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Abstract
Starting from a requirement of space-time symmetry, we propose several concepts of
additional time dimensions, we study the consequences of the introduction of a multi-
dimensional time in the special theory of Relativity and in relativist quantum theory.'We 

show that the mathematical process for generalizing the Dirac equation requires
octonions and a 8 dimensional space-time with a privileged time direction. We also
show that unlikely quaffum correlations in pair of prticles (as well as rnechanical
correlations in two coupled harrronic oscillators) imply a homogeneous 3-dimensional
time due tothe ins4arability of space coordinates in the space continuum.'We 

then propose to define a 3-dimensional time with quantum hidden variables and we
suggest that the scalan energy coaservation is a consequence of the general parallelism
of time flow at the macroscopic level.
Keywords: dual Relativity, Dirac equation, multi-dimensional time, quantum
correlations, hlpercomplex numbers.

I Introduction

In previous communications, Daniel M. DuBots (1999) [1], Daniel M. Dueots
and Gilles NrsARr (2000) [2] have developed a theory of a dual Relativity derived from
forward-backward space-time shifts. The continuous version of the discrete forward-
backward space-time derivatives uses complex coordinates where imaginary
components represeût the space-time shift.

From this theory l2l,the authors have deduced the equation of KrerN [3], GonooN
[4], and Focr [5] in the 3+1 space-time; they have deduced the wave equation for
photons and justified the use of plane waves in quantum theory as an interpretation of
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the mass. The theory of dual Relativity has superluminal solutions with an imaginary
rest mass (tachyons), still in the 3+1 space-time.

Afterwards, the problem of space-time inversion has been raised from symmefiy
considerations between the subluminall-orentz group SO(3,1,R) and the superluminal
Lorentz group SO(1,3,R) and also from the inversion of the metric signature (+---) at
critical radius in the general theory of Relativity (e.g. the standard Schwarzschild metric
has a pseudo-singularity' at its critical radius ro where the sign of gravitation potentials

8oo andgrr is changed).

Remark: We use the same notation SO(p,q,E) to narne a space-time hwing p+q
dimensions, a rotation group in this space-time, or the associated Lie algebra: p is the
space dimension, 4 is the time dimension and E a set of numbers, usually R or C.
The notation SO(q,E) is the usual one in mathematics.

So there is no operator in the complex rotation group SO(4,C) which transforms a
referential of the group SO(3,1,C) to one of SO(1,3,C), the space-time inversion is not
possible. Let's say more simply that because t is a scalar and r is a vector they cannot be
permuted. The solution needs to define a 34imênsional time.

In this communication, we propose several concepts of additional time
dimensions, we study the consequences of the introduction of a multi-dimensional time
in the special theory of Relativity, in q'antum theory we develop a method for the
generaliz-ation of the Dirac equation to a multi-dimensional time, and we discuss the
problems of energy conservation and non-local correlations.

We show that in a pair of inseparable particles the symmetry of quantum
correlations is represented by the transforrration group SO(3,3,R) as in mechanical
correlations of two coupled harmonic oscillators, and we deduce that this representation
is done in a 3+3 space-time having a 3-dimensional time.

2 A Geometric Concept of a Three Dimensional Time

To introduce a 3-dimensional time, we replace the usual time coordinate:
xo=ct

by the 3 time coordinates defined as:

Iro,  =cl ,

f 
x. = ct, (2)

Ixo: = ct

The 3 time coordinates det-rned in equations (2) and the 3 usual space coordinates
xt , x2,.r: define a referential frame in an affine manifold which has a metric of signature
(+ + + - - -). So its transformations belong to the group SO(3,3,R).

Although it easy to write 3 scalar time derivatives:
d d d-_. - .  . -

d t , '  d t ,  d t t

' For r = r0 it is called a << pseudo-singularity >>, and for r: 0 it is a true singularity.

(1 )

(3)
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similarly to the usual continuous time derivative, we have to consider all geometric
postulates which are implicitly involved in this definition.

