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Abstract

We consider here the problem of imaging the iterons of automata. These are discrete
counterparts of localized coherent structures from continues dynamical systems. Iterons
emerge during iterated automata mappings performed over strings. They consist of
filtrons (in serial processing) and particles (in cellular processing). The main problem
with the visualization of iterons is their spreading over a medium that they propagate
through. We propose here a solution to this problem, both for filtrons and particles; we
identify M-segments or G-segments, respectively, which are determined by the activity
of the underlying automata. Then we present various types of ST diagrams. Also, we
present the new idea of embedding the observer into processing space. This entails the
perceiving an event in various ways depending on the position of local observer (e.g.
Doppler’s effect). We show that Conway’s glider (of basic period p = 4) in game of life
cellular automaton can be seen as either p =3 or p = 5 object depending on observer.
Keywords: coherent structures, discrete solitons, iterative computation, cellular
automata, nonlinear dynamics, integrable systems, filtrons, particles, space-time
diagrams.

1. Goal of the Paper

Three issues are concerned here with the so called coherent structures in discrete
systems represented by nets of automata. First, we recall a general description of the
fundamental mechanism that supports coherent structures in such systems. It i1s based on
iterations of automata maps (IAMs), and thus justifies the usage of the term iterons of
automata. Then, we describe a method to identify discrete coherent structures. This
applies the concept of activity of automata which constitute the processing medium. At
last, we present techniques of visualisation of these special objects, among which we
show that commonly used space time diagrams may expose different images of an event
depending on the position of observer.

2. Systems Where Iterons Occur

The spontaneous emergence of particular coherent structures has been recognized in
numerous dynamical systems. Typically, these entities have the form of specially
shaped disturbances that are moving throughout a medium with various velocities.
Probably the best known example of such persistent structures is the solitary wave.
They are periodic and exhibit peculiar behaviour during collisions. The colliding objects
pass one another like ghosts—the collisions are nondestructive. These events are caused
by a nonlinearity.
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Here we consider the phenomena of moving coherent structures in discrete systems.
These objects have been encountered and described during the investigation of such
different problems in discrete systems like:

- integrability of dynamical systems [29],

- basics of performing computations by means of streams of colliding objects [27],

- properties of solitary wave equations [1, 32],

- efficacy of standard and recursive digital filtering of discrete signals [30],

- properties of coherent structures in crystal models [6, 33],

- information processing that is equivalent to box-ball systems dynamics [9, 34, 33,

35),

- convergence of numerical procedures and complexity of combinatorial algorithms

(12},

- behaviour of discrete solitons in cellular automata (CAs) (1, 3, 4, 10, 11, 13, 14],

etc.

It is clear now that coherent structures represent typical behaviour, both for simple
and for complex discrete systems. Especially, in a series of papers [17-29] it has been
shown that some general and unified approach is possible and useful in describing the
fundamental mechanism of emergence of all these structures. Namely, it appeared that
all discrete systems described in literature which are capable of string processing and
exhibit the mentioned moving entities, can be described and replaced by appropriate
automata and their iterations.

Coherent structures emerge in such an approach as a result of iterating process
performed by automata over the initial string of symbols. These structures are seen as
moving periodic substrings of the string. This suggests that all known phenomena of
coherent structures in discrete systems can be explained by iterated automata maps
(IAMs). This is why a new general term, the iterons of automata, have been introduced
to distinguish and describe such structures [20]. The iterons of automata seem to be a
fundamental computational phenomenon.

The iteron of automaton A is a periodic structure that propagates like a disturbance
throughout one-dimensional homogeneous automaton medium. The medium is formed
by a pipeline of copies of automata M, so it operates like an I[AM; we denote M(a') =
d*', where t=0, 1, ..., counts the steps of iteration. The moving disturbance itself has
the form of a periodic substring ' of the string o' that passes throughout this line.

