An Extension of a Polynomial Time Algorithm for the Calculation of the Limit State Matrix in a Random Graph

Dmitrii Lozovanu

Institute of Mathematics and Computer Science, Academy of Sciences, Academy str., 5, Chisinau, MD-2028, Moldova lozovanu@usm.md

Stefan Pickl

Institut für Theoretische Informatik, Mathematik und Operations Research, Fakultät fur Informatik, Universität der Bundeswehr, München stefan.pickl@unibw.de

Abstract A characterization of a simple Markov process based on a random graph theoretic structure is introduced. We propose a polynomial time algorithm for the calculation of a limit state matrix. The algorithm is based on two procedures which will be derived in this contribution. They exploit a distinguished decomposition principle of the underlying graph theoretic structure and the special property of an acyclic directed graph.

Keywords :Random Graph, Markov Process, Limit State Matrix, Polynomial Time Algorithm, Decomposition.

1 Introduction

Let a time-discrete system with finite set of states *X* be given. Assume that the dynamics of the system is described by a simple Markov process with a given matrix $P = (p_{x,y})$, where $p_{x,y} \geq 0$, $\forall x, y \in X$ and $\sum_{y \in X} p_{x,y} = 1$, $\forall x \in X$. The matrix contains the probability for the states' transitions. We consider the problem of determining a matrix $S = (s_{x,y})$, where an arbitrary element $s_{x,y}$ of this matrix represents the probability that the system will occupy the state y after a large number of transitions (when it starts in the state x).

This problem arises as an auxiliary one in many practical and theoretical decision problems $[2, 3, 7]$.

2 Graphical Interpretation and Main Results

In a first step, we introduce a graphical interpretation of the considered Markov process. We apply the random graph $G = (X, E)$ of states [1, 2, 4], where $e =$ $(x, y) \in E$ if the probability $p_{x,y}$ is strictly positive. It is easy to see that the following lemma holds.

International Journal of Computing Anticipatory Systems, Volume 25, 2010 Edited by D. M. Dubois, CHAOS, Liege, Belgium, ISSN 1373-5411 ISBN 2-930396-13-X **Lemma 1** *A simple Markov process is an ergodic process without transient states if and only if the random graph* $G = (X, E)$ *is strongly connected.*

It is well-known [2, 7] that for the ergodic process all rows of the matrix (of the limit state probabilities) S are the same, i. e. $\pi_y = s_{x,y}, \ \forall x, y \in X$. The vector π with the components π_y for $y \in X$ can be determined by solving the following system of linear equations: $\pi = \pi P$, $\sum_{y \in X} \pi_y = 1$.

If the Markov process is not ergodic then the random graph *C* contains several strongly connected components $G^1 = (X^1, E^1), G^2 = (X^2, E^2), \ldots, G^k = (X^k, E^k)$ where $\bigcup_{i=1}^{k} X^{i} = X$. Additionally, among these components, there are such strongly connected components $G^{i_r} = (X^{i_r}, E^{i_r}), r = 1, 2, ..., q$ which do not contain a leaving directed edge $e = (x, y)$ where $x \in X^{i_r}$ and $y \in X \setminus X^{i_r}$. We call such components G^{i_r} deadlock components in G .

Lemma 2 *If* $G^{i_r} = (X^{i_r}, E^{i_r})$ *is a deadlock strongly connected component in G then* X^{i_r} *is an ergodic class (recurrence chain) of the Markov process; if* $x \in X \setminus \bigcup_{i=1}^{q} X^{i_r}$ *then x is a transient state of the system in the Markov process.*

3 Algorithmic Approach: An Algorithm for the Calculation of the Matrix

Applying this characterization of the Markov process described above and using the results from [2, 4] we can propose an algorithm for the calculation of the matrix of the limit probabilities S. The algorithm consists of two parts. The first part *^q* determines the limit probabilities $s_{x,y}$ for $x \in \bigcup_{r=1}^{q} X^{i_r}$ and $y \in X$.

The second procedure calculates the limit probabilities $s_{x,y}$ for $x \in X \setminus \bigcup_{i=1}^{q} X^{i_r}$ and $y \in X$.

