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Abstract Consistent structure of a Hamiltonian dynamical system with constant etrerg:y
is shown in terms of category theory. A colimit of the dynamical system corresponds
to a set of pairs of an initial state and a ûnal state. Exparuion of the colimit based
on a concept of internal measurement induces heterarchical structure in the dynamical
system and derives interaction between the system and the other one. Dynamical change
of poteutial functions derived from that expansion is relevant to a concept of emergence
ba.sed on the viewpoint of the Hamiltonian system.
Ke5rwords: Internal measurement, Category theory, Hamiltonian, Emergence, Hetera^r-
chy.

1 Introduction

Matsuno showed that a conventional viewpoint of physics restricts an understanding of
a concept of emergence that is found on complex systems such as biological or economic
systems, and he proposed a concept of internal measurement [1]. Internal mea.surement
is explained a.s a motion that carries on canceling conflicts between particles with local
perspective a.nd correspond to a process oftransformation from intensity into an extensive
guantity. The extensive quantity satisfies each physical law in hindsight.

In conventional science, if one analyzes a physical system, he replaces intensity with
extensive quantities. For example, given a Newtonian equation rnv = F, one replaces the
force (i.e. intensity) F with an extensive qua.ntity such as -kx since he cannot directly
deal with the intensity. Such replacement is a means to dea^l with the htensity analytically.
If the intensity and the extensive quantity have an one-to-one correspondence between
them, you have only to deal with the extensive quantity. Conventional quantitative science
is based on this viewpoint, but fixed experimental environment is necessa.ry for such an
one-to-one correspondence.

A model for a physical system is constructed ba.sed on several hypothasis and experi-
mental facts. Specified experimental environment is necessary to keep reproducibility and
ability to control the system. And reproducibility and control ability are necessary to fit a
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mathematical form to the system. When the system is modeled in a deterministic math-
ematical form, we obtain sets of data represnting behavior of the system at an arbitrary
time. The model that is empirically constructed is regarded as a real rule to control the
system.

Modeling the system in a specified mathematical form needs actively ignoring unex-
pected influence that is not included in the model. For example, if one hooks his foot on
an experimental setup (i.e. unexpected influence), he works over the experiment to obtain
correct results. He does not rewrite the model but experiments again. Such unexpected
inffuence is the same kind of frame problem on artificial intelligence [2][B]. Ignoring un-
expected influence means separating the system from indefiniteness and expressing the
model by a closed form. A Hamiltonian system is one of the strictest form in such a
ræiwpoint. A Hamiltonian constrains the structure of the phase space for ùhe dynanaical
sJrstem, and is generally dealt with as a ruler of a physical system.

On the other hand, reproducibility and control ability are incompatible with emer-
gence. If deviation of the data is observed in the system under the reproducibility and
the control ability, we conclude that the deviation is derived from fluctuation or improper
experimental conditions and the rules that administer the system are inva^riable. I.e. the
system is regarded as a machine that works by the rules. By contra.st, if the deviation
of the data is regarded as trot fluctuation but a result of change of the rules, we find
emergence by the system itself.

The change of the rules corresponds to rewriting the model of the system. I.e. the
frame problem and the emergence are two sides of the same coin. If we find the invariable
rules and the fluctuation in the system, unexpected change of the system means the frame
problem. By contrast, if we find the variable rules in the system, the unexpected change
means the emergence. The concept of emergence obviously is not properties of specific
Eystems but lies between the system and its observer that assumes the specified ru1es.

Such change of the rules corresponds to change of potential functions and/or interac-
tion terms in Hamiitonian dynamical system. Thus, when we try to understand a concept
of emergence on a Hamiltonian system, one of the most important aim is a formalization
of dynamical change of the potential function. Such change of the potential is equal to
transformation of a manifold on a pha.se space.