There are two types of iterons: particles and filtrons. The filtrons emerge in serial
string processing that occurs within iterating net of copies of given automaton M. They
are identified as M-segments of &' that involve certain sequences of operations f;
associated with M. These sequences can be recognized as special paths on the
automaton state diagram.

The particles appear during parallel string processing performed by cellular
automata (CAs). To identify them we apply de Bruijn graph G of given CA, and show
the particles within &’ as G-segments related to involved sequences of elementary rules
(ERs) of CA.
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Thus, in both cases iterons of automata are determined by some sequences of
elementary operations; state-implied functions in serial IAMs and ERs in parallel IAMs.
These sequences represent an active mode of automaton medium.

Having an identification tool one can exhibit the iterons of IAMs. We list some
basic mechanisms of string processing and their equivalent automata and then we
present various possibilities of imaging the iterons. There are various types of iterons
behaviour [17-29]: multifiltron collisions, fusion, fission, and spontaneous decay or
quasi-filtrons, bouncing filtrons, trapped colliders, complex filtrons and their collisions,
cool filtrons, attracting and repelling objects, also the particles that are typical to some
widely known CAs, such as 110, 54, and 30. Some of them will be illustrated.

Usually, TS (time-space) diagrams are applied to present the particles, and ST
(space-time) diagrams to demonstrate the filtrons. These two cases are inherently
associated with the position of observer; TS diagrams show the layout of symbols along
the medium, while ST diagrams present the evolution of a string when it passes
throughout the medium.

But there is also third possibility of viewing the substructures of strings, never
presented in literature: this is when the observer is embedded into the net of automata,
and the farther information needs a time to come and be registered by him. In this case
the image perceived by the observer varies, depending on its position and velocity; we
will show this phenomenon for linear cellular automata and using the Conway’s game
of life 2-d CA.

3. State Implied Functions f;, M-Segments, and Filtrons of
Automaton M

A Mealy type automaton M with outputs and an initial state is defined to be a
system M = (S, Z, 2 6, B, so), where S, 2 and (2 are nonempty, finite sets
of—respectively—states, inputs and outputs, 6: S X T — S is called the next state (or
transition) function of M, and f: S x X — £2 is called the output function of M. Symbol

| so € S denotes the initial state of M.

The automaton converts sequences of symbols (finite or infinite words). For each
| symbol ¢; read from an input string it responds with an associated output symbol @
which is a consecutive element of the resulting string. The input string is read
sequentially from left to right, one symbol at each instant 7 of time, in such a way that

&s(D), () =s(r+1)and As(1), o(D)=a D forall 7=1,2, ....

Next state and output functions of automata are presented in tables or in a graph
form that is called the state diagram of automaton. For any s € S and o€ 2 that imply ¢
= {&s, 0) and w= Ks, 0) in Mealy model, there is a directed edge on the graph going
from node s to node 7, and labelled by o/@. In Moore model the output function is
defined by A(s(7)) = wthus the outputs A(s) are attached to the nodes.
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To allow automata iterations over strings we apply a unified set of input-output
symbols 4 = = Q2 = {0, 1, ..., m}. The successive strings a""' = M(d'), 1=0, 1, ..., are
listed one under another, and form an ST (space-time) diagram. Sometimes we shift
each output string by g positions to the left with respect to its input string.

We also describe the automaton’s operation by (state-implied) functions f; : 4 — A.
They depend on states and are such that fi(a;) = As, a;) for all s € S and a; € A. The
succession of outputs of the automaton is given by next [fy(a;)] = fi(a+) with 1 = &s, a;).

It is clear that the labelled path on state diagram of the automaton implied by any
| input string can be viewed as a sequence of operations f;. Thus, any input string is
related to the sequence of automaton state-implied functions.

