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Abstract Consistent structure of a Hamiltonian dynamical system with constant energy
is shown in terms of category theory. A colimit of the dynamical system corresponds
to a set of pairs of an initial state and a final state. Expansion of the colimit based
on a concept of internal measurement induces heterarchical structure in the dynamical
system and derives interaction between the system and the other one. Dynamical change
of potential functions derived from that expansion is relevant to a concept of emergence
based on the viewpoint of the Hamiltonian system.
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1 Introduction

Matsuno showed that a conventional viewpoint of physics restricts an understanding of
a concept of emergence that is found on complex systems such as biological or economic
systems, and he proposed a concept of internal measurement [1]. Internal measurement
is explained as a motion that carries on canceling conflicts between particles with local
perspective and correspond to a process of transformation from intensity into an extensive
quantity. The extensive quantity satisfies each physical law in hindsight.

In conventional science, if one analyzes a physical system, he replaces intensity with
extensive quantities. For example, given a Newtonian equation mv = F, one replaces the
force (i.e. intensity) F with an extensive quantity such as —kx since he cannot directly
deal with the intensity. Such replacement is a means to deal with the intensity analytically.
If the intensity and the extensive quantity have an one-to-one correspondence between
them, you have only to deal with the extensive quantity. Conventional quantitative science
is based on this viewpoint, but fixed experimental environment is necessary for such an
one-to-one correspondence.

A model for a physical system is constructed based on several hypothesis and experi-
mental facts. Specified experimental environment is necessary to keep reproducibility and
ability to control the system. And reproducibility and control ability are necessary to fit a
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mathematical form to the system. When the system is modeled in a deterministic math-
ematical form, we obtain sets of data represnting behavior of the system at an arbitrary
time. The model that is empirically constructed is regarded as a real rule to control the
system.

Modeling the system in a specified mathematical form needs actively ignoring unex-
pected influence that is not included in the model. For example, if one hooks his foot on
an experimental setup (i.e. unexpected influence), he works over the experiment to obtain
correct results. He does not rewrite the model but experiments again. Such unexpected
influence is the same kind of frame problem on artificial intelligence [2][3]. Ignoring un-
expected influence means separating the system from indefiniteness and expressing the
model by a closed form. A Hamiltonian system is one of the strictest form in such a
veiwpoint. A Hamiltonian constrains the structure of the phase space for the dynamical
system, and is generally dealt with as a ruler of a physical system.

On the other hand, reproducibility and control ability are incompatible with emer-
gence. If deviation of the data is observed in the system under the reproducibility and
the control ability, we conclude that the deviation is derived from fluctuation or improper
experimental conditions and the rules that administer the system are invariable. Le. the
system is regarded as a machine that works by the rules. By contrast, if the deviation
of the data is regarded as not fluctuation but a result of change of the rules, we find
emergence by the system itself.

The change of the rules corresponds to rewriting the model of the system. L.e. the
frame problem and the emergence are two sides of the same coin. If we find the invariable
rules and the fluctuation in the system, unexpected change of the system means the frame
problem. By contrast, if we find the variable rules in the system, the unexpected change
means the emergence. The concept of emergence obviously is not properties of specific
systems but lies between the system and its observer that assumes the specified rules.

Such change of the rules corresponds to change of potential functions and/or interac-
tion terms in Hamiltonian dynamical system. Thus, when we try to understand a concept
of emergence on a Hamiltonian system, one of the most important aim is a formalization
of dynamical change of the potential function. Such change of the potential is equal to
transformation of a manifold on a phase space.

Outline of our model is the following: A manifold on 3 phase space of a Hamiltonian
system is a trajectory of the system and is the whole of the probable states. We suppose
a quasi-Hamiltonian system that has an infinite number of small gaps on the manifold.
It means there are discontinuous points throughout the manifold that is regarded as
continuous under an approximation. The manifold with gaps corresponds to a system
with the frame problem. It is incompatible with the energy conservation law. When
we emphasize heterarchical structure of the system between a macro-level layer (i.e. the
energy conservation law) and a micro-level layer (i.e. a set of the vectors on the phase
space), interaction between the system and the outside of the system and transformation
of the manifold are required so that the system satisfies the energy conservation law. If
change of the rule (i.e., transformation of the manifold) is permitted, the frame problem
evolves into emergence of the system. A concept of heterarchy was presented by McCulloch
[4] and is relevant to emergence and robustness [5]-[8]. A heterarchical system is generally
characterized by a hierarchical system with interacting or switching between its each layer.
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In the present paper, a dynamical system is expressed in terms of category theory[13]-
[15]. Using two slice category induced from a colimit and a cocone, we show a structure
of a Hamiltonian dynamical system with constant energy. In a conventional Hamiltonian
dynamical system, the state satisfies the energy conservation law at an arbitrary time, thus
it has a static manifold. By contrast, our extended Hamiltonian system has a heterarchical
structure that is derived from inconsistency between the macro-level layer and the micro-
level layer, thus the system has a manifold with dynamical change along time.

