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Abstract In studying human cognit ion, it is now broadly approved t hat the study 
of cognitive biases is indispensable. Among many cognitive biases proposed , we 
focus on two symmetrical biases: symmetry and mut ual exclusivity bias . Imple­
ment ing the two biases in a probabilistic framework on covariation information, we 
t est our loosely symmetric (LS) model in word learning t asks, in comparison with 
the ordinary condit ional probability and the totally symmetric/biased probability. 
LS is shown to break a t rade-off in the t hree t asks. It is argued t hat LS is a model 
of development in the sense of Vygotsky, where top-down/ deductive and bot tom­
up/ inductive processes crisscross. 
Keywords : cognit ive bias; heuristics; stimulus equivalence; mutual exclusivity 

1 Introduction 

Human intuit ion is biased. Human inference is not purely logical. It is extensively 
argued in psychology. The illogicality is concept ualized as biases and heuristics 
[2]. Most of t hem are considered as t he default modes of cognit ion for rational 
information processing, procured through the course of evolution pathways. One of 
the problems of studying the biases is the lack of organization on t he huge variety 
of biases and heuristics. We presume the key is t heir symmetry and ant icipatory 
nature of being in t he world. In t his art icle, we study two symmetrical biases in 
relation to a t rade-off between learning and communication in word learning. We 
test an adjustment mechanism of the biases, LS (loosely symmetric) model ([11], 
[12]) discovered by Shinohara [8], and show that it breaks the trade-off. We also 
argue that it is a model embodying the developmental theory by Lev Semyonovich 
Vygotsky, where top-down/ deductive and bottom-up/inductive processes intersect. 
First we argue that t he symmetrical biases form t he bases for anticipation that is 
essential to cognition in general. 
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Fig. 1: The effect of S and MX biases in forming relations from a learnt one. 

2 The Cognitive Symmetries and Anticipation 

The two symmetrical biases we study in this paper have appeared originally in the 
study of word learning in a broad sense. One is mutual exclusivity (MX) bias [6]. 
Given a binary relation pRq between a stimulus p and q learnt, MX bias is to believe 
pRq, where p * p and q * q. The other one is symmetry (S) bias [9]. It is to believe 
qRp from learning pRq. See Fig. l. 

S bias has been formulated in the study of "stimulus equivalence" in t he behavior 
analysis or comparative psychology (Sidman [9]) and of "biconditionality" in causal 
induction (Hattori [3]) and other higher-level cognitive tasks [5]. It is strongly related 
to anticipation, at least via abduction. The bias can provide a basis for internalist 
anticipation. When you internally anticipate an event B, acting toward it , you 
need to abduct an action A about which it is known that A induces B, a directed 
relationship A-+ B. By doing A, you try to create the future event B and manage 
to meet the anticipated B. In t he inference it can take the form of deduction if you 
throw A ...... B in reverse. Deduction is to infer consequent B from A and A -+ B . 
Abduction is to infer antecedent A from A-+ B and B. It is not logically valid but 
human beings reason in t hat way, regardless of age, sex, race or capability [14]. 

MX bias has been proposed in the study of children's vocabulary learning (Mark­
man [6]) in developmental psychology. Imagine that there are a familiar object with 
a known name and another novel object with its name unknown. When an infant 
hears a name previously unheard, she tends to consider that it is the name of the 
novel object. This tendency is called mutual exclusivity (MX) bias. It helps her 
to identify the referenced object in the absence of other cues such as her mother 
gesturing toward it. Formally speaking, t his tendency is to believe p -+ q when p -+ q 
is accepted, where p, q are some stimuli and p is a stimulus different from p. 

It is interesting that animals other than human only quite rarely show the sym-
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metries [14]. It means that in a sense animals are more logical than us human. 
Actually, we laboriously learn to infer asymmetrically. It it would not be like this , 
learning mathematical logic must have been much easier , while we often confuse di­
rected and asymmetrical relations between, e.g. , necessary and sufficient conditions. 

2.1 Symmetric Metaphysics: Relation as Object and Origin of Isomor-
phism 

The Sand MX biases provide the bases for anticipation in cognition: time reversing, 
causality inversion, future cause bringing about present effect , etc. It is these biases 
that make anticipation familiar, rather intrinsic, to human. 

