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Abstract
In epidemiology(orinbiology of populations), an usual process consists in building up

local parametrized models, which analysis permits to derive some noteworthy states by

weighting speeds of dynamics. The potential existence of complex structures with several

chaotic evolution schemes leads to a macroscopical approach by means of non linear

dynamic systems. Provided that one calculates different types of means according to

some protocols which can be only based on the underlying micro-structures, a way of

resolving by the use of multiple scales is efficient. The direct micro bottom-up

processing, by means of distribution functions, leads to some relations which are very

interesting for physics of collisions, but it doesn't permit to satisfy macroscopic scale

constraints, even after successive integrations. We quote pressure as an example.
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Introduction
Through this century the formal analogies between the mathematicalmodels in population

dynamics and certain models of different physical processes have been source of

inspiration both for biologists and physicist. The purpose of this paper is to apply some

techniques from the non-equilibrium statistical mechanics to the study of space-dependant

propagation of an epidemic in a large system. The main concern is the study of time

behaviour of the numben of the different types of individuals (susceptible, infective,

immune, recovered, etc...) which make up an epidemic system. This study started with

ordinary differential equations (Kermack, IlbKendrick, lV27), but had been generalised
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with stochastic {ield equation (Barlett, 1955, Bailey, 1957), partial differential equations
(Kiillén & al., 1985, Murray, 1993), and cellular automata (Kuulasmaa, 1982, Boccara,

r99z).

l. Transposition of scales t, s, v, À in micro-physics of diluted
environments

The shaky basis of the General Epidemic Process is that all individuals are assurned to

"move" randomly and to ncontact" other individuals of various types in proportion to their

density ; upon contact the infective agent is transmitted with a certain probability, i.e.

given a "collision" the "reaction" takes place with a certain probability. Note that here the

"incidence" refers to the number of new cases per unit of time per unit of area (when ttre

spatial domain is two-dimensional).

Each of these scales hasn't necessarily an equivalentin biology.
Eb E", Eu are linked by a relation : F- = E, / E, (for example), which allows to infer 4,
from the two others.
/. is time of a collision between cr and a particle p.

t4 is time separating two collisions between q, and one (or several) particle(s) p.

The evaluation of îrd , which is a set mean calculated on a population under given
conditions, may be evaluated in two ways.

1. By a geometrtco-kinetic analysis

The infection process has a local character and thus a susceptible individual can be

infected only by the infections individuals from its vicinity. We use two different

representation of the positions of the individuals : a continuous distribution of the
individuals ; and a discrete space into small cells arranged into an ds-dimensional regular

lattice. In the continuous case we assrïme that the vicinity in which the infection process

takes place in a small domain D sunounding the healthy individual considercd. The size
Vp of the vicinity is much smaller than the size of the domain X. For discrete space

description, this viscinity is made up of the Iirst layet of M = 3ds-1 cells surrounding the

central cell considered. For each distribution of infected individuals in the vicinitv of a

healthy individual there is a certainprobability of infection.

Weintroduce:
- a spatial scale @ for a,
- a type of interaction n within population : elastic shock for spherical o, particles

(contacts reaction),
- a sphere of collision (or interaction) of radius a (infection sphere).
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A meancountingof population into an impact cylinder (Fig.1), during a laps of time ôt

suchthat tc <ôt givesus:. 6y=n"nna'ùv,pwhercn"nisadensityatequil ibrium,and

B is a particle which might shock a.

