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In this paper, a control theory is used for planning inspections in service of fatigue
sensitive aircraft structure components under crack propagation. One of the most 
important features of control theory is its great generality, enabling one to analyze 
diverse systems within one unified framework. A key idea, which has emerged from 
this study, is the necessity of viewing the process of planning in-service inspections as 
an adaptive control process. Adaptation means the ability of self-modification and self
adjustment in accordance with varying conditions of environment. The adaptive control 
of inspection planning process in service of fatigued aircraft structures differs from 
ordinary stochastic control of inspection planning process in that it attempts to 
reevaluate itself in the light of uncertainties in service of aircraft structures as they 
unfold and change. Thus, a catastrophic accident during flight can be avoided. 
Keywords: Aircraft, fatigue crack, inspection planning, anticipatory adaptive control. 

1 Introduction 

In spite of decades of investigation, fatigue response of materials is yet to be fully 
understood. This is partially due to the complexity of loading at which two or more 
loading axes fluctuate with time. Examples of structures experiencing such complex 
loadings are automobile, aircraft, off-shores, railways and nuclear plants. Fluctuations 
of stress and/or strains are difficult to avoid in many practical engineering situations and 
are very important in design against fatigue failure. There is a worldwide need to 
rehabilitate civil infrastructure. New materials and methods are being broadly 
investigated to alleviate current problems and provide better and more reliable future 
services. 

While most industrial failures involve fatigue, the assessment of the fatigue 
reliability of industrial components being subjected to various dynamic loading 
situations is one of the most difficult engineering problems. This is because material 
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degradation processes due to fatigue depend upon material characteristics, component 
geometry, loading history and environmental conditions. 

According to many experimental results and field data, even in well-controlled 
laboratory conditions under constant amplitude loading, crack growth results usually 
show a considerable statistical variability. 

Fatigue is one of the most important problems of aircraft arising from their nature as 
multiple-component structures, subjected to random dynamic loads. The analysis of 
fatigue crack growth is one of the most important tasks in the design and life prediction 
of aircraft fatigue-sensitive structures (for instance, wing, fuselage) and their 
components (for instance, aileron or balancing flap as part of the wing panel, stringer, 
etc.). 

2 Stochastic Modelling 

To capture the statistical nature of fatigue crack growth, different stochastic models 
have been proposed in the literature. Some of the models are purely based on direct 
curve fitting of the random crack growth data, including their mean value and standard 
deviation (Bogdanoff and Kozin [l]). These models, however, have been criticized by 
other researchers, because less crack growth mechanisms have been included in them. 
To overcome this difficulty, many probabilistic models adopted the crack growth 
equations proposed by fatigue experimentalists, and randomized the equations by 
including random factors into them (Lin and Yang [2]; Yang et al. [3]; Yang and 
Manning [4]; Nechval et al. [5-7]; Straub and Faber [8]). The random factor may be a 
random variable, a random process of time, or a random process of space. It then creates 
a random differential equation. The solution of the differential equation reveals the 
probabilistic nature as well as the scatter phenomenon of the fatigue crack growth. To 
justify the applicability of the probabilistic models mentioned above, fatigue crack 
growth data are needed. However, it is rather time-consuming to carry out experiments 
to obtain a set of statistical meaningful fatigue crack growth data. To the writers' 
knowledge, there are only a few data sets available so far for researchers to verify their 
probabilistic models. Among them, the most famous data set perhaps is the one 
produced by Virkler et al. [9] more than twenty years ago. More frequently used data 
sets include one reported by Ghonem and Dore [10]. ltagaki and his associates have also 
produced some statistically meaningful fatigue crack growth data, but have not been 
mentioned very often (ltagaki et al. [11]). In fact, many probabilistic fatigue crack 
growth models are either lack of experimental verification or just verified by only one 
of the above data sets. It is suspected that a model may explain a data set well but fail to 
explain another data set. The universal applicability of many probabilistic models still 
needs to be checked carefully by other available data sets. 

