penalized Residual Sum of Squares Problem for SDE

We represent the penali,zed resi,dual sum of squares problem for SDE in the following
form:

pRSS(0, f  ,g ,h) , :Ë{æ -  (G,  tE,c i  +F jd j ) } ' *  i  x ,  Ig ;çu, ) ] '  duo
, i L  

J  \  r  r r  " " ' )  
? J ' J

2 r

*f ,, I lnitr,l]' du, + I p, [ 1n';1u,11' au". (1s)- , = r  J -  = i  J -

Here, for convenience, the integral symbol "r[' i. used as a dummy in the sense of

"[ , where lon,b^) (o: p,r, s) are appropriately large intervals where the integra-
[a^.à"]

tion takes place, respectively. Furthermore, \p, Fr,p, 2 0 are smooth'i,ng (or penalty)
perameters, they represent a tradeoff between first and second term. Large values
of ),r, 1.tr,g, 2 0 yield smoother curves, smaller values result in more fluctuation. If
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i
I

I
we use an additive form based on the basis splines for each function, then PRSS will
become

)-ix, -
=t

Now, for simplicity, we introduce the following matrix notation:

z6 o à H

: Ë { "

.  \ :
l G 1 + H p 1 + F j d j ) l  ( 1 4 )

)

/  2 q  2 d !
- (oo*tI "t,alo1ùt,,1* 0o* tf 0TCT(ti. ,)

\  p : l  l : t  r= l  m:7

2  d !  \ ) 2
*eo+tIe1"o?(t iàl l  .

s: l  n: l  /  )

G i +E p1 + F jd,j : oo * DL "L sL(û i à + p, + t L pf cT (t i,,)
P=L l : l

z a {
t -ço+t I  û D?(ûà:Âjo,

s= l  n : \

where

Â,:  (a ,c i  D) ,  B j :  (1  B j  Bï ,c i - -  $c;  c?) ,  D j :  $  n j  n l )

Bî : (B;(t jo), B|(ti,n),. . . , nf e-i")) (p : L,2),
c; : (cl(t j,,), c?(tià,. . . , cf! (ùi,,)) (" : 1,2),
D;: (D:(t  j ,") ,  D?(t i) , . . . ,  o!{ ( t i ,"))  ("  :  t ,2)

and

(15)

0 : (or, Êr,gr)', o : (oo,,,T,oT)', Ê : (Ê0, iI, AT)', I : (po,pT,pT)',

oo  :  (a | , a?o , . . . , " f  ) '  ( p :  t , 2 ) ,

p, :  (gl ,  p?,. . . ,  pfï) '  (r  :  ! ,2),

ç ,  :  (p l , ,p?, . . . , ,p ! ! ) '  @ :  r ,2) .

Now, the residual sum of squares can be represented as the squared length of the
difference.between d andA?, where Z is the matrix which contains the row vectors

73, and X is the vector of difierence quotients standing for the change rates of the
experimental data:

N
I _  - l  \ ' )  , , - j -  -  , , U

Llxi - Ai?f : l lx - A0ll; .
; - t
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Here,  we have used À:  (AT,ÂT, . . . ,ÂT)" , i  :  ( î r , î r , . . . ,X") t .  Indeed,  we
get a discretized form of each integration term in the following way

b
r  _ - .  N-r I_t  r€ 

-12

I lt ; tr,11' du, = L,lil tr t,,))' (rt, *,.o - u i,r) : t l L otp BI;' P i,o1u t l . çtz1
J  - '  

,  ; = 1 , =  I

uriirg ni"rr,unn sums, ;;""" discretize and represen, ;"; ;*ration by the squared
length of a vector, namely,

b  " , .r  -  - ,
I lt';tql' du, = \la!" u1o,l' : llÂl",lli @ : r,2),

J  
-  '  

; _ 1

u^ l,r_r

I bitu,))' drJ, = llcl" vig,)' : ll4 B,lli ! -- t,2),
J  ; - j
a  J - -

À
" "  N- l

I ln':ru,1' du, = Dlr;" r,r,l' : llÂ? r"lll (' : r,2).
J  ; - 1

Here,

Âf ,: (Bl"'ur, BI"'ur,...,Bo,'Truro-r)t , ui :: aEiaÇ=-ûio,

4 t :  (Cî" ' rr ,Cî" ' rr , . . . ,Cî i l l r r6-r)r  ,  uj  t :  \ /Uj+r, ,  -  Urr,

Â! ,: (Dï"'.r, Dï"'rr,. . . , Dl,1!py-r)' , ,i t: 1/uiaro - Uro

for j : 1,2,. . ., ff - 1. Using this discretized form in eq. 15, PRSS looks as follows:

IRSS(o, ï,g,h): 11X-Za1; ;.L^ÀlÂi.-pll:+D,r,l l4 B,ttî.É ç"ld? ç"ll i

(18)

P='J-

(1e)

But, rather than a singleton, there is a finite sequence of the tradeoff or penalty
parameters À : (Àr, \2, ltt, llz, gr,gz)" such that this equation is not yet a Tilchonou
regularization problem with a single such parameter. For this reason, let us make
a uniform penalization by taking the same value À, : ltrr : gs : À : ô2 for each
term. Then, our approximation of PRSS can be rearranged as

PRSS(o, f  ,g,h):  l lx -Â0117+ o' l lTel l i ,  (20)
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with the 6(lf - 1) x m matrix

r . _

OA?
00
00
00
00
00

00
_Fl

A;o
00
00
00
00

00
00

- D

A;o
_ n

OA;

0  00
0  00
Aioo
0  A ;0
0  00
0  00

0
0

0
0

Herewith, based on the basis splines, we have identified the minimization of PRSS
for some stochastic differential equation as a T'ikhonou regularization problem[l] with
penalty parameter À: 62:

min llcm - alli + ællrnlll,. (2r)

This regularization method is also knorn'n as ri,dge regress'ion; it is very helpful
for problems whose solution does not exist, or which is not unique or not stable
under perturbations of the data. MATLAB Regularization Toolbox can be used for
solution.