The weakening of counting by choosing density at statistical equilibrium and by taking

into account the non uniformity of speeds within population leads to an adaptive

kinetics:
- e r / 2 1

v,u-vth=vo =v2- =7[v',rolar 'h =;"i

,, =:YOX = 
/n"O^where 

o = na2 where is the efficient section of collision

I =t6v11, with 14 - 2.10-lo sec., and v11, = 65O m/s (for a gas)

2. By evaluating the probabilities of t-random events

An infected individual placed at position r has a constant probabilitv a(;r) Ât of healing in

a small time interval of length Àt ; similarly an immune recovered individual placed at

position -r has a cons(ant probability /(x)& of resensibilization in a small time interval

of length Âr. These two probabilities are independant of the states and positions of over

individuals from the system. Each individuals can migrate from a position to other

positions within the domain X. For an individual in the state the rate of migration in a

small time interval of length Ât from a position x 'to a position e [.r, .r+dr] is denoted by

W(.r'- x\dx.N

We assume that this rate depends on the state of the individual considered as well as on

the initial and final position vectors r-' and -r, respectively. For the case of a discrete space

representation, the position vectors are discrete and correspond to the centres of the cells,

and thus we should leave out the differential elements of volume d.r. Note that in the

discrete case the physical dimension of the rate W is different because it includes the

factor I length ldt dueto the dropping of the factor dx.

The shock process is formalised by a coefficient p which is the density of shock

probability. Let be :

N (/.) the probability for o to collide no particle on [() , t [,
tos (dt ) the probability for s to collide on lt, t + dt [.

Then :
wo(dt)=Udt = 

/"at ; gr doesn't depend on r (stationary)

N(t+dt) = N(t)(l-@a(ù)) = N(t) (l - Fdt) (Pre-markovien),

dyù = -ttN(r\- N(t) = NÉ-t't = n*-tlr
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( t )=uoftcal"ù-t
0

The collision mean time of a particle a is a relaxation time of no-collide probability law
N(t)' This approach lead to macroscopic scale. They delete the micro-physical conditions
@ molecular diameter, vtù thermal speed), giving preference to statistical

phenomenology. A physical relaxation on mean speed of a coarse particle immersed in a
medium of light particles gives :

:(t)= 
-yv(t)* 

5t, 
= mdvldt; 

5t) 
is the srochasric corrective of a newtonian

balance.
- L ,  - 8 ,  I  Y u

v(t) =voa ,n + rt)e tn x A(t) with A(, ) = 
[ R(a).etn .da
0

We have two temporal scales :
, n m- long: z = I. relaxationtimeof i" > t,

v"
- short : autocorrelation range G of random force R(t) linked with collision time

according to : G(t - r' ) =mi7J"

2. Stochastic equations with scales transfers

The hierarchical organisation in epidemiology of scales of pre-conditioned entities by
statistical physics, call itself the conceptual, and computational, contents of extrapolate
basic equations. The probabilistic approach of evolutionary law organise its balances
around two familiesof relations.

Family I. Detenninistic relations of stochastic balances of geometric andl
or kinetic states during tenporal oscillations.

I . On the p-probabilitiesof the bi-datedtransitions :
l{1 : transition density define at the sub-macroscopic scale (lV2 bi+ransition density), but
not t-density in the master equations.
W2 veify theinægral relation:

IW2Q,vX I  x ' ,v ' , t ' )  x  W(x ' ,v '  , t '  I  x" ,v" , t " )d.x ' .dv '  = W2(x,v; t  I  x , , ,v , ,  , t , ' )
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2. On the bi-occapalion probabilities f (x,v ;t)

f @ + Lx.v ;t+ Âl ) = 
fo,, ou f 

(x,v - Lv :t\Wz(x,v - d ( Lv\t I x + d( Lx).vJ + N)d( Lx)d( Lv )

For a subsequent conjunction with a langevin equation, we pass x, and we precede the

speed states.