It is interesting to see the formal or metaphysical relationship between Sand MX 
biases, that can also be seen to lead to logical contrapositives, q - p and -,p - -,q. 
S makes relationships among objects atemporal and/or undirected, while MX ren­
ders relationships non-intersecting. Atemporal and independent mode of existence 
is what characterizes metaphysical objects (S). The relationships are treated as ob­
jects, if object is naively defined by a closed boundary of its own (MX). S and MX 
are, respectively, closely related to the existence of inverse map and one-to-one cor­
respondence that are both structure-preserving conditions that lead a map to be 
isomorphic. S and MX biases lead to isomorphism when composed, as in Fig. 1. 
We now have a way to inquire into the human origin of the equivalence of these 
conditions for mathematical identity : isomorphism. It is a fundamental concept for 
human cognition, such as in one-to-one correspondence in counting. 

Objectification of relation leads to a metaphysics in which objects and relations 
are not asymmetric, while usually they are rigorously distinguished because of the 
difference in logical type. In this way, the symmetrical cognitive biases are intimately 
related to the problems around the difference in logical type, such as self-reference. 
It would be interesting if the biases are what make human able to treat self-reference 
as the source of creativity and not just as logical contradiction or infinite oscillation 
between true and false [10]. 

2.2 Anticipatory Causality 

Given a subjective sense of causation that p causes q, S bias subjectively identifies 
or confuses an effect q in the distant future , locating at the posterior point in the 
causal sequence, and a cause p that is at present realizable. It is that the future is 
at present. This brings about the sense of decidability of the future. One can choose 
p to cause q since they are equivalent. S bias is the possibility of anticipatory act. 
On the other hand, from p causing q, MX bias makes the subjective causal sequence 
mutually exclusive. It makes one think that when the anticipated q is invoked by 
the present option p , q can not be brought about by any other option p =t p. One 
must choose p to cause q. MX bias is the necessity of anticipatory action. In this 
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Table 1: A 2 x 2 contingency table 
for causal induction. 

prior event 
p 
j5 

posterior event 
q 

a 
C 

q 
b 
d 

Table 2: A totally symmetric 2 x 2 
contingency table. 

prior event 
p 
f5 

posterior event 
q q 

a +d b+ c 
c +b d+a 

sense, these biases form the bases for anticipation: interchangeability of cause and 
effect and future effect bringing about present or past cause. 

3 The Probabilistic Representation 

The MX and S biases both represent our intuition in causal induction. Let t here be 
two events or stimuli p and q. When do we say that "p causes q"? One condition 
is high conditional probability of q given p, P( qjp). It is enough for prediction. 
However , this condition is not sufficient for our intuitive feeling of causation. For 
example, let us always observe crows caw (p) before the sun rises (q). It means the 
conditional probability P(qjp) is very high. However, we do not think t he sunrise is 
caused by the crows cawing. 

There are two conditions for us to feel causality [8]. One is that q does not occur 
when p does not. In probability it is expressed by simultaneously high P(qlp) with 
high P( qjp) . It is called a principle of causality. The other one is that p occurs 
when q does. This means high P(plq). Of course, the usual definition of probability 
does not satisfy them. So we denote a form of subjective causality estimation as 
B , 0 s; B s; l. We define t hese two conditions as the expression of MX and S biases 
as follows: 

B(qlp) = B(qlp) 

B(qlp) = B(pjq). 

(MX bias) 

(Sbias ) 

(1) 

(2) 

Another condition, law of excluded middle (XM), is logically important since it 
means the well-definedness of negation. 

(XM) (3) 

The models for causal induction studied in this article are N S ( nonsymmetric), 
RS ( rigidly symmetric) and LS (loosely symmetric) . They are defined on a 2 x 2 
contingency table as in Table 1. It represents covariation information between two 
events , p and q. N S is defined as the ordinary conditional probability. 

NS (qjp) = a/(a + b) (4) 
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N S does not satisfy neither S nor MX, but it has XM. 
By making the cells in Table 1 symmetric, we get RS from N S. Because 

NS(p jq) = a/( a + c) , the condition b = c induces the complete S bias, NS(q jp) = 

NS(pjq). MX bias is rigidly formed if a = d holds additionally, since NS(iilf5) = 
d/(d + c). The equations b = c and a= dare satisfied in Table 2. The symmetries in 
the table are expressed in an equation as follows: 

RS ( qjp) = ( a + d) / ( (a+ d) + ( b + c)) (5) 

Thus we get RS. RS has all of S, MX, and XM. 