The automaton medium represented by IAM can be either idle or active. The
| medium, at point M, is in its idle mode when the string of zeroes just passes M. It
| becomes excited when a nonzero segment passes. In this view the automata are
substring recognizers. The idea is as follows. Suppose that M reads a string a’ =

t
..al d..a

L When a{ forces M to leave a fixed (starting) state, then it is marked
‘ 1

as the beginning of a substring (M is activated). Next, when the symbol a’ forces M to

| "
enter some fixed (final) state it is marked as the end of the substring (M is

extinguished). The substring af a5 ...a’

;. 1s said to be the M-segment.
t

We consider special M-segments. We assume strings ...0qy...a;0... where symbol 0
represents a background; and J(so, 0) = so for M. The initial state sy of M is chosen to be
| the starting state as well as the final state. In general case one can use another selection;
€.g. some subsets of automaton states can play the role of starting states and/or of final
states, or even these sets and their roles can evolve along the iteration time steps.

| The filtron is defined as follows [18, 19]. By a p-periodic filtron a’_ of an automaton
| M we understand a string a| b az of symbols from 4 with af # 0, such that during
t
\ the iterated processing of configuration a’ = ...0a"_0... by the automaton M the following
conditions are satisfied forall r=0, 1, ...:

- the string @’ _ occurs in p different forms (filtron’s orbital states), with 0 < L, < oo,
| - the string @’ _is an M-segment.

| When a number of extinctions of given M occurs still before the last element of the
string segment &'_ is read by M, we say that @' is a multi-M-segment string. Multi-M-
segment strings lead to complex filtrons.

4. Elementary Rules, G-Segments, and Particles of 1-d Cellular
Automaton CA

Now, let us consider cellular processing of strings. Linearly extended (or 1-d) CA is
defined by CA = (4, f) where 4 is a set of symbols called the states of cells, /: 4" — A is
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a map called the local function or the rule of CA, and » = 2r + 1 is the size of
neighbourhood (or processing window) with r left and r right neighbours. Typically,
especially when |4] = 2 and r is small, the rule is given by the number

j = n — 1 . . .
Zj.;g 1 fw))- 2/ ; w; denotes the neighbourhood state (contents of the window), with

Wmin = (0, 0, ..., 0) up to wmax = (1, 1, ...., 1). 1-d CAs convert the strings

confi tions) of symbols in parallel. Thus, for a current configuration a® = oo AT ins
( gura ym p gu i

the next configuration @™ is a result of updating simultaneously all the symbols from

- +1 T :
a”: for all -0 < i <+oo we have af "' =f(al_,, al_,,1, .., a} , ..., afy,). The resulting

global CA map a” — @™ is denoted by y(a”) = a™".

One can specify the function f by the set of all (n+1)-tuples (a1, az, ..., a+1) €
A™! where f(ay, ay, ..., ay) = ay+1. Any such (n+1)-tuple is called here the elementary
rule (ER) of CA. All possible sequences of adjacent ERs involved in CA processing of a
string are identified by n-wide window sliding along the string, thus can be recognized
on the de Bruijn graphs.

For any CA = (4, f) with n-wide window, the Moore automaton G, = (4", 4, 4, 6, 4,
sp), implied by the de Bruijn graph, is defined by the next state function & ((ay, ..., an),
ap+1) = (a2, ..., anr1), and the output function A (ay, ..., a,) = f(ay, ..., a,). Automaton G,
mimics the CA operation over a string, and expresses the constraints on possible
sequences of ERs involved in CA processing.

Let us use automaton G, to detect the strings of ERs associated with particles. By a
p-periodic particle a” of an automaton C4 we understand a string af a5 ...az of
T

symbols from 4 such that during the iterated CA4 processing the configuration a’ =
.ua" v... occurs in p different forms: a°, a™', ..., & ! Periodic strings » and v
represent spatially regular areas. We choose the starting states of G, to be related to area
u, and its final states to area v. The roles of these sets can interchange in succeeding
moments 7. The paths implied by a”_on G,, which lead from initial states to final ones,
define G-segments similarly to AM-segments. Note that one can use undirected graph G,
to identify G-segments. This is because all outputs of automaton G, can be determined

simultaneously for the entire configuration a”.

