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Abstract 

In incremental learning, it is necessary to conquer the dilemma of plasticity and stability. 

Because neural networks usually employ continuously distributed representation for 

state space, learning newly added data affects the existing memories. We apply a neural 

network with algebraic (lattice) structure to incremental learning, that has been 

proposed to model information processing in the dendrites of neurons. It has been 

proposed as a mathematical model of information processing in the dendrites of neurons. 

Because of the operation 'maximum' in lattice algebra weakening the continuously 

distributed representation, our proposed model succeeds in incremental learning. 

Keywords: Stability-Plasticity Dilemma, Distributed Representation, Dendrite, 

Anticipation. 

1 Introduction 

There are two aspects of anticipation (Rosen, 1985; Dubois 1998) in learning. One 

is generalization. It is to presume a distribution or a function from existing data for 

predicting new data. Another aspect is incremental learning (Giraud-Carrier, 2000). In 

incremental learning, because the coordination of existing learnt data and newly added 

data is needed, learning mechanism must assume data addition. 

First we explain what is incremental learning and why it is hard. Then we show 

how our model solves the problem. 
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1.1 Incremental Learning 

Incremental learning is a task to learn a data set after learning another data set 

sequentially ( on line). In the learning of the second data set, the first data set is neither 

learnt nor referred. In ordinary neural networks, because of the continuously distributed 

representation (Rumelhart, Hinton and Williams, 1986), the incremental learning 

destroys the existing learning. 

Figure 1 is a simple example exhibiting the difficulty of incremental learning. It 

shows the destruction of old learning by new learning. With the connection in the left, it 

outputs only 'A' from the input 'a'. Now the input 'a' and the output 'A' is the existing 

memory. Then, by learning the correspondence from the input 'b' to the output 'B', the 

connection becomes as in the middle. As the result, as in the right figure, the 'B' is 

outputted from 'a'. Such an aspect leads to the dilemma of stability or plasticity. One of 

the principal factors is that all the neurons in the state layer contribute to the output. It is 

that memory is distributed to the neurons. 

Old memory --> Added data --+ Old memory is destroyed 

Output Layer 0 0 

Sta te Layer 

Input Layer 

Figure 1: Destruction of memory by incremental learning. 

As a solution to the dilemma, Ohta and Gunji (2006) proposed a model that 

employs winner-take-all method and negative reinforcement. Winner-take-all is an 

activation algorithm proposed in the study of self-organizing maps by Kohonen (2001 ). 

In this algorithm, only the most excited neuron in the state layer fires. As a result, 

distributed representation is weakened. On the other hand, negative reinforcement is a 

learning algorithm proposed by Chialvo and Bak (1999). In this algorithm, the teacher 

signal is not explicitly given. The depression is given in failure to the connections that 
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contributed to the firing. It is negative feedback; the strengths of active synapses get 

reduced if mistftkes are made, otherwise no changes occur. By this algorithm, together 

with weight conservation and pre-synaptic inhibition, the unused firing pathways come 

to be used. As the result, existing memory can avoid getting overwritten. The model by 

Ohta and Gunji succeeds in incremental learning of time series data. 

1.2 Lattice Neural Networks 

In this study, we apply lattice neural networks (LNN) to incremental learning tasks. 

LNN proposed by Ritter and Urcid (2003) model the actions in the dendrites in neurons 

by lattice algebraic operations. As in the Figure 2, each neuron in the output layer has 

several dendrites. The dendrites can work as the state layer in an ordinary neural 

network. Each neuron in the input layer connects to all the dendrites. Every connection 

consists of a pair of excitatory and inhibitory synapses as in the left figure. (The neurons 

mediating inhibitory connection as in the right figure are here just omitted.) The 

operation between dendrites is the 'join' operation in lattice algebra. It is actually 

maximum operation, because, as we mention later, the lattice structure we treat is totally 

ordered, an interval of real numbers. Ritter and Urcid (2007) have applied their LNN to 

associative memory tasks by batch learning but not to online learning. 

In this study, we modify LNN for online learning. We call the new model LNNI 

(Lattice Neural Networks for Incremental learning). In the model, the operation 'join' 

(denoted by 'V') works instead of winner-take-all. To prevent the added data from 

overwriting, negative reinforcement and the plasticity of the dendrites are exploited. 