Algorithm for the calculation of the matrix of limit probabilities

Procedure 1:

1. For each ergodic class X^{i_r} we solve the system of linear equations:

$$
\pi^{i_r}=\pi^{i_r}P^{i_r},\quad \sum_{y\in X^{i_r}}\pi^{i_r}_y=1
$$

where P^{i_r} is the the matrix of probability transitions corresponding to the ergodic class X^{i_r} , i.e. P^{i_r} is a submatrix of P, and π^{i_r} is a vector with the components $\pi_y^{i_r}$ for $y \in X^{i_r}$.

If $\pi_u^{i_r}$ are known then $s_{x,y}$ for $x \in X^{i_r}$ and $y \in X$ can be calculated as follows:

Set $s_{x,y} = \pi_y^{i_r}$, $\forall x, y \in X^{i_r}$, $r = 1, 2, ..., q$ and $s_{x,y} = 0, \forall x \in X^{i_r}, \forall y \in$ $X \setminus X^{i_r}, r = 1, 2, ..., q.$

Procedure 2:

1. We construct an auxiliary acyclic directed graph $GA = (XA, EA)$ which is obtained from the graph $G = (X, E)$ by using the following transformations:

We contract each set of vertices X^{i_r} into one vertex z^{i_r} where X^{i_r} is a set of vertices of strongly connected deadlock components $G^{i_r} = (X^{i_r}, E^{i_r})$. If the obtained graph contains parallel directed edges $e^1 = (x, z)$, $e^2 = (x, z)$, ..., $e^l =$ (x, z) with the corresponding probabilities $p_{x,z}^1, p_{x,z}^2, \ldots, p_{x,z}^l$ then we change them by one directed edge $e = (x, z)$ with the probability $p'_{x,z} = \sum_{i=1}^{l} p^i_{x,z}$; after this transformation to each vertex z_r^i we put in correspondence an directed edge of the form $e = (z^r, z^r)$ with the probability $p'_{z^r, z^r} = 1$.

- 2. We fix the directed graph $GA = (XA, EA)$ obtained by the construction principle from step 1 where $XA = (X \setminus (\bigcup_{r=1}^{q} X^{i_r})) \cup Z^q$, $Z^q = \{z^1, z^2, \ldots, z^q\}.$ In addition we fix the new probability matrix $P' = (p'_{x,y})$ which correspond to this random graph *CA.*
- 3. For each $x \in XA$ and every $z^i \in Z^q$ we find the probability $\pi'_x(z^i)$ of the system transaction from the state x to the state z^i . The probabilities $\pi'_r(z^i)$ can be found by solving the following systems of linear equations:

$$
P'\pi'(z^1) = \pi'(z^1), \quad \pi'_{z^1}(z^1) = 1, \pi'_{z^2}(z^2) = 0, \dots, \pi'_{z^p}(z^q) = 0;
$$

\n
$$
P'\pi'(z^2) = \pi'(z^2), \quad \pi'_{z^1}(z^1) = 0, \pi'_{z^2}(z^2) = 1, \dots, \pi'_{z^p}(z^q) = 0;
$$

\n
$$
\dots
$$

\n
$$
P'\pi'(z^q) = \pi'(z^q), \quad \pi'_{z^1}(z^1) = 0, \pi'_{z^2}(z^2) = 0, \dots, \pi'_{z^p}(z^q) = 1;
$$

where $\pi'(z^i)$ is the vector with components $\pi'_x(z^i)$ for $x \in XA$. So, each vector $\pi'_r(z^i)$ gives probabilities of system transactions from states $x \in XA$ to the ergodic class *Xi.*

4. We put $s_{x,y} = 0$ for every $x, y \in X \setminus (\bigcup_{r=1}^{q} X^{i_r})$ and $s_{x,y} = \pi'_x(z^r) \pi^{i_r}_y$ for every q $x \in X \setminus (\bigcup_{r=1}^{q} X^{i_r})$ and every $y \in X^{i_r}$, $X^{i_r} \subset X$, $r = 1, 2, ..., q$.

The algorithm described above represents a modification of the algorithm proposed in [6]:

The algorithm from [6] works on initial graphs and do not use the contraction operation.