5. Models That Support Iterons

The first model supporting iterons—filter CAs—was introduced in 1986 [15]. This
work founded a bridge between automata and nonlinear physics, presenting the
discovery of discrete binary soliton-like entities emerging under particular IAMs. Since
that time, a number of models that support discrete coherent structures have been
introduced and studied in literature. Most of them presented the aspect of identifying
and visualizing these objects to understand their dynamics. We list here some important
specific models, and further show certain their iterons.

1. Iterating automata nets that perform numerical procedures [30].
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Cellular automata and filter CAs [3, 10, 15].
Digital recursive filters and filter automata [15, 19, 20, 21].
Solitonic CAs [37].
CAs of higher order or homogeneous nets of cells with a memory [31].
Sequentially updated CAs (update schedule) [2].
Integrable CAs [9, 29].
CAs derived from the equations of motion [1, 33, 35].

9. Algorithmic procedures (so called fast rules) [12, 14].

10. Box and ball systems [9, 25, 34, 33, 35].

11. Crystal systems [6, 25].

12. Affine Lie Algebras [7].

13. Sets of algebraic equations.

14. Combinatorial models [7, 8, 12].

15. Invariants of shape (Young) tableaux [36].
Note, that most of them can be reduced to the JAM mechanism.

b Bl o

6. Forms of ST Diagrams

The first string-processing mechanism capable of supporting filtrons—PST
model—was introduced in [15] as parity rule filter cellular automaton (PRFCA); (fpst,

r). It’s binary coherent segments were called particles. For a given string d', its

=S . .
successor a"' is computed by updating function fpst such that a/*'= fost (dl,...,a%,,

\

|

\

|

|

|

|

|

|

|

|

|

|

|

|

| ;

| ,. . ’

| all, altlyy, ., aff) =1, if and only if Ya[*i+ Yaf,; # 0 is even; r is called the radius
J=l j=0

; of fpst. It 1s assumed fps1(0, 0, ..., 0) = 0.

| Later, the PST model was generalized [17, 19] to a special family of automata, FA-

| family. The initial state so of M € FA satisfy J(sp, 0) = so. Also, the automata from FA

| convert strings in cycles of some operations. All cycles have the fixed length »+1. The

| first cycle starts at the nonzero element a;: J (so, a;) # o, and next cycles proceed until

| special substring w e A" (called reset condition) occurs that coincides with the cycle.

| In PST model the alphabet 4 = {0, 1}, and the cycle of operations N (negate) and A

| (accept) has the form (N, A, ..., A) = (NA") and reset conditions {w} = {*0"} where *

: denotes an arbitrary element.

|

\

|

|

|

|

\

|

|

|

|

|

The filtrons of automata M can be visualised in many ways. Here we present some
forms of ST diagrams which are especially useful in exposing filtrons and particles of
automata.

6.1. Text ST Diagrams

This is basic, natural form of showing the evolution of strings under IAMs. The
consecutive strings of symbols are listed one under another in separate rows using their
associated (standard) letters from alphabet 4. Below is an example of this form. The
IAM is performed by the automaton BBSC(6,4); its description is given further.
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Fig. 1. ST diagram in a basxc text form A= {0 1,2,3,4, 5‘ , and its enhanced version.
6.2. Symbolic ST diagrams

Symbolic or interpreted diagrams use special convention for letters associated with
symbols from 4. The aim is to expose and facilitate identification of M-segments
encountered during processing of a string by any automaton M. The convention is as
follows:
— symbols activating M are printed in bold,
— tail zeros, which are all consecutive zeros preceding immediately the extinction of
automaton M, and which are read still during M activity, are denoted by the dash

“©
T

~ all zero symbols read by the automaton M in its inactive mode are printed as dots