Output layer 

Dendrites 

Input layer 6 
Figure 2: Lattice neural network that employs dendritic computing. 
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2 Model 

2.1 Activation Algorithm 

We explain about the firing algorithm of LNNJ. It is, in other words, how to 

calculate the output from an input. 

y = f(x; W) (I) 

As in eq.l, the function with the parameter W calculates the output y = 
(y1,·· · ,Y1, ... ,yM) from the inputx = (xi,--·,xi,'",XN) · W == [wfk1] is the parameter 

representing the connection weights . It is a 4-dimensional matrix. There are four 

indices: i = 1, · · · , N is for the input nodes, j = 1, · · ·, M is for the output nodes and 

k = 1, • · · , K is for the dendrites of each output nodes, and / is for discriminating 

excitory and inhibitory connection. N, Mand K are respectively the number of the input 

nodes, output nodes and the dendrites of each output node. Although the number of the 

dendrites can be different in the respective output nodes, we assume that each neuron in 

the output layer uniformly has K dendrites for simplicity. If/ = 1, the connection is 

excitory and if l = 0, it is inhibitory. The detail of the function/i s as follows. 

(2) 

(3) 

(4) 

f/)jk(x) is the result of calculation at the k-th dendrite of the j-th output neuron. ri (x) 

is the maximum of the rpik(x) at the j-th output neuron. If rj(x) > 0, the j-th output 

neuron fires. If not, it does not fire. r 1 = 1 and r 0 = -1. 01 = -0.5 and e0 = -1.5. 0 1 is a 

constant just for alignment that makes easier to see the relation between input-output 

and wfki· As briefly mentioned earlier, in this study, the underlying lattice structure is an 

interval of real numbers that is a kind of chain and a totally ordered set. Therefore, 'V' 

and'/\' respectively denote maximum and minimum. 
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2.2 Examples 

2.2.1 Example 1 

Example 1 is the simplest experiment. There is only one input, output neuron and 

its dendrite (N = M = K = l ). r(x) is the following. 

r(x) = ( +1) x (x + w 1 - 0.5)/\(-1) x (x + w 0 
- 1.5) (5) 

We setw1 = w0 = 0. y=l if0.5 < x < 1.5. Otherwise,y=0. Actually, substituting 1 to 

x, we get y= 1 as follows. 

r(l) = (+l) X (1 + 0 - 0.5)/\(-1) X (1 + 0 - 1.5) 

= (0.5)/\(0.5) 

= 0.5 

y = g(r(l)) = g(0.5) = 1 

Similarly, substituting 1 to x, r(0) = 0 and y = 0. 

r(0) = ( +1) x (0 + 0 - 0.5)/\(-1) x (O + 0 - 1.5) 

= (-0.5)/\(1.5) 

= -0.5 

y = g(r(0)) = f(-0.S) = 0 

(6) 

(7) 

(8) 

(9) 

In Figure 3 (left), the change in the input-output relation according to the value of 

w 1 and w0 . The interval bounded by the arrows is the range of x that makes r positive, 

hence y = I in the interval. 

2.2.2 Example 2 

In the second example, we show that we can construct an XOR gate with two inputs 

and two dendrites (N = 2, M= 1, K=2). We set Wand r(x) as follows. 
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-{ (+1) X (X1 - 0.5)/\(-1) X (X1 - 1.5) } 
,(Xi,Xz) - /\(+1) x (Xz + 0.5)/\(-1) X (X2 - 0.5) 

V f (+1) X (X1 + 0.5)/\(-1) X (X1 - 0.5) 1 
l /\( + 1) x (x2 - 0.5)/\(-1) x (x2 - 1.5)5 

From the input ( 1, 0), l is outputted. 

r(l,0) = {( +0.5)/\( +0.5)/\( +0.5)/\( +0.5)} 

V {( + 1.5)/\(-0.5)/\(-0.5)/\( + 1.5)} 

= { +0.5} V { -0.5} 

= +o.5 

y = g(r(l,0)) = g(+0.5) = 1 

(10) 

(11) 

(12) 

(13) 

Similarly, the model outputs 0 from input ( 1, l ), 0 from input (0, l) and 0 from input (0, 

0). ln the plot, the gray square regions are where y = 1. Each square is a region where 

the calculated value on a dendrite becomes larger than 0. It is how to adjust the 

connection weights between neurons. 