For short, ̂ t atthe microscopic scale, Âr et Âv are small. Between the others methods,

the limiteddevelopments give different local relations, with a very evidentformula :

df  ô f  D f  t ra f  r i l ' d2 î
*.,* 

= a t -7-h. 
;ftffi 

= a{N) + b\N)

The limitswhen Àt - O is a andb, atthe macroscopic scale, can be find in the relation

on the top of the mesoscopical scale. And naturally in n{, * translate the emergences M

of the microbehaviors (1, s) dependent. The statistical mean of the l-angevin formula

without outside field /a : give a(Âr) = 2Dv speed diffusion rate' This is a Fokker-Planck

formula (associaæd to Zs ) :

#. r#= *(*vr) * D, #. ^",# = an,(fï,) * o"*
/ v -  \

The first tetm divnl LV ll is comprehensive as a convective derivative in the positions
\ m /

space (derivative term). The second term Dr$ carry the kinetic diffusive property of /'
m

pour t >> z = 3 relaxation time of the initial speed (diffusive term).
I

Family 2 of the stochastic equations with a correcting of a newtonian

balance (Langevin, Kubo et Mori).
àv

l. Out of the field: m! - R(t) + r(t) = -yv(t) + r(t)
dt

2. On the inrcrnaland centralfield, ^ff * k)lt) =*9, - ^#. y# + kx= r(1)

These microscopic equations are archetypal in physics. The integro-product association,

doubling variables, statistical means, allow the scales transfers, and constitute for the

biological modelling a methodological basis which associate with an equilibrate method

the concept and the computational process.

7e
By calcutating x'(t) we note that in the two parallel process, the thermalisation at

different stages give the same deterministic temporal law, we discuss the stability of the

operaûors applicaæd to the stochastic equation. This mathematical stability is induced by

the linearity, and by the hypothesis made on the two first momentum of the process. At

the final macroscopical law, the pre-tangentialjoin, for the h* %' , between the short

and long times, implicatethat we can balance the boundary conditions of an intermediaûe

level.
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The General Epidemic Process can be discussed in the terms of a lield theory. In the

epidemic model we have two fields : one for the spreading process ( U ); and one for the

removed process ( f ). Afterbeing produced by an infective, the individuals are inert, its

neitherdiffuses, decays, not reproduced itself. But it can act on the infective individuals

by modifying its reproductive (death) rate, and any other parameters influencing its

spreading. Thus we can model the spreading:

-for lt, by al,angevinequation , ry= wzrp -où +p&)t[z + q1x,t)' d t

where D is a diffusion coefficient and 4(x,/)is a Gaussian noise whose variance is

proportional to rp
, d 0- a n o l o r  I  : 7 =  B r l

3. Emergence of sub-microscopic quantities and regimes
through dynamical or transport equations

The probabilistic approach adopæd in chapter 2, and the various expression of spatio-

temporal dependanceaboutoccupationortransition density with l, 2, ..., î states, leads

to micro / macra emergences. Taking limitat long-time, the Fokker-Planck equation gives

again the diffusion equation established in macroscopic phenomenology, that is a kind of
validation. But this ascending deductive process disconnected from macroscopic
constraint of spatio-temporal scale give us some difficulties:
(1) to characterise on a fine and balanced manner the intensive properties mainly det€cted
at macroscopic scale such as pressure for example ;
(2) in elaboration of test quantities revealing states change or pathological regime in
chaos.

The pressure introduced in macroscopic theories of gas, has received synthetic formulae
by way of statistical physics. The biological context lead us to catchagain the basic stages
of the theories.
P = 

Yao dF is amacroscopic emergence of momentum transfers, of particles toward a

test surface, collisions (or interactions) during a short but macroscopic lapse of time.
- + +

d F = 
) lc1 p) l- is associated with the lifetime d in a sub-macroscopic frame
rp

(percussions).
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@(t(:) = - frç).A the link with the classical dynamics applied to a particle a with a mass

n, convergent towards do in the ai.".tion [0) t
\q l

aïer +

fo|r).dt - 
[  d(mv) = mva(t Lnfor") 

- mvo? o7"r) * . f" .ù = -oa1c)

before

with an elastic collision against an smooth surface :

-[1,,*,",",1= ll"i,.r, tl î, ' a"
+ - +

@(t,,,ù) * 2m v 6(0.E,t6"Sorr). n

P is define as a temporal mean on a macroscopic lapse ?F , of the sum of percussions

developed during i", for all the c-particles, in all the directions of the half-space viewing

do.