Outline of our model is the following: A manifold on a phase space of a Hamiltonian
system is a trajectory of the system and is the whole of the probable states. \{'e suppose
a quasi-Hamiltonian system that has a.n infinite number of small gaps on the manifold.
It means there are discontinuous points ùhroughout the manifold that is regarded as
continuous under an approximation. The manifold with gaps corresponds to a system
with the frame problem. It is incompatible with the energy conservation law. When
we emphasize heterarchical structure of the system between a macro-level layer (i.e. the
energy conservation law) and a micro-level layer (i.e. a set of the vectors on the phase
space), interaction between the system and the outside ofthe system and transformation
of the manifold are required so that the system satisfies the energy conservation law. If
change of the rule (i.e., transformation of the manifold) is permitied, the frame problem
evolves into emergence of the systern. A concept of heterarchy was presented by McCulloch
[ ] and is relevant to emergence and robustness [5]-[8]. A heierarchical system is generally
characterized by a hierarchical system with interacting or switching between its each layei.
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In the present paper, a dynamical system is expressed in terms ofcategory theory[13]-
[15]. Using two slice category induced from a colimit and a cocone, we show a structure
of a Ha,miltonian dynamical system with constant energ"y. In a conventional Hamiltonian
dynamical system, the state satisfies the energy conservation law at an a,rbitrary time, thus
it ha.s a static manifold. By contrast, our extended Hamiltonian system ha^s a heterarchical
structure that is derived from inconsistency between the macro-level layer and the micro-
level layer, thus the system has a manifold with dynamical change along time.

2 Category of a dynamical system

In this section, we survey terms of category theory that is useful for an expansion of a
Hamiltonian dynamical system.

Deûnition 2.1 (coproduct) Suppose a category C and an inder< set À. A coproduct

[Jq it defined as an object with arrows {ti: Ci + f[G]ier, such that it satisfies the
following condition: given g; : C; -+ A, there is an unique arrow à r LI Ci -l / such that
hoti= gi is commutateive for each z e Â. Also à is expressed by [rr],.1 : f[Q -+ A.

Definition 2.2 (coequalizer) A coequalizer of arrows g,h: A -+ B in a category C
is defined by an allow e : B -+ X such that it satisfies the following two conditions: i)
eo g :e o â ; ii) For an arbitrary arrow e' : B -+ X' that satistes e' o g =e' o à, there is
an unique anow lc : X -+ Xt such that it satisfies lc o e = e'.

Deûnition 2.3 (cocone) Given a category C, its diagram C' and its set of vertexes tr/,
a cocone of C' is an object X with a family of arrows u : {vi : Ci I X}t v (expressed
by u : C' -+ X) that satisfies the following: For arbitrary arro\rtls g : C; -r Ci on C, u
eatisfies vjog=vi.

Deûnition 2.4 (colimit) Givm a category C and its diagram C', a colimit of C'is a
cocoDe p,: C' -+ M that satisfies the following: For arbitrary cocone u : Ct -+ X of Ct,
tbere is an unique arrow ,t : M -+ X such that & o p: u.

fleûnition 2.5 (pullback) In any category C, pullback of arrows g : A -+ C and
h: B -> C is a pair of arrows 11'. P -+ A and p2: P -+ B, that satisfies the following i)
and ii): i) g o pt : h o pz, ii) Given any zr i Z -+ A a\d 22 : Z -+ B with 9 o zr = h o zzl
there is a unique map u: Z -+ P with zy:pro1t, and z2:hor.t.

Remark 2.6 Axs B that is a subobject of Ax B with projectiors 7r1 i Ax B -+ A arrd,
i r 2 :  Ax  B  -+  B  i s  apu l l back  o f  g :  A  - rC  and  h ;  B  -+  C ,  whe re  AxsB  =  { (o ,ô ) l a  e
A , b e B , g ( o ) : h ( ô ) i .

Deûnition 2.7 (slice category) A slice category C/X of. a category C over an object
X e C consists of the following objects and arrows: objects are all arrows z6 € C such
tha t  cod (z ; ) :X ,  and  an  a r ro l vg  f r om u i :C i1X  tov i :C i -+  X  i sg  tC i+  C3  i n  C
such that ui o !1 : vr.
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Remark 2.8 (composition functor) Composition induces a functor. For any slice
category C/A with objects {ttt , C, -+ ,4} and arrows g : C; -+ Ci, a\ arrow k : A -+ B
induces a slice category C/B with objects {vi: kop,t: Ci 1B} and ar1owe g: C; + Ci
and  a func to r  K :C /A -+C/B  such  tha t  K (p r ) : kop ; :  u i and  K (g )  -  g .