Example 1 ( N = M = K = 1 ) 

X 

0 

w 1 = 0 

W O = 0 

X 

0 

X 

w 1 = 1 w1 = 0 
w 0 == 1 ,v 0 = 1 

Example 2 ( N = 2, ,t/ = 1, K = 2 ) 

k = 2 

( 0, 1 ) 

( 0, 0 ) 

( 1, 1) 

0 

k=l 

( 1, 0 ) 

Figure 3: The activation regions. 
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2.3 Learning algorithm 

Next we explain the learning algorithm of LNNI. Now the calculated value of the 

system from input x = (xi, · · ·, x;, · · ·, xN) is y = (y1 , · .. , Yv · ·, YM) . The correct answer 

is y' = (y'i, · · •, y' v · ·, y' M) . Comparing y and y', the increase or decrease of W is 

determined as follows. 

(L- 1) For all j satisfying y1 = 1 and y' 1 = 0 

for all k satisfing <fJJk(x) > 0 

for all i 

!J.w(k1 = d1'nissf O'J < 0 

!J.w3'1 = d~iss/Oj' > 0 

where c,1 is the number of k satisfied (f)Jk (x) > 0. 

(L-2) For all j satisfying y1 = 1 and y' 1 = 1 

for all k satisfying (/)Jk(x) > 0 

for all i satisfying xi = 1 

tJ.wlkJ = dUc,1 < 0 

tJ.w&1 = dVO"J < 0 

for all i satisfied xi = 0 

!::.wi\J = d5f cr1 > 0 

t::.wfkJ = d8f c,1 > 0 

(L-3) If all YJ = 0, K(t + 1) = K(t) + 1 

(14) 

The algorithm is divided into three cases. (L-1) means that if a firing of an output 

neuron was wrong, W is adjusted so that it uniformly closes the all related pathways. 

Here, the correct output itself is not given. (L-2) is that, if a firing of an output neuron 

was not wrong, W is adjusted so that the used pathway does not fire with the other 

inputs. (L-3) prescribes that, if none of output neurons fire, all the output neurons get 

one more dendrite added. If it is felt ad-hoe, a more natural method is to apply 'weight 

conservation' (Royer and Pare, 2003). However, our algorithm is sufficiently reasonable 
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by the plasticity of dendrites and in this way we can observe the learning process clearer. 

Note that the dendrite is uniformly added to all the output neurons. The addition is not 

restricted only to the output neuron corresponding to the correct output. 

3 Simulation and Results 

We have explained the firing and learning algorithm of LNNI. Hereafter we 

confirm that LNNI can execute incremental learning by simulation. The initial values of 

the parameters are the following. wi\/t = O) = 1 , w?k/t = 0) = 0. It is that the 

pathway is maximally open. In the course of learning, wfkj can be larger than I or 

smaller or 0. Then wfkj is set I or 0. They do not go beyond the interval from O to l. 

The number of dendrites is one for each output neuron, in the initial setting ( K(t = 
0) = 1 ). The rates for learning are the following. dtriiss = -0.02, d~iss = 0.02, d} = 
-0.2, dr = -0.2, d5 = 0.1, d8 = 0.05. We execute three simulations. We cyclically input 

the samples. Comparing the system's output and the sample output, the weight W is 

adjusted. The initial setting described here is common to all the three simulations. 

Figure 4 is the learning set used in all the experiments. One vertical column is a 

sample of input-output. Output is in the above and input is in the below. The number of 

inputs and outputs are both 5 (N = 5, M = 5), and there are 6 sets of inputs and outputs, 

discriminated by the index s. The characteristics of the input data set is that the inputs 

are partially overwrapped as in i=3 at s=2 and s=3. On the other hand, the characteristics 

of the output data set is that there are three in the row ofj=l. 

}=1 

2 

Output Yj 3 

4 

i = 1 

2 

Input X; 3 

4 

5 .___......._........__ 

s= 1 2 3 4 5 6 

Figure 4: The learning set. 
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3.1 Experiment 1 

This is how the learning goes. First the input samples from s=l to s=4 is repeated 

15 times, so it consumes 60 steps. Next the fifth sample (s=5) is iterated 40 times. 