Many probabilistic models of fatigue crack growth are based on the deterministic 
crack growth equations. The most well known equation is 

da(t) = q(a(t)/ 
dt 
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in which q and b are constants to be evaluated from the crack growth observations. The 
independent variable t can be interpreted as either stress cycles, flight hours, or flights 
depending on the applications. It is noted that the power-law form of q(a(t)/ at the right 
hand side of (l) can be used to fit some fatigue crack growth data appropriately and is 
also compatible with the concept of Paris-Erdogan law [12]. The service time for a 
crack to grow from size a(to) to a(t) (where t > to) can be found by performing the 
necessary integration 

to obtain 

r a ( r ) d 

fdt= f ~ 
ro a(r

0
) qv 

[a(t )r<b-11 -[a(t)]-<h-1J 
t - to = __ o~------

q(b -1) 

For the particular case (when b=l), it can be shown, using Lopital's rule, that 

ln[a(t) I a(t0 )] 
t-t0 =----~. 

q 
Thus, we have obtained the Exponential model 

(2) 

(3) 

(4) 

a(t)=a(t
0

)eq<r-,ol _ (5) 

The Exponential model is quite often used for calculation of growth of 
population/bacteria etc. The basic equation of it is 

P, = P0e''. (6) 

Rewrite (4) as 
ln[a(-rj+i)/ a(i-)] 

1"j+I - T1 = --~--~, }=0, 1, .... 
q 

(7) 

where ; is the time of the jth in-service inspection of the aircraft structure component, 
a( i;) is the fatigue crack size detected in the component at the jth inspection. 

It is assumed, in this paper, that the parameter q is a random variable, i.e. q=Q, which 
can take values within a finite set {q0 l, / 2l, ... , q<rl }. However, in order to simplify the 
computation, at first we consider the case when only two values are chosen. Assume 
that, at any sampling time instant, the random parameter Q takes on two values, q< 1l and 
/

2
l, with probabilities p and l-p, respectively, and that the value of the probability p is 

not known. It takes on two values p 1 and p2 with a priori probability ; and 1-;, 
respectively. Now (7) can be rewritten as 

where 

represents the interval between the jth and (j+ 1 )th inspections. 
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3 Terminal-Control Problem 

Let us suppose that a fatigue-sensitive component such as, say, upper longeron [13) 
(Fig. 1) has been found cracked on one aircraft at the time 'lo-

FS 267.48 

FS 
243.00 

poaaible· cracks 
radiating from 
tab radii FS279AO 
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293 .10 

Fig. 1: Inspection points of the upper longeron of RNLAF F-16 aircraft. 

The detectable crack length is ao=a( 'lo). The maximum allowable crack length is a• 
=4.75 mm (Fig. 2). 
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Fig. 2: RNLAF longeron mean crack growth curve. Functional impairment at 5310 
flight hours. (assumed initial crack= 0.178 mm; critical crack length= 4.75 mm.) 
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We plan to carry out N in-service inspections of the above component and are in 
need to assign intervals, u0, u 1, . . . , UN- I, between sequential inspections so that the 
performance index 

where x• = ln(a0

), is minimized. 

4 Optimal Anticipatory Adaptive Inspection Planning Process 

The design is initiated with the determination of the a posteriori probabilities 

;: - Pr{p -p IQ- q<ll } 
':,lq( I ) - - I -

and 
;: , =Pr{p=p IQ=q<2l }_ 
'='1 / - J I 

By the Bayes theorem, it is found that 

and 

Pr{p = p 1}Pr{Q =q<1l Ip =p 1 } 

qiq<') = Pr{p = p
1 
}Pr{Q = q<1l Ip =p

1 
}+Pr{p = p

2
}Pr{Q = q<1l Ip =p

2
}} 

_ Pr{p=p1 Pr{Q=q(2l lp=p1 } 

ti ,PJ - Pr{p = p 1 } Pr{Q = q<21 Ip =p1 } + Pr{p = P2 } Pr{Q = q<2> Ip =p2)) 

q(l- Pi) = ------'"----'---'----
q (1- p1)+(l-q)(l- pi) 

Let the minimum of IN be denoted by fN(xo,i;), where 

xo= ln(ao), 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

a0 is the initial crack length detected in the component. The minimum of IN is a function 
of x0 and the a priori probability i;, and is given by 

At any sampling instant}+ 1, Xj +I takes on two values: 

/ll = X . + q (l) U · 
J+I J J 

and 
x <2J1 = x . + q<2>u .. 