113 »
.
b

— all other symbols a from working alphabet 4 are shown unchanged.
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It is especially easy to determine the M-segments of any string for automata M from
FA-family. An example is shown in Fig. 2 a). The IAM is performed by PST automaton
of » = 4. One can note that in rows 6, 7, 8 and 9 there is only one M-segment
distinguished by a processing mechanism. All other rows contain two M-segments.
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Fig. 2. Collision of two filtrons of PST automaton with » = 4; shift ¢ = 2.
6.3. Graphical ST Diagrams

This kind of (pixel) images present all rows of diagrams using pixel codes (typically
colour codes) of symbols from the basic alphabet A. The example of typical image is
given in Fig. 3 a). Fig 3 b) and c) show chosen collision of four filtrons. The string’s
symbols are from alphabet 4 = {0, 1, 2, 3}. The automaton M, that supports this
collision operates in cyclic manner (belongs to FA family). The cycle of operations is
(hj, f1, f2, f3), and cyclic sequential processing stops when 0000 is encountered (reset

L . 0123 (0123 0123y =
word). State implied functions are: 4o =0, #; = N Sy = JSi=h

3022 | 2301 1230
" 0123
=1d, = .
2710132

112




0] [ [l - 1
- 1 =
T Yo, .
| .'-_ l| [ :: |
] M '|.|| ™ '
-'-- '| |. s
| e, '. = Y i
TRA - AR
a? '| [} Tag

i - v, ., i
? I T ..
i ] [ ",
| .t b B, L
4 i e 3, .
| - N )
t . W
| pe i
| j - ] - ,__,;gb)
[ s i sdin

10201----~--- e @003====, . 2231 ==~ ans i

..3000003----~ cee32emmmmm o 8212 === i e e
s dD20T<==ne=a 2001----.2122---~-. ... ...

+ « 3000003 <~~~ -12000001322~~--~~ 58 ws 6.8 5
——————— ..1020100000200300122303----~~ .
——————— 30000030303300023333003---~
W i 102000231002032310201----~
30000030303300023333003~---~ 3r--

Fig. 3. a), b) Pixel ST diagrams of solitonic collision of filtrons of automaton M. c)
Symbolic ST-diagram shows details of the collision from b). The shift ¢ = 2 in b) and

c).
6.4. Wave-like 2-d ST Diagrams

The filtrons are moving and periodic thus can be presented as wave phenomena. This
kind of ST diagrams use special curves or graphical codes to visualise some segments
of the filtrons. The aim is to expose their wave nature. An example of this kind of
images is presented in Fig. 2 b). For a comparison a symbolic ST diagram of the same
collision is given in Fig. 2 a).

6.5. Wave-like 3-d ST Diagrams

The filtrons can be interpreted as periodic sets of variables moving along a plane and
changing their values. This gives a possibility of showing them as 3-d objects.
Exemplary image of this type of ST diagram is given in Fig. 4. The automaton that
supports this image belongs to FA class of automata; it performs the cycle of operations
(NAAA) over 4 {0, 1}, and is reset at *000 segment.
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Fig. 4. A collision of two travelling filtrons of the automaton from FA class; (NAAA,
*000).
6.6. Surface ST Diagrams

One can build a discrete surface basing on planar positions and the values of symbols.
This technique is another possibility of building 3-d images. An example is presented in
Fig. 5. The supporting automaton operates over 4 = {0, 1, 2, 3, 4, 5}. It’s M-segments
are associated with cycles (ho, fi, 5, )1, i, fo, f3)--(P1, fi, fo, /3) where the functions

012345 012345 012345 012345 012345
are: hy = ,hy = , fi= , h= , i= -
020004 152403 135420 340521 031452

fvﬂl/ i
ll@’«f, sl /ir vr«,\,,,,
, ‘ "/1” 4[00’1’”
,' IA ML
-J A 0"0: ‘1 "',"’ ,ﬁ“w
/N;" LR A ll[}y '&”
g J“'m« '»
Fig. 5. Surface ST diagram of a filtron ofpenodp 3;9=1.