2.1 A 3-Dimensional Time With a Euclidean Geometry

If the 3 scalar time derivatives are considered as components of a vector, it is a
'time gradient":

(4)

which belongs to a Euclidean geometry of 3 dimensions. The scalar product of the time
gradient and a 3-dimensional time variation:

at --!at,*{a,,*{a,, (5)
d t r ' d t z ' d t ,

is the differential dt of the scalar time r which can be considered as the observed time l.
The differential dt bas to be summed up along a time trajectory, so the resulting

scalar time t is a function of 6 coordinates:
t = f(t,, t.,, tr; x,, x, x.)

2.2 A 3-Dimensional Time With a Curvilinear or Riemann's Geometry

lnstead of the Euclidean gradient, we lnay consider the 3 covariant
derivatives such as:

i +  l ( d  d  r \u,=zl4'A,a,, )

(6)

time

or=#, Dr=#, Do,=# (7)
where every covariant derivative of a vector Ir' is classically defined [6] as:

Ds*Vi = àorv'+\o*vh (8)

Here the summing index & takes every time value 01,02,03, and every space value l, 2,
3. If É takes only the time values, the time geomeûy would be independent of the space
geomety, but we assume that space-time is a relativist continuum.

Some additional postulate is needed to define affine connection coeffrcients IL,

of a curvilinear'time manifold".

2.3 Th€ Correlative 3-Dimensional Energy Vector

In relativist quantum theory the energy operator is the following time derivative:

E = ih!-
dt

so the 3-dimensional time derivatives in equation (3) result in 3 energy components.
ln an Euclidean geometry, the time gradient (4) defines the 3-dimensional energy

quantum operator E:
E = i h c Y ,

(e)
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which can be called the'time momentum" p, :

P '= ihY '
With both the time momentum p, md the usual momentum operator p:

P = - i h Y
we can build the 6-momentum operator:

Ê =;a(v,,-v)
in the 3+3 space-time having a metric gp' of signature (+ + + - - -) and we can write it
with the usual tensor formalism:

( 11 )

(t2)

(13 )

po = ro'*
ctx

IE* = constant
^'=i

The usual scalar energy in interactions of z non relativist particles:

tr'. =f Itr,tt
+,1 x ?x f l l
t = l  ^ = t

(14)

So we can generalize the theory of Relativity to a 3-dimensional time using the
transformation group SO(3,3,R).

In such a theory, any transformation of a refe,rential will conserve the 6-

momentum vector $ while the Relativity conserves the momentum-energy 4-vector. At

the classical limit, the 3-momentum F and the energy vector É are conserved, but the

scalar energy, which is the length ofthe energy vector É , is not conserved.
Any interactions of z non relafivist particles in a 3-dimensional time will conserve

the sum ofenergy vectors:

(  15)

(16)

will be conserved when the energy vector Eo of the n particles are parallel, i.e. when all

their time trajectories are parallel.
The isotropic multidimensional time leads to an energy vector with the same

number of dimensions and the usual scalar enerry conservation principle does not hold,
except with a general parallelism of time flow. So we may give up the concept of
isotropic multidimensional time, or we have to explain the general time flow
parallelism.

3 The 3D Time From the Point of View of Electrodvnamics and
Relativity

After many attempts in unification of fields with the introduction of additional
space dimensions, many authors have proposed to introduce new time dimensions in
physics. For symmetry reasons many works consider a 3-dimensional time with the
usual 3-dimensional space.
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The symmetrization of Maxwell equation has led several authors [7,8,9, I 0,1 I , I 2]
to develop a theory of the electromagnetic field in a 6-dimensional space-time. To
match the relativist electromagnetic field in the usual 3+l space-time, the authors have
generalized the special l-orcntz, group into a 6-dimensional space-time, as it is also
required by the bradyon-tachyon synmetry in theories [l3,14,15,16,17] of superluminal
particles.

Several authors f18,19,20,2l,22,231have raised some valid critics against the idea
of an homogeneous 3-dimensional time, considering that the resulting energy vector is
not consistent with energy conservation principle.