Remark 2.9 (pullback functor) Pullback induces a functor. For k : A -r B in a
category C with pullbacks, there is a functor K' : Cf B -+ CIA defined by (ui: Ca +
B) ,+ U/;: C; x s A -+ A) where p', is the pullback of z; along &.

Definition 2.L0 (dynamical system and its category) Suppoee a topological space
D and acontinuousmap "f : DxlR -+ D. Foreach t€ lR, amap fr: D -+ Disdefinedby
.ft(r) : f (r,t) (r € D). If a family of the maps {/r}r.o satisfies the followiug conditions
i) aud ii), then (D, /) is called a continuous dynamical system on D: i) Ito fr : f1u,x for
allt,f € lR; ii) fo: Lo" The map fi means a time evolution operator of the dynamical
system. Andforeachc€ D,Gr:  { / r (c) l t€R} iscal ledatra jectoryoranorbi t through
r.

The composition i) satisfies a.ssociative law, thus we obtaiu a category of the dynapical
system D that has the phase space D as its object and the map /1 ae its armw. D is
obviously a subcategory of Top, thus a functor r' :D + Top is detned by aa iaclu.sion
mapping.

We use the following lemma to construct a colimit of a dynamical system.

Lemma 2.11 Given a map 9 : S -+ S' and a surjective map ft, : ,5 -+ Sr, the following
two condition are equiralent.

l. For r, g e S, h(r) : h(a) + g(r) : g(y).

2. There is a unique map g' '. St' -+,S' such that g : g'o à.

9 ^ ,
+ ù ,

7 9 '

Proof (2. =+ 1.) à(o) : h(y) =+ g'(h(r)) : s'(h(y\) + s@): s(U). lr is a surjective
map, thus an arbitrary element in S" is expressed by â(r) (r e S) and its image of g' is
S'(h(r)): S@).The fact is independent of x, thus gris unique.
( 1 . + 2 . )  à i n d u c e s a i n j e c t i o n  h : S l R n - + ^ 5 / ' a n d  h = h o r  ( z r : . 9 - r , 9 / r î r , i s a c a n o n i c a l
mapping). h is a surjection, thus À is a bijection.

By the condition 1., g induces a map t : S/R6-+,S' a.nd g = g or. If y' is defined
g'= go h-1,  we obta in g:  gal r  = goh- t  oh:  g 'oh ( i .e .  the condi t ion 2. ) .

S , , *  
h  

S  
s  - 5 ,

\ l"r/
sl Ro

(1)
. l
A I

Y
stl

(2)

by
I
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We construct a colimit of a dynamical system D using the coproduct and the coequalizer
in D.

Construction 2.12 (colimit of diagram for a dynamical system) Suppose a
category of a Hamiltonian dynamical system D with constant energy. For arbitrary
t € lR, objects in D are dom(f1) = Dr ând cod(/r) - Di. And an arbitrary vertex
of the diagram of D is represented by D1. D is a subcategory of Top, thus there
are coproducts f[ D; and ll D6 in Top. For canonical injections L; : Di -l f[ D; and
t; :. Dt + UDr, there is an unique arrow / ,IJ.D1 + L[Dr such that ôo c; : r;
because of a definition of a coproduct. Again, for q : D. -+ U D;, L5 | Di -+ lf D3
a;nd ti o fl : D6 + UDr, there is an unique arrow ry' , LID; -+ L[Dl such that
r [ot ; :  L jo f t .  $  andt !  s tand ford:  [q ] le{aom(f i ) }  and rh: I t i  o . f r l ie{"oa(n)} , ten.
Wecancons t ruc t  M  -  

