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A software reliability model specifies the general form of dependencies of the failure 
process on factors like fault introduction, fault removal and use. Because some of the 
foregoing factors are probabilistic in nature and operate over time, the software 
reliability models are formulated in terms of random processes. The paper investigates 
the anticipatory property of software reliability models, focusing on the geometric 
family of reliability models . 
Keywords: Anticipatory systems, software reliability, models . 

1 Introduction 

Reliability is the probability that a system functions without failure (a departure of 
system behavior in execution from user needs) for a specified time in a specified 
environment (Musa, 1998). To model software reliability one must first consider the 
main factors that affect it: fault introduction, fault removal, and use. Fault introduction 
depends primarily on the characteristics of the product and the development process. 
Fault removal depends on time, the operational profile (a complete set of functions with 
their probabilities of occurrence) used in test, and the quality of the removal activity. 
Use is characterized by the operational profile. 

A software reliability model specifies the general form of the dependence of the 
failure process on the mentioned factors. It is assumed, by definition, time-based. The 
possibilities for different mathematical forms to describe the failure process are almost 
limitless. We have restricted ourselves to considering well-developed models that 
practitioners have applied fairly broadly with real data, experiencing reasonable results. 

2 General Characteristics of Software Reliability Models 

A software reliability model usually has the form of a random process that describes 
the behavior of failures with respect to time. Specification of the model generally 
includes specification of a function of time, such as the mean value function ( expected 
number of failures) or failure intensity (failures per time unit). The parameters of the 
function are primarily dependent on fault removal activity and properties of the software 
product and the development process. Properties of the product include size, 
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complexity, and structure. The most significant product characteristic is the size of the 
developed code. Properties of the development process include software engineering 
technologies, tools used, and experience level of personnel. The time involved in the 
characterization of the models is a cumulative time. The origin may be arbitrarily set, 
frequently the start of the system test. 

Software reliability models almost always assume that failures are independent of 
each other through assuming that failure times are independent of each other or by 
making the Poisson process assumption of independent increments. This condition 
would appear to be met for most situations. Failures are the result of two processes: the 
introduction of faults and their activation through selection of the input states. Because 
both of these processes are random, the chance that one failure is influenced by another 
is quite small. 

Both the human error process that introduces defects into code and the run selection 
process that determines which code is being executed at any time are dependent on an 
enormous number of time-varying variables. The use of a random process model is 
appropriate for such a situation (Musa, 1998). There are two equivalent ways to 
describe the failure random process: the times of failures or the number of failures in a 
given period. 

Let T; and T; ' denote the random variables representing time to the ith failure and 
time between failures (i-1) and i, respectively. The realizations (specific instances) of T; 
and T;' are denoted by t; and t ; ', respectively. Let M(t) be a random process representing 
the number of failures experienced at time t. The realization of this random process are 
denoted m(t). The mean value function µ(t) is defined as: 

µ(t) = E(M(t)) 

which represents the expected number of failures at time t. It is assumed that the 
function µ(t) is a nondecreasing, continuos, and differentiable function of time t. 
The failure intensity function of the M(t) process is the instantaneous rate of change of 
the expected number of failures with respect to time, defined by: 

A-(t) = dµ(_t) 
dt 

3 Anticipatory Property of Reliability Models 

We will investigate the anticipatory behavior of software reliability models based on 
the projective validity property of the models. Projective validity is the capability of the 
model to project future behavior from present and past failure behavior. This capability 
is significant only when failure behavior is changing. Hence it is usually considered for 
a test phase, but it can be applied to the field when repairs are being regularly made. 

Software reliability engineering in current practice estimates just current failure 
intensity (Musa, 1998), which is effectively a projection of zero execution time. 
In analyzing the anticipatory property of models, we use a more stringent criterion of 
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nonzero projection time so that we select models with the potential to handle more 
demanding practice needs in the future. 

We use a simple number of failures approach, because it is easy to understand and 
apply. Time is characterized as execution time, , . Such a counting process is 
characterized by specifying the distribution of M( r), including the mean function µ( r) . 

Assume that q failures have been observed by the end of the test time rq. Failure data 
up to time re(~-rq) is used to estimate the parameters ofµ(,). Substituting the estimations 
of the parameters in the mean value function yields the estimate of the number of 
failures fl( rq) by 'q· This procedure is repeated for various values of r9• 

The projective validity can be visually checked by plotting the relative error 
(Jl(r) - q)/q against the normalized test time relr9. The error will approach 0 as Te 
approaches r9• If the points are positive (negative), the model tends to overestimate 
(underestimate). Numbers closer to 0 imply more accurate projection and hence a better 
model. 

The use of normalization enables one to overlay relative error curves obtained from 
different failure data sets. For an overall conclusion about the relative projective validity 
models, one can compare plots of the medians (taken with respect to the various data 
sets). A model is considered superior ifit yields the curve closest to 0. 

Any capability of a model for projection of software reliability in the system design 
and early development phases is extremely valuable because of the resultant value for 
system engineering and planning purposes. The projections must be taken through 
measurable characteristics (size, complexity, structure, etc.), the software development 
environment, and the operational environment. 