2 Category of a dynamical system

In this section, we survey terms of category theory that is useful for an expansion of a
Hamiltonian dynamical system.

Definition 2.1 (coproduct) Suppose a category C and an index set A. A coproduct
[1 Ci is defined as an object with arrows {¢; : C; = [] Ci}ica such that it satisfies the
following condition: given g; : C; — A, there is an unique arrow h : [[C; — A such that
ho; = g; is commutateive for each i € A. Also h is expressed by [4;)iea : [[C; — A.

Definition 2.2 (coequalizer) A coequalizer of arrows g,h : A — B in a category C
is defined by an allow e : B — X such that it satisfies the following two conditions: i)
eog=-¢eoh ;ii) For an arbitrary arrow e’ : B — X' that satisfies €' o g = €' o h, there is
an unique arrow k : X — X' such that it satisfies koe = ¢'.

Definition 2.3 (cocone) Given a category C, its diagram C' and its set of vertexes V/,
a cocone of C' is an object X with a family of arrows v = {v; : C; = X}iey (expressed
by v : C' — X) that satisfies the following: For arbitrary arrows g : C; = C; on C, v
satisfies v; 0 g = v;.

Definition 2.4 (colimit) Given a category C and its diagram C', a colimit of C' is a
cocone u : C' — M that satisfies the following: For arbitrary cocone v : C' — X of C',
there is an unique arrow & : M — X such that ko y = v.

Definition 2.5 (pullback) In any category C, pullback of arrows g : A — C and
h: B — C is a pair of arrows p; : P — A and ps : P — B, that satisfies the following i)
and ii): i) gop; = hop,, ii) Givenany 2y : Z — A and 2z, : Z — B with goz; = ho 2,
there is a unique map u : Z — P with 2y = p, ou and 2, = py o u.

Remark 2.6 A x¢ B that is a subobject of A x B with projections 7, : Ax B — A and
m2: AX B— Bisapullbackof g: A— C and h: B — C, where A x¢ B = {(a,b)|a €
A,b € B,g(a) = h(b)}.

Definition 2.7 (slice category) A slice category C/X of a category C over an object
X € C consists of the following objects and arrows: objects are all arrows v; € C such
that cod(v;) = X, and an arrow ¢ fromv; : C; = X tov; : C; =+ X isg:C; - Cjin C
such that v; 0 g = v;.
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Remark 2.8 (composition functor) Composition induces a functor. For any slice
category C/A with objects {y; : C; = A} and arrows g: C; = C;, an arrow k: A — B
induces a slice category C/B with objects {¥; = ko y; : C; — B} and arrows g : C; = C;
and a functor K : C/A — C/B such that K(y;) = ko y; = v; and K(g) =g.

Remark 2.9 (pullback functor) Pullback induces a functor. For k: A — B in a
category C with pullbacks, there is a functor K* : C/B — C/A defined by (y; : C; —
B) = (p) : C; xg A = A) where y] is the pullback of v; along k.

Definition 2.10 (dynamical system and its category) Suppose a topological space
D and a continuous map f: D xR — D. Foreach ¢t € R, amap f; : D — D is defined by
fi(z) = f(z,t) (z € D). If a family of the maps {f:}+cr satisfies the following conditions
i) and ii), then (D, f) is called a continuous dynamical system on D: i) f,o fy = fi,v for
all t,¢' € R; ii) fo = 1p. The map f; means a time evolution operator of the dynamical
system. And for each ¢ € D, Gz = {fy(z)|t € R} is called a trajectory or an orbit through
.

The composition i) satisfies associative law, thus we obtain a category of the dynamical
system D that has the phase space D as its object and the map f; as its arrow. D is
obviously a subcategory of Top, thus a functor ' :D — Top is defined by an inclusion
mapping.

We use the following lemma to construct a colimit of a dynamical system.
Lemma 2.11 Given a map g: S — S’ and a surjective map h : § — S”, the following
two condition are equivalent.