{ {a ; , r : } l s i  e  D ; , î i e  D i , r l :  f ; ( o ; ) , t eR} .  Asu r j ec t i on
\ t ïJDr 4 M;x i , ï iv-+ { r ; , r7}  sat is f ies Toô =11 o l t  where x i :  f { r ; ) .  Given acocone
M' with v :D -+ M', it induces an unique a,rrow 7' tUD* -+ M'such that rl o Li: t/,
pot;: u and p:T'o(b:rl oû because ofthe definit ion ofcoproduct. And there is an
unique arrow A : M -+ .111' because of Lemma 2.11 (note that 11 is a surjection). Therefore,
4 is a coequalizer of Q andt! and M with p:ToL is acolimitof D. The above facts are
expressed by the following diagram:

,i'--*
i lb , - ràIJD.LM
"J : -i" -)---." i-
Di  

t '  -D i  
-Mt

(3)

The colimit M corresponds to a set of pairs of an initial state and a final state (i.e.
extent of a set of ârrows {/r}r.n). If D; : Dj : D is satisfied, M corresponds to a
quotient set DIRç where R6 is a equivalence relation defined by rRçy: # Gx:Gy
and Gr : {/,(r)lr e Ri.

We show static structure between a micro-level layer (i.e. a set of the vectors on the
phase space) and a macro-level layer (i.e. the energy conservation law) in a Hamiltonirn
dynamical system.

Suppose a Hamiltonian of a n-dimensional system with constant energr H(p,S) = E.
A category of the Hamiltonian dynamical system D consists of objects D : Rh : (p, q)
and allows {ft : e-Êt : D -+ D} where 4 : Ill (#&- #&) is a Liouvilleoperator.
We obtain a colimit M of a diagram D' of D by the construction 2.12. And if II(p, d : E
then /{(fi(p,q)): E for arbitrary t, thus aset of energy values € : {ElE à 0,,E e R}
with arrows {H : D -+ €} is a cocone of D'.

Two slice categories D I M andD I t. areinduced from D, M and €. And a composition
functor K :DlM -+DlÉ. is induced from & : M -+ € that uniquely exists.
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(4)DDD

/l\,/ D \IT

/ ) \
M ---:--e

t\' l 
,/o

+ /p

-sÈ "1)"
M

And the pullback of .E[ along À induces a functor K' : D lê. -+ D lM . it is expressed by
the following diagram:

D  x ç M

nx "U tP

TD
(c)

yr

Thus a consistency between the micro-level layer and the macro-level layer in the Hamil-
tonian dynamical system is expressed by K :D/M -+D/ê. and K' :D/É -+D/M.

3 Extended harmonic oscillators system

3.1 Reactive Colimit

Introducing a concept of reactiue colimit, we extend the diagram (2) and (3) into a heter-
a.rchical structure. In the previous section, a colimit ofthe diagram ofD was expressed by
M = t(x,/or(x))l* e D,Lt e IR]. Now, replacing /61(x) of the colimit with a indefinite
symbol "[", we defiie M,"o"1 : {(x,tr)lx e D}. We call M,*a a reactive colimit. A
concrete value of tr of the reactive colimit is determined by the following way: Suppose a
phase space Dt : W ;l x1 : fur,qt) with a Hamiltonian I/ and Dt 3 & : (Ft,Qùthat is
a phase space with an infinite number of small gaps. It means

H(pr,qr) : E, H(Ft,1t) = E + n and (pt,qt) x (Ft,1t)

for arbitrary t. First, we replace lp : D -+ D;(p,q) *+ (p,q) with Ip : D -+ D;@,q\ r+
(B,S] aod substitute xt: (pt,q1) for tr. Then the left triangle of the diagram (5) com-
mutes, But there is no ,b I M,eo,t -+ € such that the diagram (2) commutes because of
Eq.(a). Secondly, through "interaction" between the system and another system (the
interaction is defined in the following section), we obtain Îr*a, : (Fr+al,dt+ar) and
.É such that H(p6,q) = É(Fr+at,dt+rt) : E. And i ; Dt -+ ôr*o, i" detned by
(pt,qt) r+ (Fr+x,ôr+ar) and fr "fr: I/. Finally, Substituting (lr*ar,Q'r*4) for El again,
we obtain lc : M".o.1 + €; (x1, ir+ar) *' E. The right triangle of the diagram (5) com-
mutes, thus we can construct its pullback. I.e. consistency between a micro-level layer
and a macro-level layer is restored by the above process.

