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Abstract 
Anticipatory reasoning-reacting systems were proposed as a new generation of reactive 
systems with high reliability and high security. At present, there is no engineering en­
vironment to support development and maintenance of anticipatory reasoning-reacting 
systems. This paper presents a development and maintenance environment we are build­
ing for developing and maintaining anticipatory reasoning-reacting systems. By using our 
development and maintenance environment, developers and maintainers can develop and 
maintain various practical anticipatory reasoning-reacting systems more easily. 
Keywords : Anticipatory reasoning-reacting systems, Predictor, Decision-maker, Persis­
tent computing systems, Engineering environment. 

1 Introduction 

Anticipatory reasoning-reacting systems (ARRSs) were proposed as a new generation of 
reactive systems with high reliability and high security [l]. An ARRS predicts possible 
failures and attacks by detecting their omens and anticipatory reasoning about failures 
and attacks based on logic systems, empirical knowledge and detected omens, informs 
its users about possible failures and attacks, and performs some operations to defend the 
system from possible failures and attacks anticipatorily by itself. 

At present, there is no engineering environment to support development and main­
tenance of anticipatory reasoning-reacting systems. Such an engineering environment is 
necessary. To develop and maintain a practical anticipatory reasoning-reacting system is 
not an easy task because an anticipatory reasoning-reacting system consists of many com­
ponents and it must work based on some fragments of logic systems. On the other hand, 
although different anticipatory reasoning-reacting systems may include different func­
tional components and may work based on different logic systems, there are certainly 
some common functional/non-functional components and some fragments of logic sys­
tems that may be developed and maintained in a way independent of applications. There 
were several studies for ARRSs [l, 2, 6, 7, 11, 12, 18, 19, 22, 23, 24, 25, 28], but there is 
no study for the engineering environment, yet. 

This paper presents a development and maintenance environment we are building for 
developing and maintaining anticipatory reasoning-reacting systems. The paper iden­
tifies and classifies common functional/non-functional components in all anticipatory 
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reasoning-reacting systems, gives a requirement analysis for the development and main­
tenance environment, and presents some common components we are developing for var­
ious anticipatory reasoning-reacting systems. 

2 Earlier Studies of Anticipatory Reasoning-Reacting Systems 

The one of the most important facilities for anticipatory reasoning-reacting systems is a 
facility of anticipation. Anticipation is the action of taking into possession of some thing 
or things beforehand, or acting in advance so as preclude the action of another. It is a 
notion must relate to two parties such that the party taking anticipation acts in advance 
of a proper time earlier than the time when another party acts. To implement the facility 
of anticipation, we can naturally find following three issues: l) how to predict future 
event or events, 2) how to take next actions, and 3) how to ensure that a system behaves 
continuously and persistently without stopping its running. Earlier studies tackled those 
issues. 

As a methodology of prediction, a method using anticipatory reasoning based on tem­
poral relevant logics or 3D spatio-temporal relevant logics was proposed [2, 11). Predic­
tion is the action to make some future events known in advance, especially on the basis 
of special knowledge. It is a notion must relate to point of time to be considered as the 
reference time. For any prediction, both the predicted thing and its truth must be un­
known before the completion of that prediction. An anticipatory reasoning is a reasoning 
to draw new, previously unknown and/or unrecognized conclusions about some future 
event or events whose occurrence and truth are uncertain at the point of time when the 
reasoning is being performed [2]. To represent, specify, verify and reason about various 
objects in the real world and relationships among them in the future, any ARRS needs a 
right fundamental logic system to provide a criterion of logical validity for anticipatory 
reasoning as well as formal representation and specification language. Temporal rele­
vant logics and 3D spatio-temporal relevant logics are hopeful candidates of such right 
fundamental logic systems for ARRSs [2, 11). Furthermore, to perform anticipatory rea­
soning automatically, an anticipatory reasoning engine was proposed and its prototype 
was implemented [12, 18, 25). An anticipatory reasoning engine is a forward reason­
ing engine to perform anticipatory reasoning based on a fragment of temporal relevant 
logics or 3D spatio-temporal relevant logics. A forward reasoning engine is a computer 
program to automatically draw new conclusions by repeatedly applying inference rules 
to given premises and obtained conclusions until some previously specified conditions 
are satisfied. A fragment of a logic system L is a finite subset of logical theorems of L. 
Moreover, a prototype of ARRS for elevator control was implemented, and the prototype 
showed the prediction method is useful to implement a facility of prediction in anticipa­
tory reasoning-reacting systems [28). 