Pao =! '  s  )  2*1,"Gp3,)  = ] )  J
T 4t 4,67, " T 7'!

"/ will be evaluated by a position and speed repartition function

f(r,rr,...11.,vr.V,,...yN;t). The framework show a process which sort particle

categories a(0,ù at I taking account their capacity to collide withdo at a time t+dt. It is

difficult to formulate this process with the Cartesian bi-functionality of f.

Mathematically, the polar expression should be well adapted, but it introduce conical

singularities which aterate the kinetics. We suggest the intermediate process.

d ( m v o )

dI

- k o

- À o

H =

Idx,(0,ù J v.n
(o .q )  : - { , .1 ;

fav.u
@.çt

/ = d ( d . E )  - \

I  v  . n  l . M .  M ;
\ /

population of cylinder ability to collide with do, under (0, 9)

during the laps [t, t+ùl;M =(i"'"" .r\r.do.4 ; A :I n,r,n"ri"ul macroscopic

density.

a ?

. n l dv -.dv. .dv.
I .-:.----@.E)/

l ;e {0 .q  \

J=k " .do . r . i f l v
( aç )  \
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,  = 0,.* 
r*,,{n**r( i""" 

.r) '  sin,.dq.d' = (;") '" à

p.do = t  . ! .* .* .ao rr f  î") '  = ! .^!'  T 3  v  # \  I  3

We regularise E by means of integral 
'-i 

F" l'
", 1 |

Finally:

p = 2..!. ! .1 i f ;") '  =L.N* .u1 uq
v  6 T r u \  J  3  V  c

'oo .,
T

dI

is the mean square speed.

After a critical analysis of integration of a micro-kinetic equation for a diluted gas
(Boltzmann), and those of modelling the conservation of a property p in a fluid (a

contaminate medium), a local kinetic splitting (.s) create the emergence of a convective

current jointly with diffusive current. From comparison between the microscopic and

macro-local formulation, about Navier-Stocke's equation of Newtonian fluid, we draw

through an interpretationof coefficients, relativeweight giving some mark for emergence

of flow or propagation regime.

t l
o = \ar| is a population of particleson a region Q. Vy'e can not access by a deærministic

way to the kinematics of the process, or energetic evolutions of each interactive particle a
(N bodies problem). These poly-interactions are modelled with a distributed mean field.
The hypothesis of independant a particles drive to solve a one-body problem, through
the factorisation of the position and speed distribution function :

. f  
' '  

{  r ' t . . . . ,  r  a . . . . ,  y  1 . . . . ,  v  .  ; r )  =  
f ] , f  " (  r  c ,  v  u  i t )

During the evolution t g, ,1" p"nt:lT"-Y conservation in a 6N-cell rhrough phase

space t f (/ ,tt;t ').d/.dn = f(r,vy),d r.d v gives the Liouvil le-Boltzmann's

transfer equation : at microscopical scale.

or],ti.l:tt=#.i.Ç,.1 . #.i, | =(*),,,=r, u,
the second member written conventionally receive some expressions : for short range
interaction : [ lV . Â' - f . f1)vrs1 o$t 9A' dU wirh vr"1 = V - Vy V7 is the barycenter

vrQ'

speed ofcellspaving f.
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The modelling of high interactionrange is included in the field F, and will be neglected

in the following part. The integration of (I) create the emergence of the macloscopic fields

usual transfer theory.

Df;.I.ê, =Cra3v =rateof ir increase of particle density generated by collisions.

We express the conservation of the total number of particles:

f crd3v =f(4.i.vJ.fù=0 (u) i irrr"speedof aspaceconfigurationcell.
J  J  J \ ô t  I

Kinetic property finest than the macroscopic speed by means of f <7 ,i rr> we deduce the

macroscopic density of : 
+ +

(/) mass Pn( r ;t) = N .*'l f( r , v;t)drv
a

(2) massflow : J N - N.mal v .f(r,v :t)dv

In fact, the counting of particles o in a neighbouritgdw is not instentaneous, but needs

a delay linked to a stabilisation. lile improve the modelling by taking a temporal mean :
+ l +

polr;t) = 
frÏrr(r;u).du

Developing(II)

N.."(!;rêv *1i.vi7.r'4 : o

- 
*0,* 

*.^"(!rff aiv1.i .Êv - ff f 'air}, -a'") - o ; giving the balance equation

forthemass , 
apr! 