Figure 5 (top) shows the learning curve. The horizontal axis is time step and the 

vertical axis is the accuracy rate, the rate of the correct output by the system, among five 

samples. After t =20, it begins to correctly output to the sample of s=l, 2, 3. Before t=30, 

the second dendrite is generated. Although the correct rate becomes O once, but after the 

learning by the newly added second dendrite for s=4 sample, around t=50 it correctly 

responds to the sample s== 1, 2, 3 and 4. At t=6 l, the incremental learning starts. Here 

again, by the third generation of dendrite, once the accuracy rate becomes 0, Then, 

because of the learning by the dendrite for the s=5 sample, finally the rate becomes 1. 

Figure 6 (upper-left) shows how the weight W changes through the learning. It is 

how the dendrite is excited. The dendrite is of k=l of the j=l output neuron. The 

horizontal axis is time and the five plots correspond to the five inputs from i=l to i==5. 

The white region is where it excites. At t=O, they get excited to all the inputs. 

Contrastingly, at t= 100, they excite only to the input (I , 0, 0, 0, 0). 

~ 1.0 

~ 0.8 

~ 0.6 

'" ~ 0.4 

~ 0.2 

0 

0 

0 

Exp. l 

~ 
20 

Exp. 2 

20 

Exp . 3 

20 40 

' .0. 
40 60 

time 

rv 

40 60 
time 

60 
t ime 

80 

80 

80 

100 

Figure 5: The learning curves. 
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Exp. 1 ( J = 1, k = 1) Exp.2 (J= 1,k = 2 ) 

w~ ~~ [ ~ :toox, 
Wi OJ t j ,<------ - -------~ 

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 

time time 

Exp. 3 (j = 1,k = 1) 

10 20 30 40 50 60 70 80 90 100 110 120 

t ime 

Figure 6: The evolution of the weight W. 

3.2 Experiment 2 

In the second experiment, the incremental learning beings earlier at t=53 . The other 

conditions coincide with the one of the first experiment. It is when the system has learnt 

to correctly output to the first four samples. As the result, the existing learning result is 

overwritten. The correct rate does not get greater than 0.8 (Figure 5 middle). 
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We can see the overwriting by watching the time development of the weight W 

(Figure 6 upper right). In the center plot, for the i=3 input, before t=53, the result of 

learning is that it gets excited only to x3=0. After t=53, the direction of the learning is 

changed so that it gets excited exclusively to X3 = 1. 

3.3 Experiment 3 

In the third experiment, we confirm that the existing memory can be corrected by 

additional learning. First the input samples from s=l to s=4 are repeated 15 times (60 

steps). Next the sample s=6 is iterated. Note that the sample of s=6 has the same input 

as of s= l but the output differs. 

See Figure 6 (bottom). At the 60th step, the learning is finished so that excites only 

to the input s=l, (I, 0, 0, 0, 0). However, by additional learning, it excites to none of 

inputs. Afterwards, another dendrite is added and used for the input s=5. Figure 5 

(bottom) shows the learning curve. 

4 Discussion 

The results by simulation can summarized as follows: ( l) LNNI can execute 

incremental learning, (2) if the learning period is not long enough, it is overwritten by 

the new learning, and (3) the learning can be revised even if it has lasted long. 

Now we review distributed representation. In distributed representation a concept is 

represented by a pattern of activity over a collection of neurons. Normally, the 

distributed representation is regarded as an antithesis to the grandmother cell 

representation.However, we consider that the problem is not in the dichotomy of 

distributed or not distributed. Although we normally believe that the representation is 

constructed only by the result of neuronal firing, we can choose another viewpoint to 

assume the potent input pattern on dendrite as implicit distributed representation. The 

operation '.join' (denoted by ' V ') in the proposed model extends the variability of 

possible input pattern. This 'implicit distributed representation' may be a principal 

subject of brain science. 
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5 Conclusion 

In this article, we have reported that LNN can be refined to our LNNI for online 

learning, and that it can incrementally learn. It may be a touchstone to discuss 

distributed representation in the brain. 
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