On the other hand, a decision-making method with reasoning about actions was pro­
posed [22, 23, 24). An action in a computing anticipatory system is a deed performed 
by the system such that as a result of its functioning a certain change of state occurs in 
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the system. To take next actions, at first, a computing anticipatory system enumerates all 
actions that the system can perform in a predicted future situation as candidates of next 
actions, and then, the system chooses appropriate actions as next actions to defend the 
system from possible failures and attacks. Reasoning about actions in a computing antic­
ipatory system is the process to draw new conclusions about actions in the system from 
some given premises, which are already known facts or previously assumed hypotheses 
concerning states of the system and its external environment [23). The decision-making 
method uses reasoning about actions to enumerate candidates of next actions. Deontic 
relevant logics and temporal deontic relevant logics are adopted as hopeful candidates of 
right fundamental logic systems for reasoning about actions [6, 22, 23). Furthermore, to 
perform reasoning about actions automatically, an action reasoning engine was proposed 
and its prototype was implemented (22, 23]. Like the anticipatory reasoning engine, an 
action reasoning engine is a forward reasoning engine to perform reasoning about actions 
based on a fragment of deontic relevant logics or temporal deontic relevant logics. More­
over, a prototype of ARRS for terminal radar control was implemented, and the prototype 
showed the decision-making method is useful to implement a facility of decision-making 
in ARRSs [24). 

By the way, the notion of anticipatory system [27], in particular, computing antic­
ipatory system [14, 15, 16], implies a fundamental assumption or requirement, i.e., to 
be anticipatory, a computing system must behave continuously and persistently without 
stopping its running, because (l) for any anticipatory system, concerning its current state, 
there must be a future state referred by the current state, and (2) for any anticipatory 
system, its states form an infinite sequence [7]. Thus, Cheng and Shang showed that per­
sistent computing systems should be as an infrastructure of computing anticipatory sys­
tems [7]. A persistent computing system is a reactive system that functions continuously 
anytime without stopping its reactions even when it is being maintained, upgraded, or 
reconfigured, it had some trouble, or it is being attacked [3, 4, 5). Conceptually, a reactive 
system is a computing system that maintains an ongoing interaction with its environment, 
as opposed to computing some final value on termination [20, 26). 

3 PCS-core Components and ARRS-core Components 

Earlier studies for ARRSs made clear how to predict future event or events, how to take 
next actions, and how to ensure that a system behaves continuously and persistently with­
out stopping its running. We, therefore, re-defined an architecture of an ARRS according 
to results of the earlier studies. Figure 1 shows an architecture of an ARRS. 

An ARRS is a persistent computing system. A persistent computing system can be 
constructed by a group of control components including self-measuring, self-monitoring, 
and self-controlling components with general-purpose that are independent of systems, 
a group of functional components to carry out special tasks of the system, some data­
instruction buffers, and some data-instruction buses [7]. Control components may include 
a central controller/scheduler (C/S), a central measurer (Me), a central recorder (Ree), a 
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Fig. 1: An architecture of an anticipatory reasoning-reacting system 

central monitor (Mo), and an central informant (Inf). A central controller/scheduler or­
ders and controls all components to carry out some operations with a high priority. A 
central measurer measures current status of the system, and stores measured data into 
a central recorder. A central recorder stores data observed by a central measurer, and 
provides them to a central monitor and a central controller/scheduler. A central monitor 
monitors the behavior of the whole of the system, and reports unexpected behavior or 
troubles to a central informant. A central informant receives reports about unexpected 
behavior or troubles of the system from a central monitor, and informs the reports to man­
agers of the system. A soft system bus (SSB) is simply a communication channel with 
the facilities of data/instruction transmission and preservation to connect components in 
a component-based system. It may consist of some data-instruction stations (St's), which 
have the facility of data/instruction preservation, connected sequentially by transmission 
channels, both of which are implemented by software techniques, such that over the chan­
nels data/instructions can flow among data-instruction stations, and a component tapping 
to a data-instruction station can send data/instructions to and receive data/instructions 
from the data-instruction station. SSBs are used for connecting all components such that 
all data/instructions are sent to target components only through the SSBs and there is no 
direct interaction that does not invoke the SSBs between any two components. 

Functional components of an ARRS are classified into two kinds components; ones 
are common components in all ARRSs and others are application-dependent components. 
A predictor (Pr), a decision maker (DM), a logical theorem database (LTDB), and an 
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Fig. 2: Data flow diagram of a predictor 

empirical theory database (ETDB) are the common components. 
A predictor receives several kinds of data and outputs predictions with quantitative 