Physical properties of an isotropic" multi-dimensional time have been sfudied by
Vladilen Bnnasupurcov, such as electrodynamics in multi-dimensional time [24],
quantum field with 3D vector time, 6D transformations [25] and detection of rays in
multi+ime [26].
The introduction of arbitrary time trajectories in some classical particles would gensrate
a faster-than-light behavior, like tachyons (see sect. 3 in ref. [27]) and it would nrm light
sourses, even at rest, into invisibility for the observer after a very short time (see sect. 3
in ref. [27]). Moreover the internal coherence of waves and particles in matter requires a
high level of time flow parallelism with the time flow of observers (see sect. 5 in ref.
I27l\.

According to VladileD B,c,RAsHsNKov, the time flow parallelism is tightly related
to the time arrow rnrl esgrgy conservation [28], and objects with different time
trajecûories are only possible at quantum level when energy conservation is violated in a
quantum transition.

The possibility of predictions by observers have been analyzed by Max Tecuam
[29] in a fiq dimensional space-time, from mathematical properties of the space-time
partial derivative equ*ion of second order:

(r7)

where d = p + q is the nrmrber of space-time dimensions and Aç, bi, c {ê parameters.
He has studied the diferent cases of the matrix A1.; corresponding to elliptic, hlperbolic
and ultra-hyperbolic netrics. From L. AscpnssoN's theorem [30] Max TEcuem has
deduced that observers cannot do any prediction in multi-dimensional time directions
(with 3D objects in a 3D space) because in an ultra-hyperbolic space-time 'there are no
spaceJike nor time-like hlpersurfaces".

So, from the physical requirement of a time flow parallelism in our world we
have deduced that all natural observers have the same time rajectory and all technical
devices built by natural observers have also the same time trajectory; but it does not
prove that time is not multi-dimensional. As in this theory scalar energy conservation is
a consequençe of the time flow parallelism, we may think that if we could master time
trajectories of physical systems, we would start developing new technologies, finding
new t5pes ofenerry sources.
ii"isotropic" in the sense of physics, means "homogeneous"

f*â",*+. *,,**"].=o
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A possible solution to the above problems due to the homogeneous multi-
dimensional time may be to define a heterogeneous multi-dimensional time with the
following postulates:
r the definition of the usual coordinate xo is unchanged (longitudinal time),
o additional time directions are not ruled by the theory of Relativity (transversal time).

Using the geometric algebra pioneered by HrsrrNrs f31,32,33,34] continued by
other authors cited by C. DonaN and A. LeseNny [35], John E.CARRoLL [36,37] has
studied the embedding of the usual 3+1 space-time in a symmetric 3+3 space-time, has
deduced Maxwell's equations from this symmetry and he has found a "3D time which
has a preferred direction for observed time" (cit. from ref. [37]).

In his formalism. the 6 coordinates are named:

x11, x12, X17t xrrt Xs2, Xs3 (18)
where / and s are label for time and space. The metric has the signature (+ + + - - -) and
the equation of Kt-EtN [3], GonooN [4], andFocr[5] is written:

(C__ji__d:_4lr+M;o=o
( âr,rt à4,t àr,rt àx,r' )

where Me is the "rest mass operator" defined by:

'; = J'- .+;
dx,t dxtz

and the usually measured time t is:

I'=z"o

(1e)

(20)

(23)

(21)

So the 2D transverse time is linked to the rest mass and the author states: "harmonic
variations in transverse time give zero rest mass in free space for complex
electromagnetic fields" (cit. from ref. [37]).

Xiaodong CHEN [38] has tried to introduce some additional time dimensions,
which are compactified at the Planck scale, and he has built a modified version of the
K,cLuzA [39] and KLEIN's [40] theory.
But his 6-dimensional metric (eq. l7 page 4 in ref. 38):

(a ,Ê =0,1,2,3 A,B =0,1,2,3,4,5) (22)

results in the geodesic differential (sce eq. l9 page 4 in ref. 38):
ds2 = dxodx" + ty&odxa - &rùt (.a = 0,1,2,3)

where t4is the wave function of a given particle. Which one in the whole universe?
For a free spinless particle he writes (se; eq. 19 page 4 in ref. 38):

,y, = 
"ÈV"'"--o"tl
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So the potential gc+ depends on the rest mass and momenfum of one given particle and
therefore fr" is not a ffue metric tensor of a Riemann geometry.