1. For 2,y € S, h(z) = h(y) = g(z) = g(y).

2. There is a unique map ¢' : S” — S’ such that g = g’ o h.

§—1>g (1)

i £ 4
-

h 7

A

SII

Proof (2. = 1.) h(z) = h(y) = ¢'(h(z)) = ¢'(h(y)) = g(z) = g(y). h is a surjective
map, thus an arbitrary element in S” is expressed by h(z) (z € S) and its image of ¢’ is
g'(h(z)) = g(z). The fact is independent of x, thus ¢’ is unique.

(1. = 2.) hinduces a injection k: S/Ry, — S” and h = hor (7 : S — S/R,, is a canonical
mapping). h is a surjection, thus A is a bijection.

S B g9 5 S (2)

Nk

S/Rp

By the condition 1., g induces a map g: S/R, — S’ and g = gon. If ¢ is defined by
g =goh™, weobtain g=gor =gohloh=goh (ie. the condition 2.). &

50




We construct a colimit of a dynamical system D using the coproduct and the coequalizer

in D.

Construction 2.12 (colimit of diagram for a dynamical system) Suppose a
category of a Hamiltonian dynamical system D with constant energy. For arbitrary
t € R, objects in D are dom(f;) = D; and cod(f;) = D;. And an arbitrary vertex
of the diagram of D is represented by Dy. D is a subcategory of Top, thus there
are coproducts [ | D; and [] Dy in Top. For canonical injections ¢; : D; — [[ D; and
t; + Di — 1] Dy, there is an unique arrow ¢ : [[D; — [[Dx such that ¢ oy =
because of a definition of a coproduct. Again, for ¢; : D; = [[D;, ¢; : D; — [[ Dy
and ¢ o fy : D; = [[Dg, there is an unique arrow ¢ : [[D; — [] Dy such that
You =0 fi. ¢ and ¢ stand for ¢ = [i)icjdom(z)) and ¥ = [1; © filje(cod(f)} ter-
We can construct M = {{z;,z;}|x; € D;,x; € Dj,z; = fi(z:),t € R}. A surjection
n: 1 Dy = M;z;,x; — {z;,z;} satisfies no ¢ = 5oy where z; = fy(z;). Given a cocone
M' with v : D — M, it induces an unique arrow %' : [ Dy — M’ such that n/ o ¢; = v,
pot=vand p=17o¢ =17 o1 because of the definition of coproduct. And there is an
unique arrow k : M — M’ because of Lemma 2.11 (note that 7 is a surjection). Therefore,
7 is a coequalizer of ¢ and 1 and M with g = o is a colimit of D. The above facts are
expressed by the following diagram:

B (3)

M

? n

P 1
L,T TL,’ \ tk

b3 K \

D, M

The colimit M corresponds to a set of pairs of an initial state and a final state (i.e.
extent of a set of arrows {fi}wer). If D; = D; = D is satisfied, M corresponds to a
quotient set D/R¢ where Rg is a equivalence relation defined by zRgy : <= Gz = Gy
and Gz = {fi(z)|t € R}.

We show static structure between a micro-level layer (i.e. a set of the vectors on the
phase space) and a macro-level layer (i.e. the energy conservation law) in a Hamiltonian
dynamical system.

Suppose a Hamiltonian of a n-dimensional system with constant energy H(p,q) = E.
A category of the Hamiltonian dynamical system D consists of objects D = R?" 5 (p,q)
and allows {f; = e™*: D — D} where £ = 31 (52 22 — 2H.2) is a Liouville operator.
We obtain a colimit M of a diagram D’ of D by the construction 2.12. And if H(p,q) = E
then H(f,(p,q)) = E for arbitrary ¢, thus a set of energy values € = {E|E > 0, E € R}
with arrows {H : D — €} is a cocone of D'.

Two slice categories D/M and D/ € are induced from D, M and €. And a composition

functor K : D/M — D/€ is induced from k : M — € that uniquely exists.
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D D (4)

And the pullback of H along & induces a functor K* : D/& — D/M. it is expressed by
the following diagram:

DxeM 2 D (5)
™ D xeM

™™
H
M . 3 .

Thus a consistency between the micro-level layer and the macro-level layer in the Hamil-
tonian dynamical system is expressed by K : D/M — D/€ and K* : D/€ — D/M.