information and predictions without quantitative information. Figure 2 shows a data flow 
diagram of a predictor. A predictor consists of four functions: formula generator, forward 
reasoning engine, prediction chooser, and calculator. Formula generator takes sensory 
data and translation rules, and then it translates the sensory data into logical formulas 
according to the translation rules . Sensory data are data observed by a central measurer 
or functional components that measure current status of external environments of the sys­
tem. Translation rules are description rules to make logical formulas without quantitative 
information from sensory data. Forward reasoning engine gets logical formulas translated 
at the formula generator, a fragment of a logic system, a predictive model , and a world 
model, and then it deduces candidates of predictions. A predictive model is a set of em­
pirical theories which are represented by logical formulas and related with time in a target 
domain of the system. A world model is a set of empirical theories represented by logical 
formulas in the target domain except empirical theories related with time and behavior. 
Prediction chooser chooses nontrivial predictions, "Prediction(F)" in Fig. 2 denotes those 
predictions, from the candidates of predictions according to interests. Interests are se­
lection rules to choose nontrivial predictions. Calculator adds quantitative information 
to predictions chosen by the prediction chooser according to calculation rules, transla­
tion rules, and sensory data. Calculation rules are rules to add quantitative information 
to predictions chosen by the prediction chooser. The predictions with quantitative infor­
mation, "Prediction(D)" in Fig. 2 denote predictions with quantitative information, and 
predictions without quantitative information are sent to a decision-maker. 

A decision-maker receives two kinds of predictions from a predictor, and outputs in-
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Fig. 3: Data flow diagram of a decision-maker 

structions to an ARRS. Figure 3 shows a data flow diagram of a decision-maker. Like 
a predictor, a decision-maker consists of four functions: formula generator, forward rea­
soning engine, action chooser, and calculator. Formula generator takes sensory data and 
translation rules, and then it translates the sensory data into logical formulas according 
to the translation rules. Forward reasoning engine gets logical formulas translated at the 
formula generator, a fragment of a logic system, predictions without quantitative informa­
tion, a behavior model, and a world model, and then it deduces candidates of next actions. 
A behavior model is a set of empirical theories that are represented by logical formulas 
and related with behavior in a target domain of the system. Action chooser chooses ap­
propriate actions from the candidates of next actions according to priority. Priority is a set 
of selection rules to decide next actions. Calculator adds quantitative information to next 
actions that the action chooser chose by using predictions with quantitative information, 
calculation rules, translation rules, and sensory data. The next actions with quantitative 
information are outputted as instructions. 

A logical theorem database stores fragments of logic systems underlying anticipa­
tory reasoning or reasoning about actions. An empirical theory database stores empirical 
theories of a target domain as predictive models, behavior models, or world models. 

We identified and classified common functional/non-functional components and 
application-independent data in all ARRSs. Common components in all ARRSs are clas­
sified into two kinds components: common components in all persistent computing sys­
tems and others. Control components and soft system buses are common in all persistent 
computing systems. Hereafter, we name those components PCS-core components. A pre­
dictor, a decision-maker, a logical theorem database, and an empirical theory database are 
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common components in all anticipatory reasoning-reacting systems, but not in all persis­
tent computing systems. Hereafter, we name those components ARRS-core components. 
The data required by a predictor and a decision-maker are sensory data, fragments of 
logic systems, a predictive model, a world model, a behavior model, translation rules, 
calculation rules, interests, and priority. Only fragments of logic systems are application­
independent data. 

4 Development and Maintenance Environment 

A development and maintenance environment for ARRSs is an engineering environment 
that integrates various tools and provides comprehensive facilities for designers, develop­
ers, administrators/end-users, and maintainers of ARRSs. We analyzed and defined basic 
requirements that the environment should satisfy as follows. 

Rl: The environment must provide tools and facilities to support all tasks in design, 
development, management, and maintenance of ARRSs. In software life cycle, manage­
ment and maintenance phases are far longer than design and development phases. Further­
more, ARRSs are persistent computing systems and persistent computing systems should 
be running consistently and continuously. Maintenance phase, therefore, becomes more 
important for ARRSs. The environment must provide tools and facilities to support all 
tasks in not only design and development phases, but also management and maintenance 
phases. 

R2: The environment must support to ensure the whole security of an ARRS. ARRSs 
were proposed as a new generation of reactive systems with high reliability and high 
security. On the other hand, the whole security of a target system is not necessarily 
the sum total of security of its all components but usually only as good and strong as 
the weakest security of some component or link between components in the system. To 
implement a secure ARRS, the environment must support to ensure the whole security of 
the system, but not only each component of the system. 

R3: The environment itself must be a persistent computing system to provide continu­
ous supports for all users anytime. ARRSs should run continuously and persistently until 
its managers stop it because ARRS are persistent computing systems. The environment, 
therefore, must support maintenance of ARRSs anytime. 