*aiui N(M/tt) = 0 andafteratemporalmean:
dt

!!u*a*( i*\ =o
dt  \  

' . lw. , t

=
Jx <u,o - J^r;r, : vectorial field modelling at macroscopic scale the transfer of mass

carrier, or s-germ carrier ir r] ,u. Ï tr correlated to the Eulerian's kinematics of

population w<1,t1 by i - ,rfr Ps = voluminal density of s-gerïns

I  d s d m  \
\p, 

- 
d_ d" 

= es.pu) with po : mass of unity of volume for the carrying population.

The lield frrr,, has macroscopic ambiguity, resulting from the definition of maærial

point, and those of the medium. rWith the individualisation of a parcel ar (neighbourhood

of a material point). we can distinguish between the barycenter speed, from those of pack

of micro.particles moving on ar and induce the splitting : W(r , = Ws(; 
,ù*v71q i v7

define the fine evolution of speed field, on ot, and could assume the scattering of s-

characterfrom @to o)' . Wefound this splitting, with the coherencebetw€en fivo transfers

43



usually associated : mass transfer, and s-character transfer :

equation of s is :

("'i)'the balance

!-! ;*a*irM.t1=o'(or ô" : source term) give '  o"#*u,*--dit i

- o"l+ * sà q, frr\t : -drvï,+ q".drv po.frr+ ,,.i* u,.fr,

= -a*i,* divî,pu.q,.di, *.fr, uoa p,ff = -o*(t, -'0, frr)

J gs =ps.Wg is the transfer of s by means of medium motion (convection). This

development reveal the relative current : of diffusion of the character s relatively to the
+ + + +

parcelw : J a : J s- J gs = ps.vr

The same 
Tttr$* 

(s) with a stochastic implication, gives a modelling for the hrbulent

kinetic t 

J=Ws* 
! 

of an incompressible fluid, by means of tensorial formula

+ â w
fUl = -: + divW@ W . After a set mean, and a substitution in Navier's equation, we

dT

reinvest the Reynold's equations. Their closing has implied the use of correlation
functions.

The extension of scalar field convective derivative :

# 
= 

# 
*i o.i, (with, for example, p(u1y tbemass density of a fluid F, *afr<u,r)

the kinematics fluid modeling)
+

to a vectorial field A(u,t) gives the formula :

nT  r i  - +
===  +dA .w
Lt dt

where 
-dA 

is a dual tensor of second order (Frechet,s differen tiabf À<u,tl

with respect toV.. fr'fr contraction of â with the vector il ,""iu" a Cartesian
r +  +  - ] f _ ] f + . I

matrical expression l"t"z,ttllaAllWl ttft" first marrix will be leave out in rhe
L I | "  JL I

following text).

+

Also for A = w the expression of accelerationin Euler's kinematicsis :
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I

ry-:ufr *7ç.il=tO +(II) (A)or using a differential operator acting upon a
D d t

second order tensor (1/) with an expression more adapted to an incompressible fluid (Frlæ)

: r r i . i  -  -  . , 4  +

div l=S}" ,  
" .  

e i  for  1=T,J.er@.ei  wi th @ tensor ia l  product  between two

?i tui

vectors.

Then div W@ W =ffi'W + W-divll =ffi'W , for f =frA.fr ;

8. . . .  +4 =o- aivfr  =o
D

rA)U (B)+ i = + =4 *u*frafr (c) (basicequation). D â t

For the modeling of a turbulent flow, we split up
-!