(6)
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H

MreoaLê

(7)

3.2 Dynamical change of angular frequencies

In this section, we define an extended harmonic oscillators system based on the view-
point of reactive colimit. The system has dynarnical change of poteutial functions (i.e.
dynamical change ofthe angular frequencies).

Our extended harmonic oscillators system consists of N sites. Each site is addressed
by the index I and ha.s the following hamiltonian;

I

Hlqt: 
'r(tçy+ 

r'çyof,y) (S)

where (pp;1,Atrll) is a state and r.rp;r is an angular frequency at t. Each of the harmonic
oscillators ha.s a form of isolated oae, but particular interaction betweea them is deûned
later.

procedure on micro-level Iayer We define a replacement;

r'ptrlr,s(Dt) *+ (p14t, q'tor) : (p1,1, f ep;rAP1r;r, g14t * eplrAe14r) (9)

where e14r and (Ap141,AQ(r)r) a,re defined by the following steps:

(i) Given At and {(Aptrl", Aqtrl,)10 I r 4 t - At}, e1rlr is detned by the following;

Dt

t\
lD '
l , /

, : . " ( lo ih ' is- - -c

\
\

ôr*o,

/a

interaction

-  _ l  i  ( ^ 8 1 1 1 1  > o )€(r)r=tr  in i , r ,<ol
where i is imaginary unit,

ft
Rç1t: 

Jo 
A'Rotdt

and

^ D ap(,)t-araqo)r-4,
zrnç1t = 

A,

(10)

(11)

Moteover, we define a condition that is required for interaction between the sites j ard k
by

€U)r :  €(h)r .
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(ii) Suppose that the site j interacts with the site È.
a"re defined by the following;

(ApCùr, A,q1ù and (Ap111s, Agtrlr)

ap$),

ap(il,

aq(r), =

-Wro"o"
-Wô'r,rr',

P(i)t

-ffion'u"

ap1t: ab1k)

Lp61t = aç,1r,1

AÇ1yp : o1q;r1

( if polr < Pu'lt)

( if ptrtr S pol) (13)

(14)

and

A pair (Âp(r)r, Aq1111) satisfies the following;

AEç1t = 
|er7,r, + wl,ra,ql,r1< 8ro, : Tf?ry + ,l,ydçy) (15)

thus we can approximately ignore eçfiA,E1t1t and obtain the following;

'rtnur? n rl,youi) x, Eç1t * uu',|wu,,

where

Wlqt = Z(ptrlrLptD, -| c,flytg1r;tA41r1t).

And the conditions (i) and (ii) derire;

e1tw(il t eç4tWp4t: e6t(Wçi1t i W61) : A.

procedure of macro-level layer First, we calculate
harmonic oscillators system based on a micro<anonical
mechanics. Suppose a Hamiltonian of the system;

{ r
1/(p, q) : I ;bb, + r'çpl1).

j= l  
-

(16)

(17)

(18)

an entropy of N' sites isolated
ensemble of classical statistical

(1e)

Volume X of the N'-dimensional hypersphere of the phase space such that II(p, q) S Etotot
is;

t: # I,,o,o,ru*,.,

(if w2çyqi1t S crflpclrtr)

I

^ QintQp )t ' ,Lq1t = -iffLqç4r, Ag(e)r = o(q;1e) ( if of6lt9(r)r 3 wfil$lotl
wU)tYu)t

where ob;e) and a1q,3ry are Gaussian-distributed random numbers with mean zero
small va.riance.

dpN'4nr't'
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thus the surface area fl(E, N') of the hypersphere such that f/(p, q) = Er"tor is;

â' l  I  /  Ef f i " t \N'
Q(E,Iù') = #-Erora, = FTii i l :y I (21)

oororltD'o'ot 
= 

f(rv1 \ h, )

where à = 2rh, is the Planck constant and I is the gamma function. In a conventional
method, one calculates the entropy

,S = &e lnfl (22)

under N' ) 1 and Stirling's Approximation ln f (N') * N'ln M - N'. But now, using the
Eq.(19) and Eq.(20) under N' = 1, we define an entropy-like quantity ,9 for one harmonic
oscillator;

s : ka ln Q(8, t) :  kan 
#. 