3 Extended harmonic oscillators system

3.1 Reactive Colimit

Introducing a concept of reactive colimit, we extend the diagram (2) and (3) into a heter-
archical structure. In the previous section, a colimit of the diagram of D was expressed by
M = {(x, fat(x))|x € D, At € R}. Now, replacing fa:(x) of the colimit with a indefinite
symbol "[0”, we define M,eee = {(x,0)[x € D}. We call M. a reactive colimit. A
concrete value of O of the reactive colimit is determined by the following way: Suppose a
phase space D; = R* 3 x; = (pt, ¢;) with a Hamiltonian H and D; 3 %X, = (p;, ;) that is
a phase space with an infinite number of small gaps. It means

Hp,g)=E, Hpo@)=E#E and (p,q) ~ (b, @) (6)

for arbitrary ¢. First, we replace 1p : D — Dj;(p,q) + (p,q) with Ip : D — D;(p,q) —
(P, q) and substitute X, = (py, ) for O. Then the left triangle of the diagram (5) com-
mutes. But there is no k : M, — € such that the diagram (2) commutes because of
Eq.(4). Secondly, through ”interaction” between the system and another system (the
interaction is defined in the following section), we obtain Xi;1a: = (Dirat, Gt+a:) and
H such that H(p, q:) = H(pH_At,qH_Ag) = E. And ft : Dy — Dy, pa; is defined by
(P> @) = (Bernt, Gevae) and H o fy = H. Finally, Substituting (Bi1a¢, gs1a¢) for [ again,
we obtain & : Mreact — &; (X¢, X¢rae) — E. The right triangle of the diagram (5) com-
mutes, thus we can construct its pullback. Le. consistency between a micro-level layer
and a macro-level layer is restored by the above process.

|

|

|

|

|

|

| Wj X
D H D
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1p, ft
—_ => ~
Dt interaction H D t+At
/nothing k A
M, react— — ~ T T T 7 | M, react ¢

(7

3.2 Dynamical change of angular frequencies

In this section, we define an extended harmonic oscillators system based on the view-
point of reactive colimit. The system has dynamical change of potential functions (i.e.
dynamical change of the angular frequencies).

Our extended harmonic oscillators system consists of IV sites. Each site is addressed
by the index ! and has the following hamiltonian;

1
Hyye = 5([1%1)»: + wa)tqu)t) (8)

where (p(l),,q(l)t) is a state and w); is an angular frequency at ¢. Each of the harmonic
oscillators has a form of isolated one, but particular interaction between them is defined
later.

procedure on micro-level layer We define a replacement;
(paye a@ye) = By dye) = (Paye + €@ DD 90y + € DY) &)
where €(;); and (Apg)e, Agy:) are defined by the following steps:
(i) Given At and {(Apu)-, Aguy-)|0 < 7 <t — At}, € is defined by the following;

_J i (Ry:e20)
“”“{ 1 (Ry: <0)

where i is imaginary unit,

t
R(z)t=/ ARy dt (10)
0
and
APy—at DG i—
AR(;)t — Pt Ait aut At. (11)

Moreover, we define a condition that is required for interaction between the sites j and &
by

€G)t = Ek)t (12)
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(ii) Suppose that the site j interacts with the site k. (Apg)e, Agye) and (Apgye, Agrye)
are defined by the following;

()t .
Apgye = — Ij(g—tAPmu ApGy =y (i DGy < Pye)
Dk .
Apgy = — p——ijij P(k)ts Bpy = k) (if Py < Piye) (13)

L"(23‘)cq(j)t

A _ T
S w(zk)tq(k)‘

Adgy, Ay = qggey (I Wi < Wiy

2
Wiy Akt .
Agyy = —————w((g: . Aqye,  Dae = oginy  (if wiigeqimye < wiijpediiye) (14)
gt ¢

where oy, k) and o, k) are Gaussian-distributed random numbers with mean zero and
small variance.
A pair (Apye, Aqqy:) satisfies the following;

1 1
AEwe = 5(Aply: + winidalye) < By = 5 (lye + wiyeafye) (15)

thus we can approximately ignore €7 AE), and obtain the following;

1, _ _ 1

5(1’(1)3 + w(zz)tfl(t)f) ~ By + 5(1)§W(1)t (16)
where

Waye = 2(paysApye + wiyedmeAaye)- (17)

And the conditions (i) and (ii) derive;
ea Wit + €W = €W + Wigye) = 0. (18)

procedure of macro-level layer First, we calculate an entropy of N’ sites isolated
harmonic oscillators system based on a micro-canonical ensemble of classical statistical
mechanics. Suppose a Hamiltonian of the system;