3.1 A Loosely Symmetric (LS) Model 

The LS model featured in this article is defined as follows: 

LS a+ P(pjq)d a+ b~dd 
(qjp) = a+ P(pjq)d + b + P(pjq)c = a+ b~dd + b + a:cc · 

(6) 

Inductive and deductive derivations of the LS model are respectively found in [11] 
and in [12]. Here we just mention that LS can be understood in two ways. On one 
hand, it is an NS-like formula (a/(a + b)) with the added extra terms (b/(b + d))d 
to a and ( a/ ( a + c) )c to b. On the other hand, LS can be understood to be kin 
to RS, with the term c and d weakened by the coefficients a/( a + c) and b/(b + d) , 
respectively. The duality is the key for deriving LS. LS has XM and loosely satisfied 
S and MX, varying the intensity of the biases according to the situation, i.e., the 
value of ( a, b, c, d) . 

4 Word Learning Tasks 

The cognitive symmetries were proposed in the study of word learning in general. 
We apply the LS model to word learning tasks back . There is an infant and an adult . 
The adult knows the correspondence between labels and objects correctly, and she 
teaches them to the infant. The infant guesses the connection between labels and 
objects with a probabilistic model B. The learning is tested with three tasks. The 
infant demonstrates the correctness of her learning to the adult (task 1 and 2) , and 
he also asks the adult for passing an object to him, by telling the label of the object 
(task 3). The former tasks test the correct reproduction of the memory. The latter 
more or less requires S bias, B(oll) = B(llo) , if not rigorously equal , where o is an 
object and l is a label. 

We apply the causal models to the word learning tasks. For calculating B( oj lli ), 
a correspondence from a label li to an object Oj , the cells in the contingency table, 
a, b, c and d, are as follows1 (note that o ([) means objects (labels) other than o (l) .): 

1This gives a generalization of LS tom x n contingency table other than in [12). 
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d =c: d 
Xn(j-1) Xn(j+l) 

Fig. 2: The contingency table for word learning with the focus on an object o1 given 
a label li, for the estimation of correspondence from li to o1 with B ( o1 lli). 

a =P(l ,o) 

b = P([, o) = P(o) - P(l , o) = E1,;,1P(l' , o) 

c = P(l , 8) = P(l) - P(l , o) == E0 , ;,0 P(l , o') 

(7) 

(8) 

(9) 

d = P([, 8) = 1 - (a + b + c) == Et';,tE0 ,*°P(l' , o') (10) 

When the inverse probability B(o1lli ) (the probability of t he inverse direction) is to 
be calculated , b and c in Fig. 2 are interchanged. 

4.1 The Common Settings of Simulation 

Here we give the three models ( N S , RS and LS) t he following three word learning 
tasks. There are objects and labels. Labels are attributes such as color and shape. 

l. (What-task) Answer a label of a given object. 

2. (Which-task) Answer an object that has a given label. 

3. (Hand-me-task) Ask an adult to pass an object of desire by telling a label. 

The common setting throughout t he t hree tasks are as follows: 

• Each object has two kinds of label (attribute): color and shape. The dis­
joint sets of colors and shapes are denoted by C and S . The set of labels is 
L = CU S. It is assumed that t here are more shapes than colors (ICI < !SI). 
One reason comes from our discernment and language t hat distinguishes more 
shapes than colors. In addition, formally speaking, infinite shapes can be 
recursively generated and recognized but colors can not. 

• The set of objects , 0 , is defined to be the product of colors and shapes, 
0 == C x S, hence IOI= ICI x ISI. There are as much objects as the combination 
of colors and shapes. 
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In Table 3, there is an example of the joint occurrence rates between 
two attributes, IC! = 2 colors and JSI = 3 shapes, and JCI x ISI objects. 
xi means the joint probability of the appearance, hence O ~ Xi ~ 1 
and ~Xi = 1. 

• In this study, we fix the number of the colors JCI = 10 and of the shapes IS I = 20, 
so there are 200 different objects. 

• There are two agents: an infant and an adult. In each turn, the infant is taught 
50 correspondences between labels and objects, chosen randomly, by the adult, 
and then tries to perform the task. There is no noise in the instruction: The 
adult does not teach wrong correspondences. 