(23)

Note that there is ân one-to-one correspondence between E and S for a fixed a.r. ,S is no
longer an extensive lariable, but we still call ,S entropy.

Now, we suppose that angular frequencies uç1t and uçqt are transformed into rigp
and r.r1r1r by interaction between the sites j and &. With this process, entropy_Sgp and
51*yr and energy Eg11 and E1r;r of the sites j and k a,re transformed into Stif, StuX, Etrl,
and Q*1r.

Suppose these enerry and entropy satisfy the conservation law;

Eç1t*  E*1 t :  E1 i1 t t '  E6 t

SgX + {ot : S1;y +,S1*p.

Because of Eq.(21) and Eq.(23), we obtain;

^ E$), furù, Err)t â,rtr)r _ n
"' ht (j), E\j), hitgtrffi 

: u'

(24)

(25)

(26)

(28)

(2e)

Eq.(22) a^nd Eq.(2a) derive the following second-degree equation for EtrXi

E?,v-(8151t+E1ry)Êçy**Y\rr i)tE(t)t:0 (27)
u$\tufty

where I : j, È. The solutions of Eq.(25) are;

- l

Eqtlt: 
,@<tlr+ 

E6y) tUlqt

where

(Jç1t = 
1f tu,o,+ Eç,p)2 - nffi#rri1tE6yt.

lf. uç1tu1tc1t = a(iltag)t, then E1r1r = Eçyt, E6'1t.
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mixture of the
cluding E14t and

Eç1t * Eglt

micro-level and the macro-level The energy conservation law in-
WgSt is the following;

Eçi1t* rr^rlWrr,+ Eç1t+ eç1f;W6y

E1i1t'r rrurf,wrrr+ E6yr + eç1f,W6y

f,@ru,+ E1r1t) *iurr, + e111tLrw111t

+Lr{o<,t, + E<xy) +f,us1, + r1o1rf,w61r.
(30)

This b a strict equation because of Eq.(16).
Eq.(28) derives a mechanism such that gaps on the pha.se space derives transformation

of the manifold as the following;

egltWglt - tU(t\t.

Solving Eq.(29) lor ù1i1tù61t,

î. -, _ u1iy1w1x1t{(E1i1t * Eçqt)2 - ,çl?Wufi}
wu)tw(k) t  _

and separating uliltwq*1t into rl171r and r^:1rp, we obtain the following;

(32)

aglt:  uçt1tffi
2Eg1t

(3i)

(33)

And we define E14r+ar and crOr+ar by the following;

I
E(r)r+a, = ;(Eç>, + Errv)

u(r)r+at : ûr(t)t

thus we obtain the state at t * At;

P(ùt+at : -/1E(qr.Nsinu14r1ar(t* At)

J'qt)t+N
Ç(r) t+t t  = #coscu( . ) r+ar( r+At) .u(t)r+Ar

'We 
call the system defined in this section EHO system

system), and call the conventional harmonic oscillators
oscillators system).

(eutended harmonic o s cillators
system HO system (harmonic

(34)

(35)

(36)

(37)
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4 Results

We calculate time evolution of the EHO system defined in the section 3.2 under the
following conditions: i) The number of sites is N : 20. ii) Time interval for the calculation
is defined by At : 0.005. iii) For each site, Qlys : 50.0, r,l(r)o : 1.0 and (p140, Alrp) :
(10.0,0.0) are defined as the same initial conditions. iv) At each time step, an site j is
coupled with the other site fr that lg17y1- q(r)tl becomes the minimum, and interacts by the
procedure defined in the previous section. v) Each of the variances of oç,,7.*; and a1o;r; is
given by o2 =2.5 x 1.0-3.