1+ J J 

For j = 0, x 1 takes on the value 

xi'! = x0 + q<' 1u0 with probability Po 
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and the value 
x1C

2
l = x

0 
+ q(2lu0 with probability 1-po, 

where po is the expected value of p and is given by 

(21) 

Po = <; P1 + (1- <;) P2 · (22) 

Hence, for N= 1, 

f1 (Xo,.;) = min E{ ex· -xl)2} = min ( Po(x· -x!1))2 + (1- Po)(x· - x!2l)2 ). (23) 
110 "O 

For N ~ 2, invoking the principle of optimality yields 

f N(xo,.;) = min lPofN-1(x!l) ,<;1 c1>) +(1- Po)JN-1 (x;2l ,.;, <2> )), (24) 
Uo q q 

where .; <n , .; <2>, x?l ,and x;2l are defined in (14), (15), (20), and (21), respectively. 
l q l q 

As a result of the first decision, the process will be transformed to one of the two 
possible states x?l or x? l with probability Po or 1-po. If the process moves to state x<1l , 

the a posteriori probability .; ciJ is computed. If the process moves to state x<2 l , the a 
lq 

posteriori probability .; <2) is determined. 
l q 

In a one-stage process, the optimum decision is found by differentiating (23) with 
respect to u0 and equating the partial derivative to zero. This leads to 

Hence 

where 

and 

E{Q 2
} = Po[l1

l J2 +(1- Po)[l2
l J2 

are functions of.;. By defining 

E;{Q} = P;l ') + (1- p)q<2)' i=l, 2, 

it can readily be shown that E { Q} can be written as 

E{Q} =.; £,{Q} + (l-<;)E2{Q}. 
Similarly, by defining 

E;{Q2} = p;[q<l )]2 +(1- p;)[q (2 )]2' i=l, 2, 

E{Q2
} can be expressed in terms of .;as 

E{Q2} = t; El {Q 2
} + (l-q)E2{Q2

}. 
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The minimum for the one-stage process is given by 

f1 (Xo,;) = GI (;)ex· -xo >2, 

where 

G("')=l-£
2

{Q}_ 
I ~ E{Q2} 

By defining 

ho(;)= ;~2\ 

the optimum decision uo may be written as 

It can be shown by mathematical induction that 

fk(x0,;) = Gk(;)(x• -x0 )2. 

In view of (37), 

The minimum for a (k+ 1)-stage process is 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

fk+I (x0 ,;) = min lp0Gk (; <ll )(x• - x0 -q<1
lu 0 )2 + (1- p0)Gk (~ <ZJ )(x• - x0 -g<2Ju0 )

2 I 
110 l q lq fa 

k = 1, 2, . .. , N- I. ( 40) 

From this recurrence relationship it is found that the optimum decision is given by 

(41) 

where 

h J: = E{QGk(;IQ)} 
k(~) E{Q2Gk(;IQ)}, (42) 

E{QGk(;IQ)} =; E1{QGk(;1Q)}+(l-q)E2{QGk(;IQ)}, (43) 

E;{QGk(;IQ)} = P; q(l)Gk((,11J}+(l- pJq<2)Gk(;lq(2))}, i=l, 2, (44) 

E{Q 2
Gk(;1Q)} =; E1{Q2Gk(;1Q)}+(l-;)E2{Q2Gk(;1Q)}, (45) 

E;{Q2Gk(;1Q) } = P; [q 0)]2Gk((,ii))}+(l- p;)[q(2)]2Gk(;lq(2) )}, i=l, 2. (46) 

From (40) and (41) it follows that 

fk+i<x0,;) = Gk+i<;)(x" - x0)2, (47) 

where 
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G (J:)=E{G ( J: )}- £ 2{QGk(q1Q)} 
k+I ':, k ':>1 Q E{Q2Gk(qlQ))' 

E{Gk (qlQ)} = q El {Gk (qlQ)} + (l - q)E2 { Gk (qlQ)}, 

E;{Gk (<;1Q)} = PPk (<;1/ 1>)} + (l - p;)Gk (<;1qm )}, i=l , 2 , 

(48) 

(49) 

(50) 

Equations (33), (34), (47), and (48) are recurrence relationships with which it is possible 
to evaluate the minimum for an N-stage processf,v(x0,q). 