N/
1 ;
H(p,q) =) 56 + Wi ay)- (19)
=1
Volume ¥ of the N'-dimensional hypersphere of the phase space such that H(p, q) < Euta
is;

1 o it
T = W/ dp" dg" (20)
H(p,q)<Eiotal
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thus the surface area Q(E, N') of the hypersphere such that H(p,q) = Eipa is;

1

UE,N') % ——— G s B g 1 (Emv (21)

O0Eotal F(N N\ hw

where h = 277 is the Planck constant and I' is the gamma function. In a conventional
method, one calculates the entropy

S=kgnQ (22)

under N' > 1 and Stirling’s Approximation In ['(N’) ~ N'ln N’ — N’. But now, using the
Eq.(19) and Eq.(20) under N’ = 1, we define an entropy-like quantity S for one harmonic
oscillator;

S=kglnQE,1)=kpln E— (23)
hw
Note that there is an one-to-one correspondence between E and S for a fixed w. S is no
longer an extensive variable, but we still call S entropy.

Now, we suppose that angular frequencies w;); and w), are transformed into Dy
and @), by interaction between the sites j and k. With this process, entropy S(,)t and
S(x): and energy E(j); and E(xy of the sites j and k are transformed into S(,)t, S(k)t, E'(,)t
and E(k)t

Suppose these energy and entropy satisfy the conservation law;

Egy + By = By + Ee (24)
Sty + Swye = Siiye + Stine- (25)
Because of Eq.(21) and Eq.(23), we obtain;

By gy gy gy

In —
By Egye howye By

= 0. (26)
Eq.(22) and Eq.(24) derive the following second-degree equation for Ep;
o - W(jyea(
B, — (Bigye + Byt  Bgye + 2 CL B By =0 27
e — (Egye + Ewye) 0¥ ey DB (27)

where | = j, k. The solutions of Eq.(25) are;

. 1
Ewe = 5(Egy + Ewye) £ Unye (28)
where
W)t k)t
Ui = o Biis 4+ Bign)? = 49 W g B 29
Wt \/( (e + Ewe) ey e (29)

I @)y = Wigpwieye then Eqy = By, Bgey-
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mixture of the micro-level and the macro-level The energy conservation law in-
cluding E(;): and W, is the following;

Ege + Eop = Ege+ fcm%Wmt + By + 6(k)%W<k)t
= Byt E(j)c%Wmt + e + f(k)%W(k)t
= é(Emt + By) = %U(j)t + f(j)téth
+%(E(j)t + Beye) = %U(k)t + fuc)z%W(k)t-
(30)

This is a strict equation because of Eq.(16).
Eq.(28) derives a mechanism such that gaps on the phase space derives transformation
of the manifold as the following;

W = Uy (31)
Salving Eq.(29) for W tW(k)es

wiiwwel (B + Bwye)® — ei Wi}

;
i
|
|
|
|
|
|
‘ D5 (32)
; Wi =
| e 4B Byt
|
: and separating @(;):@): into @) and @), we obtain the following;
j
| V (EGy + Egye)? — et Wayt
| Doy = w g 33
| e 0t 2, (33)
|
1 And we define Eyepn; and w(yt+at by the following;
| 1
| Eytrar = §(E(j)t + Ekyt) (34)
| wnyerar = Gyt (35)
| thus we obtain the state at t + At;
Pot+ar = —/ 2E@pirarsinwgyag(t + At) (36)
V2E@pirat
quyt+ar = ——L-—— cos uJ([)H.Ag(t + At) (37)
Wayt+at

We call the system defined in this section EHO system (eztended harmonic oscillators
system), and call the conventional harmonic oscillators system HO system (harmonic
oscillators system).
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4 Results

We calculate time evolution of the EHO system defined in the section 3.2 under the
following conditions: i) The number of sites is V = 20. ii) Time interval for the calculation
is defined by A? = 0.005. iii) For each site, Ego = 50.0, wpo = 1.0 and (puyo, guyp0) =
(10.0,0.0) are defined as the same initial conditions. iv) At each time step, an site j is
coupled with the other site & that |g(;): — g(x)¢| becomes the minimum, and interacts by the
procedure deﬁned in the previous section. v) Each of the variances of o, jx) and oy jx) is
given by 02 = 2.5 x 1073.