In the case when the subgraph $G' = (X \setminus (\bigcup_{r=1}^{q} X^{i_r}), E')$ of *G* generated by the set of vertices $X \setminus \bigcup_{r=1}^{q} X^{i_r}$ has a structure of an acyclic graph then the Procedure 2 in the algorithm can be exchanged by the following procedure:

Procedure 2':

- 1. We make step 1 of Procedure 2 of the algorithm and determine the auxiliary directed graph $GA = (XA, EA)$. Then for every directed edge $e = (z^r, z^r)$ in *GA* we set $p'_{z^r, z^r} = 0$.
- 2. We fix the directed graph $GA = (XA, EA)$ obtained according to the construction from step 1, where $XA = (X \setminus (\bigcup_{p=1}^{q} X^{i_p})) \cup Z^r$, $Z^=\{z^1, z^2, \ldots, z^p\}$. Then we change the probabilities $p'_{x,y}$ of edges $e = (x, z^p) \in EA$ as follows:

For every vertex $x \in XA \setminus Z^p$ we find directed edges $e^1 = (x, z^1), e^2 =$ $(x, z^2), \ldots, e^r = (x, z^q)$ with associated probabilities $p_{x,z^1}, p_{x,z^2}, \ldots, p_{x,z^q}$ and determine the value $Q(x) = \sum_{x=1}^{q} p_{x,z}$; then change $p'_{x,y}$ by $p''_{x,z}$; where

$$
p''_{x,y^i}=\frac{1}{Q(x)}p'_{x,y^i},\quad i=1,2,\ldots,q.
$$

After that we obtain a new matrix of probability transitions $P'' = (p''_{x,y})$ for *GA.*

3. For each $x \in XA$ we calculate $P_x(z^i, t)$ by using the following formula

$$
P_x(z^i, t+1) = \sum_{y \in XA} P_y(z^i, t) p'_{x,y}, \quad t = 0, 1, 2, \dots, |XA|,
$$

where $P_{z_i}(z^i, 0) = 1, \forall z^i \in Z^q$; then we calculate

$$
P_x(z^i) = \sum_{t=1}^{|XA|} P_x(z^i, t), \ \forall x \in X \setminus \bigl(\bigcup_{p=1}^q X^{i_p}\bigr), \ \forall z^i \in Z^q.
$$

Here the values $P_x(z^i, t)$ express the probability that the system will occupy the state z^i after *t* transactions when it start transactions in x; the values $P_x(z^i)$ represents the limiting probability from the state $x X \setminus (\bigcup_{i=1}^{n} X^{i_p})$ to the $p=1$ state $z^i \in \mathbb{Z}^q$.

4. We put $s_{x,y} = 0$ for every $x, y \in X \setminus (\bigcup_{p=1}^{q} X^{i_p})$ and $s_{x,y} = P_x(z^r) \pi_y^{i_r}$ for every $x \in X \setminus (\bigcup_{p=1}^{q} X^{i_p})$ and $y \in X^{i_r}$, $r = 1, 2, ..., q$.

The following theorem holds.

Theorem 1 *The algorithm calculates correctly the matrix of lim'it probabilities S.* The running time of the algorithm is $O(|X|^3)$.

The proof of the theorem follows from [6].

4 Conclusion

This contribution deals with a special characterization of a simple Markov process based on a random graph theoretic structure. The authors derived a special polynomial time algorithm for the calculation of a limit state matrix. The algorithm is based on two procedures which are elaborated in this contribution. They exploit a distinguished decomposition principle of the underlying graph theoretic structure and the special property of an acyclic directed graph.

This is a new results which extends approaches from [5] and [6]. In [6] the algoritm works on initial graphs and do not use this special contraction operation.

5 Acknowledgements

The authors would like to thank the unknown referees and especially Daniel Dubois for their critical remarks and suggestions which helped to improve the quality of the contribution.

References

- [1] Bollobas B., Random Graphs, Second Edition, Cambridge University Press, (2001)
- [2] Howard R.A., Dynamic Programming and Markov Processes. Wiley (1960)
- [3] Lozovanu D. , Pickl S., Optimization and Multiobjective Control of Time-Discrete Systems. Springer Verlag (2009)
- [4] Lozovanu D., Pickl S., Dynamic Programming Algorithms for Solving Stochastic Discrete Control Problems. Bulletin of the Academy of Science of RM, Ser. Mathern. 3 (2009)
- [5] Lozovanu, D. , Pickl, S. Algorithms for Solving Stochastic Discrete Control Problems with Finite Time Horizon. Proceedings of CAO09 IFAC Workshop on Control Applications of Optimisation (2009).
- [6] Lozovanu D. , Pickl. , A Dynamic Programming Approach for Finite Markov Processes and Polynomial Time Algorithms for the Calculation of the Limit State Matrix in Markov Chains. CEJOR, 2010 (Accepted for publication).
- [7] Puterman M., Markov Decision Processes. Wiley (1993)