With the initial state x0 and initial information ;, the first optimum decision is 

U 0 = hN- I (<;)(x• - x0 ), (51) 

where hN_1(q) is evaluated from (42) to (46) and (48) to (50), with k = N -I. The second 
optimum decision should be made after observation of the random variable Q in the first 
decision stage. If it is observed that Q = qo ), the a posteriori probability ,; <J> and the 

l q 

new state 
(52) 

are used as the initial information for the remaining N -1 stages. The second optimum 
decision can be determined in similar manner and is given by 

u1 = h N_2 (,;
1
,/ 1J (x• - x) 1l ). (53) 

If the observed value of Q after the first decision is q(2), the a posteriori probability 
,; <2> and the new state 

l q 

(54) 

are used as the initial information and the initial state for the remaining N -1 stages. The 
second optimum decision is then given by 

u1 = h N_2 (; (2) )(x • - x;2J) . (55) 
lq 

Thus, after the first inspection, the computer must calculate the a posteriori probability 
,; <J> or ,; <l> , the new state x , and the second optimum decision u,. 

lq 2q 

If the observed value of Q after the second decision is q< I), the a posteriori probability 
,; o> and the new state 

2q 

x 'J) - x +q0>u 2 - I I (56) 

are used as the initial information and the initial state for the remaining N - 2 stages, in 
particular, to determine the third optimum decision 

u2 = h N_3 (,;2"<1> )(x• - X~
1
) ) • (57) 

In (56), if x1 = x?l , then a posteriori probability is ,; <J> and u, is given by (53); and if 
\q 

x1 = x)2>, then a posteriori probability is ,; <l> and u, is given by (55). 
\q 
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If the observed value of Q after the second decision is q<2l, the a posteriori probability 
i; <Z) and the new state 

2q 

x?) = X
1 
+ q<2) U 1 

are used to determine the third optimum decision, which is 

U 2 = h N-3 (i;2qm )(x· - x?l ) . 

(58) 

(59) 

By repeated observation and computation in the above manner, the optimum
inspection policy (uo, ... , UN- i) for the fatigue-sensitive component, which has been 
found cracked on one aircraft at the time to, can be determined. 

Each new optimum decision is made by using new information resulting from the 
observation of the random variable Q. 

It will be noted that if the probability p is assumed to be known, then the minimum 
of (11) can be found as follows. Let the minimum of (11) be 

(60) 

For N=l, 

f 1(x0 ) = min E{(x· -x1)2 ) = min ( p(x· -x;'l)2 + (1- p)(x· -x;2l)2 ) 
If() uo 

(61) 

with 

(62) 

where 
E{Q) = pq<' l + (1- p )q<2J (63) 

and 
(64) 

are functions of p. 
For N?.2, the minimum of (11) is 

f N(Xo) = min ( pfN-1 (xi°)) + (1- p)fN-1 (x;2))) = (1- £
2 
rqiJN (x• - X0)2 (65) 

~ E{Q) 

with uo given by (62). 
For an illustration, one of the versions (for N=5) of adaptive minimizing the expected 

value of the performance index (11) for the upper longeron of RNLAF F-16 aircraft is 
plotted in Fig. 3. 
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Fig. 3: Inspection schedule version for the upper longeron of RNLAF F-16 aircraft. 

Fig.4 shows the deterministic inspection requirements for the RNLAF longerons [14]. 
s~~~~~m~~~~~~m~~~~m~~~~~ 
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0 1000 2000 3000 4000 5000 6000 
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Fig. 4: Deterministic Damage Tolerance inspection requirements 
for the RNLAF longerons. 

Now consider the case when the parameter q is a random variable, i.e. q=Q, which 
k l Ol (2l (rl . h b b·1· . . I h can ta e va ues q , q , . . . , q wit pro a 1 1t1es p 1, p2, . .. , Pn respective y, w ere 

r 

P; ~o, LP; =l. (66) 

These probabilities are unknown. Suppose the parameter Q is observed n times. Let n; = 
number of occurrences of Q = l l. Clearly 

fn; =n. (67) 
i==I 

Then, the likelihood function is given by 
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(68) 

a multinomial distribution. 
The convenient prior distribution to use over the p;'s is a member of the 

multidimensional Beta family, i.e., 

where B(m 1, ••• , m,.) is the generalized Beta function defined by 

~ 

r(m) = f x"'- le --'dx. 
0 

For a positive integer m, r(m)=(m-1)! 
To verify that (69) is in fact a frequency function, we note that 

r-1 

Pr =l- IP;· 
i=I 

(69) 