4 Analysis of the Anticipatory Property 

To illustrate the analyzing method, we considered the projective validity of the 
geometric family . We used the logarithmic Poisson execution time model, for the data 
set provided by Musa (Musa, 1979), shown in table 1: 

Table 1. Data Set Sample 

Reference 
Delivered 

Program 
Total test time Size of 

Nature of 
object Execution Calendar failure 

source 
instructions 

mers 
time (h) time (days) sample 

system 

Musa 
Real time 

(1979) 
21700 9 24,6 92 136 command 

and control 

The logarithmic Poisson execution time model has its mean value function given by 
the equation: 

1 
µ(r) = in (,¼0T + 1) 
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and intensity function given by the equation: 

.:lo 
.:l(r) = .:l

0
0r + 1 

The estimates of the model parameters Ao and 0 must be obtained first. The estimates Ao 
and 0 have been modeled as anticipatory values based on the failure data up to 
execution time values of 'te. These values range from 20 to l 00 percent, in increments of 
5 percent, of the total execution time 'tq = 24.6 execution hours. Table 2 summarizes the 
results. 

Table 2. Maximum Likelihood Estimates, Predicted Number of Failures and Relative 
Errors Based on the Logarithmic Poisson Execution time Model 

te/tq 
Ao 0 µ(rq) (µ(rq) - q) / q 

(failures per 
(%) 

execution hours) 
(failures) (%) 

20 40,5 0,0241 134 -1,78 

25 41,3 0,0236 136 0,19 

30 39,7 0,0251 129 -5,21 

35 41,2 0,0232 138 1,45 

40 40,4 0,0246 132 -3,25 

45 40,4 0,0241 134 -1,84 

50 40,8 0,0239 135 -0,86 

55 41,2 0,0239 135 -0,56 

60 42,9 0,0232 140 2,75 

65 41,6 0,0249 132 -3,22 

70 41,6 0,0241 135 -1,00 

75 43,7 0,0229 142 4,05 

80 43,2 0,0244 135 -0,63 

85 43,2 0,0241 136 0,14 

90 41,1 0,0255 129 -5,11 

95 43,1 0,0229 141 3,62 

100 43,1 0,0241 136 0,07 

The estimates Ao and 0 have been modeled as follows: 

where: 
~ == random(-5;5)/100 
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and 

Aup == 40,5 

0P ==0,0241 

are predicted values. 
For example, for the failure data up to 60 percent of the total execution time (that is, 

Te = 14.8 execution hours), Ao = 42,9 failures per execution hour and 0 = 0.0232 per 
failure. The fitted mean value function can be obtained by substituting these estimates 
into the mean value function as: 

1 c-~ ) 1 'jl(r) = 0 In iio0r + 1 == 
0

_
0232 

In [(42.9)(0.0232)r + 1] 

The failures experienced by the end of testing Tq can be projected by evaluating the 

fitted mean value function at T= Tq. The value obtained is 'ji(rq) = 140. Note that there 
were 136 failures experienced at the end of the testing. Therefore the relative error in 
projection can be computed as: 

µ(rq)- 136 140 -136 
136 = 136 = 0.0294 

In other words, for the 60 percent of the total failure data, the logarithmic Poisson 
execution time model, using the maximum likelihood estimation method, overestimates 
by 2.9 percent. Table 2 also shows the projected values and relative errors for execution 
time values of Te that are from 20 to 100 percent of 'q in increments of 5 percent. 

6,00 

100 120 

-4.00 -1---------+ 

·6,00 

Normalized execution time 

Figure 1. Relative error curve for logarithmic Poisson execution time model 
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Figure 1 shows the relative errors plotted against the normalized execution time 
( ,J Tq)- Note that the error will approach zero as •e approaches 'q· Positive values of 
error indicate overestimation; negative values indicate underestimation. Numbers closer 
to zero imply more accurate projection. Figure 1 proves that the model projects the 
future behavior well for this data set. The error curve is mostly within ± 5 percent. 

5 Conclusions 

The paper focuses on the investigation of the anticipatory property of the reliability 
models. We consider that the projective validity property of the reliability models might 
be used as a weak anticipatory property (Dubois, 2000). 

We have analyzed the projective validity property of the geometric family , the 
logarithmic Poisson execution time model , on a sample data set. The model seems to 
project the future behaviour well because the error curve is, in general, within ± 5 
percent when projection made after 50 percent of the total execution time. Furthermore, 
there is no specific pattern such as overestimation or underestimation. The results 
enable us to consider projective validity property as a good candidate to express the 
weak anticipatory property of a reliability model. 

The reliability models were analyzed from the anticipation point of view using an 
intrinsic property. It would be very useful to use an anticipation model to relate the 
execution time component parameters of a reliability model to characteristics of the 
software product, the development process, and the execution environment, this way 
enabling prediction of the parameters before execution. Once the software is executed 
and failure data is available, the parameters can be estimated statistically from the data. 

Prediction of the parameters of a reliability model is a difficult problem, and an open 
field of research. Although there are many proposed solutions (Bagchi, 2009; Mao, 
2009; Kushwaha&Seliya, 2006; Khoshgoftaar&Misra, 2003) there is still place for 
improvements. We believe that using a weak anticipatory model might improve the 
process. 
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