Reset conditions are in the set {0000, 1300, 3000}. Text ST diagram of the filtron from
Fig. 5 is given below.

'H/«,

..04332345121201045541202004133345523201241541300000000000. ..
...00451421323005122324115300354421224005523324411300000000...
..00004523514132550422433430402523010132355422235430000000...
.00000004332345121201045541202004133345523201241541300000...

W N RO

6.7. Discrete ST Diagrams

They have a form of discrete charts shown in Fig. 6. This kind of image is useful, when
one first chooses the shape of filton and then looks for the automaton capable of
supporting this filtron. Here, the state implied functions 4, and f; that follow from the
diagram are not completely specified; they have the form:

(0123 (0123 _ (0123 _ (0123 . _ (0123
h"*[oowj’ b (1:31] /= o. ] % [2301] and /3 [OmJ’

where * denotes arbitrary symbol. Thus a number of required automata exist in this
case.
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Fig. 6. Filtron of period p = 5 involves two cycles of operations (o, fi, /2, 5)(hi, /i, /2,
£3)-

Another kind of discrete ST diagram appears when successive charts are “stacked” one
after another. We show such image in Fig. 8. The collision is supported by automaton
BBSC(17,25). The class BBSC(m, n) = (S, Z, £2, &, B, so) is such [23, 33] that states S
= {0, 1, ..., n} and input/output symbols X'= 2 =4 = {0, 1, ..., m} are represented by
the finite set of integers, and s = 0 is the initial state. The next states are determined by
s = 6(s, 0)=s+min ( 5. 0) - min (s, 0), while the outputs by &= B (s, 0)= o+ min
(s. 0)-min ( s, 0), where s=n-sand c=m- O.

Fig. 7. Nondestructive collision of nine filtrons of automaton MBBSC(17, 25); ¢ =1,
and @’ = ...0G900F900E900D900CI00BI00A9009900890. .. .

6.8. Combinatorial ST diagrams

This kind of images follows from a description of filtrons by means of permutations. It
has been pointed [36] that the so called invariants of coherent objects of soliton CAs can
be characterized by a shape of pairs of standard Young tableaux. Processing of strings
by soliton CAs (changing the positions of 1’s) is governed by the stack principle (first in
— last out), thus the form of an evolving string ¢’ can be described by a permutation T, .
Such permutation specifies the order of symbols that are released from the stack at
given step . An example is presented in Fig. 8.
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Fig. 8. Collision of 3 filtrons descnbed by palr-s of standard Young tableaux

By Robinson-Schensted algorithm one can convert the permutation description of a
collision to a description by means of pairs of standard Young tableaux. The shapes of
these pairs are invariant under the IAM [36].

6.9. Filtered ST diagrams

One can obtain the images in this class when a primary text ST diagram of some CA is
converted onto the image of elementary rules that were involved in processing in order
to determine the G-segments. The result of such a conversion is shown in Fig. 9 b)
where ERs (ai, a2, a3, as) are printed at the position a4 and indicated by their numbers
(ai, az, a3) € {O, 1, ..., 7}. Two spatially periodic sequences of ERs: 5376 and 4012
represent two regular areas of strings from primary txt ST diagram (Fig. 9 a). This
regular periodic areas, denoted in Fig. 9 c¢) by yyyy and xxxx, respectively, can be
related (alternatively) to initial and final states of the supporting G5 automaton. One can
now identify the paths implied by strings on Gj3 that lead from its initial states to final
ones: they are represented by pairs of rules (2, 5), (6, 4), (5, 2) and (1, 3), and are seen
in Fig. 9 b) as boundaries between yyyy and xxxx areas. These paths determine the
G;-segments of strings. Their localisation is shown on both: primary text ST diagram
and filtered ST diagram in Fig. 9 c).