(71) 

(72) 

Restricting to the case of three random variables (r-1=3) for convenience, and recalling 
that 

(73) 
i= I 

we have to show that 

[B(mi,m2 +111:i +m4 )B(~,lrl:i +m4 )B(111:i,mJJ-' 

I I- pi l -p1 -P2 

X J dp, f dp2 f p;"1 -I p;•z-1 p;•r l (] - P1 - P 2 - p3 )"'cl dp3 = 1. (74) 
0 0 0 

Using repeatedly the relation 
[I 

f 111- I ( )"-Id _ m+n-1B( ) p a - p p - a n, m , 
0 

(75) 

the integral in (74) is readily seen to equal unity. This result is easily generalized to any 
number of variables. Thus (69) is a frequency function. 

From our choice of likelihood function and prior distribution it follows directly that 
the ensuing posterior distribution will be a new member of the same multidimensional 
Beta family (a consequence of the judicious choice of the prior family). 

The new parameters (m;'') are easily obtained from the old ones (m;') and the 
observed data (n;) by means of the following rule: m;'' = m;' +n;. The prior parameters, 
(m0, ... , mr) have to be selected. If the decision-maker has prior beliefs it is logical to 
select the parameters to reflect these. 
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If we integrate (69) over all p; except pj we obtain the marginal prior distribution of 

I Im·- l 

i;(p) = I P?-\1- P);,j, , 0 ~Pj ~ l. 
B(mi, m;) 

(76) 

i"#j 

The prior probability of Q = qU> is given by 
I m 

Pr{Q=qrn }=p0i = fpJ(p i )dp1 =-,- 1
-. 

0 Im; 
(77) 

i= I 

Thus, with the determination of the a posteriori distributions 

J: c I Q _ ui ) _ 1 ,,,, -1 "'1 ,,,,-1 . 1 ':>1qu> P1 , ···,P, -q -
8

( 
1 

)P1 ···P1 ···p, , J= , . . . , r, 
m1, ••• ,m1 + , ... , m, 

(78) 
the marginal a posteriori distributions 

} L ms+mj+l 

i;, q<j) (P; IQ= q<J) ) = B( " 1) p;"; - I (1- P; y # , j ' 0 ~ p; ~ 1, (79) 
m;,~m., +mi + 

s:J:.i,j 

and the a posteriori probabilities 
I m +1 ( ") - f J: ( I Q - <Jl )d - m; ( ) ; Pu 1 - P;<:,

1
q<J> P; - q P; - r , i 'F- }; P1 j J = - ,--'---

o Im, +l Im, +l 

(80) 

s= I s=I 

we obtain the following. 
For N= I, the minimum of ( 11) is 

f1 (Xo, i;) = min E{ (x" - X1 )2 } = GI (;)(x" - X1 )2 = (1- £
2 
{~}Jex· -xoi (81) 

" O E{Q } 

with 

(82) 

where 

(83) 

For N:2.2, the minimum of ( 11) is 

J N(Xo , i;) = ~~n( tPoJN-l(x;
0 )J 

=G (f:)(x0 - x )2 =[E{G ( J: )}-E
2
{QGN-l (i;IQ)})cx·-x)2 (84) 

N ':, 0 N-1 ':>IQ E{Q2GN-1Ci;1Q)} 0 

with 
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(85) 

where 

5 Optimal Number of In-Service Inspections 

By plotting fN(Xo,;) versus N the optimal number of in-service inspections N' can 
be determined as 

(87) 

where c1 and cN represent the specified weight coefficients. Fig. 5 illustrates the 
graphical method of finding the optimal number of in-service inspections. 
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<C 
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0 
0 5 N' 10 15 20 25 

Number of in-service inspections 

Fig. 5: Graphical method of finding the optimal number N* of in-service inspections. 

6 Conclusions 

An analytical solution to the terminal-control problem is generally not easy to derive, 
and numerical procedures should be followed. In this paper, the design of adaptive and 
learning control processes is considered. The design of such processes is carried out on 
the basis of the Bayes theorem and the functional-equation approach of dynamic 
programming. An inspection planning process of cracked aircraft structure component 
is used to illustrate the design procedure. 
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