+ + +

W(u,t\ =Wtu,ts+u, I W$t.r't : f ields of average

- t r +
Q = LJr,,, domain of the fluid fir,., written Uç1 ; v,

the fields W according to :

speeds ; quasi stationary on

written v, is the local {ield of

turbulent speeds.
-l
+ ' +

F o l l o w i n g  v  : 0 ,  W @ W = U @ U  + U @ v + r @ U + v @ v

The emergence of macroscopic property ; ;**" through a turbulent kinetics, is

obtained with a temporal means on a lapse of time t depending on accuracy of measures.
]]GT *-z

waw =u @u. g + |  (u i l  =  c l iv lJ  @I l  +d iv6 ' '  to)  ;

ffiît i, the covariance of the local field i , therefore div (l @U is the acceleration of

macroscopic motion : 1(u).

Carrying (D/ in the temporal means of Euler's equation:

f  =]  -  la i r l  =  d iv  u @IJ + d iv6v '  (E)

+  I  f -  - - ]
tilededuce l1:lr.y = f -:aptT +p.v@v" I whereappearan affinecorrectionof stress

p  L  
' -  - l

tensor : the Reynold's tensor. So the means motion is depending on turbulent kinetics.

To reach the movements equations of fluid, we must make an hypothesis on its thermo-

mechanical behavior. The usual linearity between tension and deformation for Newtonian

fluid, in an isotropic medium, is expressed by :
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_ +

T = pI - 4rY.U I -Zq(YU)r, with V. U = div U ,
(Vtl)s :symmetricpartof VU (or d().

+ +

v.f : -vp - ?,v(v. U) -2qI{1,J 0,1 vp = dp : srad p

v.L(v u*'vu) - ! v.rvu l * !v."vu
2 \ t 2 2
I  +  I  +  l + +

=: grad,div U+ Tdiv grad U -: LU for the incompressible fluid F.
2 " 2 " 2

+ €

V . T = - V p - n L U

|  , a - -

f^ =7-lro *+ û-div p.6, I= u isthekinericviscosityppp

We note the antagonism between the viscosity term and those of turbulence. This fine
partial differential equation do not reveal the product of vortex associated at a rate
turbulence. However the Navier's equation goveming the mean motion give a local

spatio-temporal law on @ = rot U

, 7 , - + + r + +
7 +dA. U = F-' Yp + v L, U (1/ ; taking rot (I)
dt, P

oco  -  
f :  l l  +  +  |  +  ++

j + r o t  i V A ' U l = r r t  F - : n t  Y p + v L u
d t t l p

d ; +- + g r a d  a . U - g r a d  U . u
dr

ô t o D ; + + + + +-+grad tù .  U  =- -  -  g rad  U.  a+  v  Lco
d t " D

Taking scalarproduct with i

-  Da - .  : :  -  l c ta2  3  @ , r \(0.=- = to.Srad U. @ +;= = Aa" andafterintegration: =J.l-
Lf _ 

2 dt (t,O tt._r

The turbulence premises appear with the critical time f.. Above this threshold, the vortex
increase strongly. Such a threshold have been study in the General Epidemic process
(Boccara, 1992). The analysis of various scale energy transfer through a vortices cascade,
up to viscous dissipation, gives a modeling that we can transpose it, in biology. The
modeling of expending turbulence is evolved by means of confrontation of dynamical
activeregions, in vorticellarareas. In some regions rotationcontrol the strain, and in other
we have the opposite behavior. These results confirm us in the necessity of a scale
analysis, revealingcooperativeor antagonists effects, and a return upon hypothesis about
dynamic or probabilistic inhibitor sketches at main stages of modeling.
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Conclusion :

A many-body description has been suggested for describing the time evolution of space-

dependent epidemics. A set of equation has been derived for the probability densities of
the numbers and positions of the differ€nt types of individuals involved in the epidemic

process. The suggested theory is only on the first stage of developmentand its potential is

far from being exhausted. Further research should precise the study of the differcnt

regimes of the dynamics (e.g. the migration processes).
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