[
o .u@D.. @A 012d6376537653765k4 X@yyyyyyyyn@(J‘
} 1 1.CD 111 111 @ 5376801240124010376 yyyEaXxxxXxxxXX ‘
! 2 : @ @ s 2401@5:37653763@01 XXXA YYYYY xx}'
|3 765376A01240187653 yyyy XXX yYY |
i 4 0124013537635210124 XXXXXK Y ZKXXXX |
\‘ 5 5376537}@&765376 YYYYYY @‘B YYYYY |
| 6 240124012502012401  xxxxxxx%252XXXXXXX |
| 7 7653765377016537653 yyyyyyyyyyyyyl
|
| 8 012401240001240124  xxxxxxx xxxxxxi
} 9 537653760018765376 yyyyyy Q*@ YYYYY |
ll—o 24012401?2[5@01”401 xxxxxxx@xxxxxx |
]

Fig. 9. Rule 54 CA; a) text ST diagram, b) sequences of ERs, c) positions of Gs3-

segments.
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Fig. 10. Rule GKL CA: primary text ST diagram, and FIR filtered ST diagram.
Another usage of FIR filter over primary text ST diagram is presented in Fig. 10. Here,
cellular automaton with GKL rule, defined by & '(1) = {1%10%sx, sors] Diok sk ]dx1]},
performs majority classification task. There are 18 symbols 0 and 17 symbols 1 in initial
configuration, thus the result of processing, visible at 7 = 21, is the all zero
configuration. At the right side of Fig. 10 the filtered ST diagram is shown, where a FIR
filter used £ 4* — {0, 1, 2, 3, 4, 5, 6} associated with automaton Gy is given by: f
(0001)=1, f(1110)=2, £/(1011) =3, £(0100)=4, £(1001) =5, f(0110) =6 and /' (W)
=0 for all others w € 4”.

7. The Images Perceived by Local Observer

Space-time diagrams are very popular in presenting various phenomena especially
in cellular automata. It is assumed usually that the observer has the immediate access at
all moments to all positions of the ST diagram; thus such diagrams are like images seen
by God. This assumption is so obvious that is not even clearly stated in any paper
treating CAs. However, simple “gedanken experiments” and computer verifying
simulations show that the events occurring in discrete spaces are not perceived in
unique way when the observer is embedded into the processing space. In such case the
information passing from distant cells to the observer needs a time, thus the description
of an event depends heavily on the position and movement of such local observer. Also
the “speed of light” assumed in CA model matters in this view. This idea of /ocal
observer being embedded in CA space seems to be not mentioned in literature yet (as
far as we know).

We give two examples of this new and fascinating phenomenon. Fig. 11 shows a
case of 1-d cellular automaton of 2™ order where two particles collide and local
observer is embedded.
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]

Fig. 11. a) Particles collide in a CA; b) the same collision seen by local observer "0”.

”_rn

Position of local observer is denoted by “0”. Note that the knowledge about events from
the environment increases with each clock step when information gradually flows down
to local observer from farther consecutive “rings”. This forms a sort of space-time cone.
It is illustrated in the right diagram of Fig. 11 where dashed part is out of observer’s
horizon, and dotted part denotes a sphere of knowledge. It is seen that primary particles
have the period p = 3, while those perceived by local observer look like still objects
(when they approach the observer), or they have period p = 5 (when they escape out of
the observer).
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Fig. 13. Local observer view: glider emerges from beyond the horizon; now its p = 3.

Our second example shows the object which is called glider in famous Conway’s
game of life 2-d CA model. Glider is a periodic object with p = 4. The succession of its
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four orbital phases is shown in Fig. 12 (“0” denotes active cell). This is global (or
God’s) view. Now consider an observer which is inside of this space, the case when
glider approaches. New image registered by this local observer is presented in Fig. 13.
Now the same glider has different phase forms and different period p = 3. Next two
figures allow to compare two images in the case when glider passed and the distance to
observer increases. Fig. 14 shows God’s view, and Fig. 15 shows local observer view.
Now the glider seems to have 5 phases, its period is p = 5. This phenomena bear a
likeness to Doppler effect.