4 Alternative Solution for Tikhonov Regularization Prob-
lem with Conic Quadratic Programming

4.1 Construction of the Conic Quadratic Programming Problem

We just mentioned that we can solve a Tikhonov regularization problem with MAT-
LAB Regularization Toolbox. In addition, our problem can also be treated by
continuous optimi,zation techniques which we suppose to become an important com-
plementary technology and alternative to the concept of Tikhonov regularization. In
particular, we apply the elegant framework of. con'ic quadrat'ic programm'ing (CQP).
For this, we reformulate our Tikhonov regularization as the following optimization
problem:

-:_, , t

min llA0 - xll;, (22)

where llTelli < u.

This problem requires an appropriate, learning based choice of a bound M. In
addition, the objective function in (22) is not linear but quadratic. \Mhen the
original objective function is moved to the list of constraints, we can formulate an

349



equivalent problem as follows:

min f
t,e

subject to llZe -Xll:, < t2, t > o,

lpell is u,
or

min t (24)
t,0

subject to llZe - X11, . t,

l lrall, < \/ M.
Then, if we consider the form of a conic quadratic optimization problem [13]

min cr r ,  subject  to  l lD i r  -  d , l l  <  pTr  -  q t  ( i :7 ,2, . . . ,k ) ,  (25)

we can see that our optimization problem for SDE is a conic quadratic program with

" :  
( 1  0T ) ' ,  , :  ( t 0 r ) ' ,  r r :  ( 0N ,2 )  ,  d r : i ,  o r :  ( 1 ,0 , . . . , 0 ) t ,  8 t : 0 ,

D, : (0u(r- q, L), d2: o, pr : 0T,*r, qt : -JM,
2 2 2

*:Laf+Ia{+laf+2.
P=L r : l  s : l

In order to state the optimality conditions, we firstly reformulate our problem as

(23)

min f
t,e

such that 
",: (oi il (r) . (ï-) ,

a,: (our'-'v ,?) (r) . (".H,)

(26)

(27)

Here, x and 4 belong tro ;N+r and ,6(N-1)+r, where -LN+l and ;o(N-r)+r are the

N + 1 and 6(N - 1) + | dimensional ice-cream (or second-order Lorentz) cones,

defined by

Then, we can also write the dual problem to the latter problem as
--:-T

-a" F,o)o, + (oft,v-rl, -r/M)",

/oT,  1 \ -  , (oT, r_r t  o \ .  / r \such that (jà o*)o, + 
\ 

'TF', 
o*)or: \o_/ 

,

n\ e LN+r, rc2 ç f6(N-1)+r'
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Moreover, (t,0,X,n, Kr j K2) is the primal-dual optimal solution if the following con-
straints are provided in the corresponding ice-cream (second-order Lorentz) cones:

(p
nTx
K r €

(2e)

",: (T #) (') . (-r) ,
t l  , - (o"i-" i)(ù*(oiffi') ,

; )  " , * (oÇ, , ; )  " , : ( ; )  ,
: 0 ,  n l r1  :0 ,

Lr*r, o, € r6(N-1)+1r

X € L * + ' , 4 ç f 6 ( N - r ; + t .

4.2 On Solution Methods for Conic Quadratic Programming

Interior poi.nt methods (IPMs), firstly introduced by Kamnarkar [tt], can be applied
for solving "well-structured" convex problems like conic quadratic problems. These
methods classically base on the interior points of the feasible set of the optimization
problem; this set is assumed to be closed and convex. Then, an'interior penalty

function (barrier) is chosen, well defined (and smooth and strongly convex) in the
interior of the feasible set. This function is "blowing up" as a sequence from the
interior approaches a boundary point of the feasible set [14].

The canon'ical barrier funct'ion for second-order (Lorentz) cones .L is defined by

L,(r) :: -ln(rl . r? - ... - 
"7) 

: ln(rrJ,r), where J, : (-1;-r i). rrt"
\  u  r /

parameter of this barrier is a(L") : 2. These algorithms have the advantage of
employing the structure of the problem, of allowing better complexity bounds and
exhibiting a much better practical performance.

5 Conclusion

This paper gave a nevr contribution to problems related to SDE using regression by
an additive model and letting modern methods of inverse problems and continuous
optimization, especially, CQP, become accessible and usable. Herewith, a bridge
has been offered between statistical learning and data mining on the one hand, and
the powerful tools prepared for well-structured convex optimization problems [2] on
the other hand. We hope that future research, theoretical and applied achievements
on this fruitful interface will be stimulated by our paper. Indeed, applications of
our method on real-word data from areas of science, finance and technolory may be
expected, where our contribution can be utilized.
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