Table 3: An example of the matrix of joint occurrence rates between attributes 
( colors and shapes) and objects. 

0 b. D • .. ■ 

white X1 X3 X5 0 0 0 
black 0 0 0 X7 Xg X n 

circle X2 0 0 Xs 0 0 
triangle 0 X4 0 0 X10 0 
square 0 0 X6 0 0 X12 

4 .2 Task 1 : What is this Object? 

The first task is to answer the question "What is this object?" after being taught 
some correspondences. The answering process "What" takes an object o as the 
argument and returns a label l that satisfies 

What(o) = argmaxB(oll') , (11) 
l'EL 

where l = What(o), What : 0 --+ L. If there are some labels equally probable to 
be answered, one is randomly chosen . Because there are two attributes, color and 
shape, the answer can be the object's color or shape. The answer is correct if it is 
one of the answers by the adult that is correct by definition, 

What(o) E Whata(o) , (12) 

where "Whata( o )" denotes the set of correct answers to the "What is o?" question 
by adults. "Whata" operator has the type of 0--+ P(L). For example, Whata( • ) = 

{black, triangle}. For any o in 0 , JWhata(o)I is the number of attributes. In this 
study, the number of attributes is 2 (color and shape). The infant is asked for 
answers for all objects in 0. The index shown in the Results section is the correct 
rate, the proportion of the correct answers for JOI questions. 
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4.3 Task 2: Which Object has this Label? 

The second task is to answer the question "Which is it?," with a label l presented. 
It is to answer an object o that satisfies 

Which(l) = argmax:B (llo) , Which: L ➔ 0 (13) 
oeO 

where o = Which(l) . As in task 1, one object is randomly chosen if there are some 
objects equally likely. The answer o = Which(l) is correct if it satisfies 

Which(l) E Whicha(l) , (14) 

where the type of Whicha is L ➔ P(O) . For example, Whicha(circle) = {o,•} and 
Whicha(white) = { o , .t. , □} . Vl E L , IWhicha(l)I = n holds, where n denotes the 
number of the other attribute than of l . The adult asks the infant a question for 
all labels in L. In t his task the correct rate index is the proportion of the correct 
answers for ILi questions. 

4.4 Task 3: Give me the Thingy! 

The preceding two tasks just t est t he memory retention, so t hey may appear to be 
trivial, though we will see that the biases , when rigid as in RS, work as obstacles in 
t he Results section. The t hird t ask tests the value of learning t hat is in its use. So 
we define another task that is to request an object that is not at t he infant agent. 
This task is mathematically similar to the calculation of a fixed point. Let r be 
a probabilistic operator that randomly chooses one element from a set. Then the 
criterion of this task is written as: 

r (Whicha(What (o))) = o, Whicha o What : 0 ➔ P(O) . (15) 

For example, an infant wants the white circle. However, because it is not present in 
front of her, she must tell one of its labels, white or circle. (Compound nouns are 
not allowed here. ) If she presents t he label white, the adult will bring her something 
white. It has the shape of circle, t he infant finally gets what she wants. 

This task is, however, too difficult . If the adult uniformly randomly chooses one 
white object from the white ones, the probability t hat the infant gets the circle is 
1/ISI. It is 1/3 in the example in Table 3 and 1/20 in the simulations. 

So we take the following weaker version of t he question: 

What(r(Whicha(What(o)))) = What(o) , What o Whicha o What : 0 ➔ L (16) 

Then the task becomes easier. It is that the infant gets satisfied even when she 
has got the white triangle, if only the white triangle is "white" for her rather t han 
"triangle", B(whitel.t.) > B(trianglel.t. ). Mathematically, the object brought by the 
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adult to meet the request of the infant, Whicha(What( o)) is correct if it is in the 
equivalence class defined by the map What. 

Note that task 3 can not always be achieved even if task 1 and 2 could have 
been carried out at a satisfactory level. For example, if Which(l) = Whicha(l) holds 
( though generally Whicha is a non-singleton set so a random selection mediates) , 
the formula (15) becomes 

Which(What)(o) = o, (17) 

meaning that 

if the infant answers l to "What is o," then she answers o to "Which is l" . 

Thus we see that some S bias helps to achieve this task. 