Increasing space-time cones mentioned above are denoted in Fig. 13 and 15 at
moments ¢ = 1, 2 and 3 by enlarging framed areas. Consider the image at time # = 3
shown in Fig. 13. It is composed of 3 rings of data: the outer ring (with three active
cells) has been taken from image at 7 = 0 in Fig. 12, the next (or middle) ring with one
active cell comes from image at # =1 in Fig. 12, and the last ring close to observer (no
active cells are there) is from image at =2 in Fig. 12.

[ eeeenn |
C eeJecee  eo[Jecee e o[Je - ce@ecee coflecee  cofleces  eo[eees |
e e oD ceQe o ceeQeee seseessa  ssssass  essssen csereane |
| «c0+0- » . 00 - R ce0-0- DRI o L e eQe e Y- T
«e e OO0 v BT e 1o L «-000- ¢ cs 00" s D0 * s e eDO**s seeee O- I
..... e o e o s 05 0 e ® e 0 e 0 0 --oo-- -a°°-o --oo-— .--ooo. ’
1=0 t=1 1=2 1=3 t=4 =5 =6

.-.o-- -.o.o. -.-.o-. . '° ------- o.- ------ .
ceOO*** *s000°*° *+*00°°* *+0°0°° *°22e00° ooce-e O~
..................... ceeQree oD 200

t=4 t=5 t=6 t=17 t=8 t=9

Fig. 15. Local observer view: glider emerges from beyond the horizon; now its p = 5.

8. Conclusions

In continuous and discrete dynamical systems there is a plethora of persistent
localized objects. The most common are localized disturbances moving in physical
media. There are also disturbances propagating in complex systems. In communication
technology peculiar persistent components are known to assist signals despite digital
IR filtering; these are well shaped impulses propagating over long (electrical) lines. In
logical nets hazard impulses are propagating in parallel to signal changes. Widely
known are packets in streams of cars moving along roads. There are also some values
migrating within numerical procedures and occurring in convergence acceleration
algorithms. Special moving and interacting objects are seen in liquid and granular
media. Many of these phenomena can be represented as solutions to some classes of NL
wave equations (e.g. Painleve’ classes), but for many of them the equations of motion
are not known. This is especially the case in discrete systems. For discrete systems we
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| proposed here the idea of iterons of automata that is based on the notion of active
automaton medium. Also, some techniques of presenting these objects on various types
of space-time diagrams have been given. Imaging of iterons of automata helps one to
realize the realm of phenomena that they can represent. This may add new perspective
to classical description of localized objects with wave equations.

It should be mentioned that various forms of ST diagrams are also used in many
other domains associated with dynamical systems. Most of them are just special cases
of the phase portrait [29].

Iterons, being a computational phenomenon associated with automata, represent
general and unified approach to coherent structures. The realm of iterons is very reach.

Imaging the iterons of automata have given possibility of observing many new
phenomena not shown in this paper. The most important of them are: trembling filtrons,
quasi-filtrons, bouncing filtrons, trapped filtrons, orbiting filtrons, annihilating filtrons,
decay of quasi-filtrons, repelling and attracting objects, comlex breathers, jumping over
a bundle, and objects capable of changing the speed and period.

The images of iterons can be useful in understanding the behaviour of coherent
structures and in using them in applications. Important potential applications arise when
studying the collisions of coherent structures. Impressive example is given in [16],
where new physical phenomena result when light interacts with a shock wave in specific
transmitting media, namely in photonic crystals.
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\

‘ Another important issue in imaging of coherent structures of discrete systems is the
| role of observer in perceiving their behaviour. We showed that the images of an event
| depend on the position of the local observer. They depend on his movement, as well.
|

|

\

|

|

|

|

|

|

|

|

|

|

Analytical tools and further research are needed to describe the images of coherent
structures that are seen by local observer basing on the global views.
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