Fig.1 shows the typical time series of g); of one site on the EHO system. The vertical
axis is on a range —50.0 < ¢ < 50.0 and the iteration is calculated for 4 x 10° steps. Each
site has various time series of g(;; and shows intermittent motion of the angular frequency
wq)e- We assume that a mechanism of Eq.(31) derives the intermittent motion of wgy; and
is related to multiplicative noise [11].

_ LA u\/\f\/\ﬁﬂ
R

Fig. 1: Time series of g(;); of one site on the EHO system. The vertical axis is on a range
—50.0 < ¢ < 50.0 and the iteration is calculated for 4 x 10° steps.

The EHO system has time evolution of the potential functions (i.e. of the angular
frequencies). Fig.2 shows time series of wg)y of NV sites. The vertical axis is log;q(wye)
and the iteration is calculated for 5 x 10° steps. In a HO system, the state satisfies the
energy conservation law at an arbitrary time, thus it has a static manifold. By contrast,
The EHO system has a heterarchical structure that is derived from inconsistency between
the macro-level layer and the micro-level layer, thus the system has a manifold with
dynamical change along time.

Moreover, in a HO system, its time evolution operator is a canonical transformation.
It is important to see whether the time evolution of the EHO system is a canonical
transformation. In a HO system, its time evolution operator fa; is expressed by the
following matrix;

e—LAt 0 eiwAt 0
far= ( 0 e~ LAt ) = ( 0 eiwdt ) (38)
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logio (@we)

1x10° Ix10° I 4x10 5x10°
Time (Steps)

Fig. 2: Time series of w), of 20 sites. The vertical axis is log,(w():) and the iteration is
calculated for 5 x 10° steps.

where L is the Liouville operator for the system. By contrast, the time evolution operator

for each site in the EHO system, f(l)At Dy — D(,)HA‘, (a@ye, Poy) = (Gye+ae Pay+at)s
is expressed by the following;

v [Bwera iwat 0
rs = Wyerae Eqy: 39

f(l)At 0 E(1)¢+NeiuAt ( )
Eqy

The conditions of the canonical transformation for f(,)m are expressed by the following;

9 % _ _9P
dq
P 8p ’ 8P 8q

<  Egawoirar = Egway

where (g,p) = (qu, pay) and (Q, P) = (gue+ae P@ye+ae)- Therefore, we can evaluate the
degree of the satisfaction of the conditions quantitatively. The assessment function AC(),
is defined by the following;

Ay = t Eutratwnyiras — Egpway

P (40)

The more the value of AC(y; is small, the more .ﬁl)At approaches the canonical transfor-

mation. If AC(); = 0 then f()a; is the canonical transformation strictly.
Fig.3 shows time series for (AC();) of N sites where

t

\

\

]

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

} fwyac is a canonical transformation <= { N "’g % _
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| 1

\

| (ACuy) = Z ;ACU)T (41)
| T=t—nAt

| and we set n = 10° in this case. The vertical axis shows the values of log;o((AC()e)) and
the iteration is calculated for 5 x 10° steps. Time evolution of some sites satisfies the
canonical transformation, and that of the others breaks the canonical transformation; i.e.
we can see the differentiation into the motions in the classical dynamics and that ones in
the non classical dynamics.

58




logio (ACwt)

107

1x108 2x10° 3x10° 4x10° 5x10°
Time (Steps)

Fig. 3: Time series of (AC(;),) of 20 sites for 5 x 10° steps. The vertical axis shows the
values of log,,((AC())). The more AC), is small, the more time evolution of the site [,
fwat, approaches the canonical transformation.

5 Conclusion

In a dynamical system, intent means a function defining time evolution of states and
extent means a pair of an initial state/input and a final state/output. Such a pair of
the intent and the extent constructs a micro-level layer of the dynamical system. We
proposed a system including dynamical change of the intent that is derived from extent
with indefiniteness. If we can approximately ignore the indefiniteness of the extent, the
sequence of (input-function-output) is consistent. By contrast, if we cannot ignore the
indefiniteness of the extent, inconsistency between the intent and the extent influences
the macro-level layer such as energy or entropy, and the process of the change derives the
dynamical change of the intent. We introduced a concept of reactive colimit to express
such extent with indefiniteness. In addition, such a process of reconciliation against the
inconsistency requires interaction between the system and the outside of the system. We
applied it to a harmonic oscillators system and expressed emergence as dynamical change
of angular frequencies of the system.
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