R4: The environment must support specialists of a target domain of a target ARRS to 
formulate empirical theories easily and to manage the theories consistently. To formu­
late empirical theories in a target domain of a target ARRS is not easy task because most 
of specialists of the target domain are neither logicians nor programmers. Furthermore, 
empirical theories may be modified many times because the current situation and priority 
may be changed. After modification of empirical theories, the set of stored empirical the­
ories in the ARRS may include some contradictions because of human error. Hence, the 
environment must provide some easy ways to formulate empirical theories, and support 
to manage stored empirical theories consistently. 
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Fig. 4: Structure of a development and maintenance environment 

RS: The environment should provide any fragment of any logic system required by de­
velopers of a target ARRS. As we have mentioned in section 3, fragments of logic systems 
are application-independent data. It is, therefore, possible to reuse a fragment of a logic 
system that someone previously prepared. On the other hand, there are several axiomatic 
systems in temporal relevant logics, 3D spatio-temporal relevant logic systems, deontic 
relevant logics, and temporal deontic relevant logics. It is possible to generate many kinds 
of fragments of those logic systems. Moreover, what a suitable logic system/axiomatic 
system is varies from person to person. We think that temporal relevant logics, 3D spatio­
temporal relevant logic systems, deontic relevant logics, and temporal deontic relevant 
logics are suitable logic systems underlying anticipatory reasoning or reasoning about ac­
tions, but someone does not think so. He/she may want to use other logic systems, and 
prepare those fragments . Thus, it is efficient that fragments of logic systems are shared 
with all developers of ARRSs. 

R6: The environment must support developers and maintainers of a target ARRS to 
get the newest PCS-core components and ARRS-core components, and support the main­
tainers to update those components easily and safely. As we have mentioned in section 3, 
it is better that PCS-core components and ARRS-core components are provided from one 
organization or project like Linux kernel because those components are common in all of 
ARRSs. In addition, developers and maintainers should adopt the newest version of PCS­
components and ARRS-core components at all time because most of facilities of those 
components satisfy non-functional requirements, e.g., security, reliability, performance, 
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of a target ARRS. 
We are developing a development and maintenance environment that satisfies re­

quirements we defined because traditional software engineering environments do not 
satisfy the requirements [17, 21]. The environment is an engineering environments for 
ARRSs to provide designers, developers, specialists, managers, and maintainers with 
standard, formal and consistent supports for the design, development, formulation, man­
agement, and maintenance of ARRSs with high security and reliability requirements 
[8, 9, 10, 13, 19, 29]. Figure 4 shows a structure of the development and maintenance 
environment. 

Our environment is a persistent computing system, and is based on an information se­
curity engineering environment (ISEE) [10, 13]. ISEE is an engineering environment that 
integrates various tools and provides comprehensive facilities for designers, developers, 
administrators/end-users, and maintainers of information/software systems such that they 
can use the tools and facilities to ensure the whole security of the target system anytime 
consistently and continuously according to ISO/IEC security standards. ISEE focuses on 
security facilities of a target system, so we are modifying ISEE to deal with not only se­
curity facilities of a target system but also the system itself. We are also adding support 
tools for formulating and managing empirical theories into ISEE. 

Our environment can get various fragments of various logic systems from the The­
ory Grid. The Theory Grid is a formal theory infrastructure [9]. It coordinates various 
fragment of logic systems and formal theories in a distributed way using standard, open, 
general-purpose protocols and interfaces to meet demands of its application programs for 
theorem discovery and/or question proposition. 

Our environment can get the newest version of PCS-core components and ARRS­
core components from a PCS-core provider and an ARRS-core provider, respectively. 
a PCS-core provider (An ARRS-core provider) provides PCS-core components (ARRS­
core components). We are developing a PCS-core component: a structured p2p based SSB 
[29], and an ARRS-core component: FreeEnCal [8]. FreeEnCal is a forward reasoning 
engine with general-purpose, and is a hopeful candidate for a forward reasoning engine 
in a predictor and a decision-maker. 

5 Concluding Remarks 

This paper identified and classified common functional/non-functional components in all 
anticipatory reasoning-reacting systems (ARRSs). The components are classified into 
two kinds components: common components in all persistent computing systems and 
others. The former are control components and soft system buses, and the latter are a pre­
dictor, a decision-maker, a logical theorem database, and an empirical theory database. 
Application-independent data is fragments of logic systems underlying anticipatory rea­
soning or reasoning about actions. The paper also gave a requirement analysis for the 
development and maintenance environment for various ARRSs, and presented an archi­
tecture of the environment we are developing. By using our development and mainte-
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nance environment, developers and maintainers can develop and maintain various practi­
cal ARRSs more easily. 

This work is ongoing work. There are many future works: to implement the common 
components, to modify an information security engineering environment (ISEE) as the 
development and maintenance environment, to implement the Theory Grid as a provider 
of fragments of logic systems. 
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