5 Results 

The results shown here are of the average of 1,000 simulations. The proportion of 
correct answers of NS, LS and RS in task 1, 2 and 3 are shown in Figure 3, 4 and 
5, respectively. 

N S can learn optimally in task 1 and 2. It fails only when the object of the 
label in question has been not yet learnt , so rapidly the correct rate converges to 
100%. However , NS cannot communicate well in task 3. It can get what it wants 
everlastingly with a probability no more than 55%. 

On the other hand, RS cannot execute task 1 and 2 that is just to answer the 
learnt contingency. Here we see that the complete S and MX biases of RS damage 
such simple procedures. It learns well but can communicate only with the poorly 
learnt vocabulary. 

We see that LS satisfactorily execute all the t asks. In task 1 and 2, LS does 
even slightly better than NS. In task 3, LS is a little bit discreet than RS but 
steadily raises the correct rate according to the amount of learning. This is a good 
property since the learning and the tasks do not form a feedback loop: There is no 
reward nor punishment. LS does so without any instruction. 

6 Discussion 

Here we argue that LS is a model of development in the sense of Vygotsky [13]. 

6.1 Vygotskyan Development Where Bottom-up and Top-down Pro-
cesses are Paradoxically Coordinated 

Vygotsky defines development as a field where top-down and bottom-up processes 
intersect. The typical developmental processes are cited in Table 4. He focuses on the 
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Fig. 5: The correct rate in task 3. 

interaction of the two modes of learning. For example, we learn our mother language 
in an inductive way. We hear many sentences and we induce the grammar, the 
generative rules for utterance. The learning process goes from experiences to rules, 
in a bottom-up way. On the other hand, learning foreign languages progresses in a 
quite different , deductive, way. We first learn the alphabet , elementary vocabulary 
and the grammar. Then we begin to construct sentences. It is in a top-down way. 
The two ways, bot tom-up and top-down, are not completely consistent. However , 
they become closely related and the close relationship drives the development. The 
agents in development, who are essentially internal observers, are required to make 
the two processes consistent, and sometimes the effort to make them consistent itself 
brings about inconsistency. It is an endless process. 

Table 4: Examples of top-down and bottom-up developmental processes. 

development in: 
language acquisition 

concept 
language 

top-down 
foreign language 

scientific/ nonspontaneous 
written 
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6.2 LS as the Model of Development 

There are bottom-up and top-down forms in the probabilistic framework. N S esti­
mates the causal intensity of (candidate) causes in an independent way. N S ( qjp) = 

a/ ( a + b) and N S ( qjp) = c/ ( c + d) are just independent. The estimation by N S is 
absolute and bottom-up. On the other hand, RS satisfies a property that we call 
estimation relativity (ER). ER is derived from MX bias (eq. 1) and XM (eq. 3). 

RS(qjp) = 1- RS(qjp). (ER) (18) 

Because of this property RS's estimation is in a top-down way. In the calculation 
process, the invariant whole, 1.0, is given first and then it is divided into two parts, 
RS(qjp) and RS(qjp) that are the whole in sum total. The estimation by RS is 
relative and top-down. N S does not presuppose that there is such an invariant or 
conserved totality. 

Our LS model can be considered as a realization of Vygotsky 's notion of de­
velopment . Here we mention only one simple reason. It is that LS is in between 
C P and RS. We consider that LS model exemplifies the importance of Vygotsky 's 
theory of development or ZPD (zone of proximal development) theory. For example, 
in decision making, LS estimates the action value of an option, not solely absolutely 
(independently) nor relatively (dependently). Absolute and relative estimations are 
respectively bottom-up and top-down. The calculation of LS's value is a process 
where the heterogeneous ways of estimation, independent and dependent , meet. 

7 Conclusion 

In this study, we have shown the effectivity of LS model in word learning. It is that 
we have given LS back to its original realm, since LS is , from the first moment, an 
implementation of an adjustment mechanism of the intensity of S and MX biases. 

Our LS model has variable S and MX biases, of which the intensity gets adjusted 
according to the situation or experience. The model is applied to word learning tasks 
by infant agents. By computer simulations, we see that ( 1) the biases exert adverse 
effect in the word learning tasks but (2) the agents should be somewhat biased 
to handle the communication task with the teacher agents, utilizing the acquired 
words. LS model accomplishes the both tasks very well, while most of agents with 
other models can satisfactorily execute only one of the two kinds of tasks. 
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