Fig.1 shows the typical time series of gg;1 of one site on the EHO system. The vertical
æcis is on a range -50.0 S q S 50.0 and the iteration is calculated for 4 x 105 steps. Each
site has various time series of qp;1 and shows intermittent motion of the angular frequency
r.,r1rp. We assume that a mechanism of Eq.(31) derives the intermittent motion of ar1lp and
is related to multiplicative noise [11].

rÂ/ï\/iÂfi]

Fig. L: Time series of gg;1 of one site on the EHO system. The vertical axis is on a range
-50.0 < q < 50.0 and tÀe iteration is calculated for 4 x 105 steps.

The EHO system has time evolution of the potential functions (i.e. of the angular
frequencies). Fig.2 shows time series ol uglt of N sites. The vertical ards is loglq(r,l(rp)
and the iteration b calculated for 5 x 105 steps. In a HO system, the state satisfies the
energ;I conservation law at an arbitrary time, thus it ha.s a static manifold. By contra.st,
The EHO system has a heterarchical structure that is derived from inconsistency between
the macrolevel layer and the micro-level layer, thus the system ha.s a manifold with
dynamical change along time.

Moreover, in a HO system, its time evolution operator is a canonical transformation.
It is important to see whether the time evolution of the EHO system is a canonical
transformation. In a HO system, its time evolution operator /a1 is expressed by the
following matrix;

) : ( 
'ï^' 

"J^, )/o,: ( "-[o' .-0,o,
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./t,t* it a canonical tra.nsformation 'e=+

<+

aclryt : 
I 
Errir+atotrlrtgr - Elrltcutrlt 

l.

- t

(AC1r1r) : t 1ÀC1r1,
n

r=t-n^t

(41)

and we set rù : 103 in this case. The vertical axis shows the values of loglr((AC(ot)) and
the iteration is calculated for 5 x 105 steps. Time evolution of some sites satisfies the
canonical transfoimation, and that of the others breaks the canonical transformation; i.e.
we can see the differentiation into the motions in the classical dvnamics and that ones in
the non classical dynamics.

ll|r (St!D.)

Fig. 2: Time series of r.rpyt of 20 sites. The vertical a.:<irs is logro(o;gf ) and the iteratiou is
calculated for 5 x 105 steps.

where ,C is the Liouville operator fo: the system. B;r contra.st, the time evolution operator
for each site in the EHo system, f(Du , Dlrp -) D(r)t+ar; (gtrr,ptrlr) + (g(r)r+at,p(r)t+ar),
is expressed by the following;

The conditions of the canonical transformation for fr4al are expressed by the following;

#: -w
, #: æ
: Eç,1ttù1t1t

{# = ïr4
Eçltaatuç1t+tt

where (q,p) : (qe)t,p7)t) and (Q, P) : (qt,)r+at,p1t1t+at). Therefore, we can evaluate the
degree of the satisfaction of the conditions quantitatively. The assessment fulction AC14t
is defined by the following;

(40)

The more the value of ACIrX is small, the more "f(r)ot approaches the canonical transfor-

mation- If ÀC1ar : 0 then .f(,)o, is the canonical transformation strictly.
Fig.3 shows time series for (4C11;1) of N sites where
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Fig. 3: Time series of (AOtrlr) of 20 sites for 5 x 105 steps. The vertical axis shows the
values of logte((ÂCp1r)). The more AOlr;t is small, the more time evolution of the site l,
.f(r)ar, approaches the canonical transformation.

5 Conclusion

In a dynamical system, intent means a function defining time evolution of states and
extent mea.ns a pair of an initial state/input and a final state/output. Such a pair of
the intent and the extent constructs a micro-level layer of the dynamical system. We
proposed a system including d1'na.mical change of the intent that is derived from extent
with indefiniteness. If we can approximately ignore the indefiniteness of the extent, the
sequence of (input-function-output) is consistent. By contrast, if we crnnot ignore ttre
indefiniteness of the extent, inconsistency between the intent and the extent influences
the macro-level layer such as energy or entropy, and the process of the change derives the
dynamical change of the intent. We introduced a concept of reactive colimit to express
such extent wiùh indefiniteness. In addition, such a process of reconciliation against the
inconsistency requires interaction between the system and the outside of the system. We
applied it to a harmonic oscillators system and expressed emergence a.s dynarnical change
of angular frequencies of the system.
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