The field potential gss is negative so xs is a space coordinate and unforhrnately the
Xiaodong CHEN's theory has no additional time dimension.

In an other way, D.G. Pevlov. [41] has studied some peculiar Finslerian spaces of
2 to n dimensions, built on isotropic"' vectors, and he discussed the geometric shapes of
equivalent light cones having additional time dimensions, from a mathematical
viewpoint. The metric of his Finslerian spaces have the degree n so they are not
quadratic forms, except in the 2-dimensional case, which is the metric of an lnfinite
Momentum Frame, i.e. a system of light-cone coordinates.

This suggests sfudlng the problem of multi-dimensional time in the context of
lnfinite Momentum Frames, as defined by G. NmanT 142,431.

4 The 3D Time From the Point of View of Quantum Theory

4.1 General Considerations About Quantum Theory

As in the ZEEtu,tAN's theorem [44], most objections to the multi-dimensional time
presuppose implicitly that the causal order must always coincide with a linear time
order, but such a macro-causality postulate is not compatible with the micro-causality
principle, which has been expressed by the Bell's theorem [45].

4.2 Possible Extensions of Quantum Theory to Multi-Time Coordinates

Hitoshi Krnne [46] has introduced 3-dimensional time and 3-dimensional energy
operators in quantum theory and he has deduced the usual uncertainty relation for the
scalar time and the scalar energy. But unfortunately his time coordinates /x, ly, Iz, are not
intrinsic coordinates: we criticize them further in section 5.

Starting from the ganeralized Dirac equation of Perrv and Svrlr-r-By [47],
BenesuENrov and others [48,49] have proposed some interpretations of the relativist
quantum theory in a 3+3 space-time. Because of the multi{imensionality of time and
energy, there is no energy gap between particles and antiparticles (figure I inpage 42 of
ref. [48]), so the author has only forbidden free transitions between particles and
antiparticles by an additional postulate of microscopic time ineversibility.

The theory is not compatible with time reversal of the CPT transfomration group,
and the reinterpretation principle of SrûcrsLsERG [50] and Fc,vr,rl,Ien [51] which is
currently used in FgvNueru's diagrams, does not hold in BanesgeNrov's theory.

Unforhrnately the 8x8 Dirac matrix 'i cannot be multiplied with the 6-vector V in
the equation (1) in page 38 of ref. [48] shown below:

"' Mathematically, an isotropic vector is a null length vector, e.g. a vector on the light-
cone surface (an equal combination of space and time components).
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(; iû-.)v =o (2s)
and also the 4x4 Dirac matrix T cannot be multiplied with a 3-vector p in the equation
(2) in page 39 of ref. [48] shown below:

\YP-@E +m )Y =  0 (26)
where .E is the scalar energy and 0 is a 8x8 matrix. So the BeResunNrov theory is
inconsistent. Moreover his "space- and time-independent eight-component spinor":

a (o , ,Q  r ,Q  r ,Q  o ,Q ,Q  u ,Q  r ' û  rY (27)
should be related to a spinor representation of the 3+3 space-time and to the SO(3,3,R)
transformation group. This problem has not been mentioned by the authors.

4J Introduction of a Hidden Multi-Time in Quantum Theory

Xiaodong CuEN has proposed a new interpretation of quantum theory [52] where
additional time dimensions are hidden variables. He has preferred a 3-dimensional time
just to have the symmetry of space and time.

A relativist quantum theory with hidden time directions migtrt be developed in the
standard Minkowski space-time, so it does not need a modified KALUZA-KLEIN theory
[38], and the author suggests that the 3+l space-time may be a tangent space on the 3+3
space-time, like the Hopr bundle in a monopole theory [53]. We would rather prefer a
theory using the Riemann geometry.

The basic concept of multi-dimensional hidden qumtum time is the following: the
multi-dimensional time flow is not a classical trajectory. The multi-dimensional time
flow of Xiaodong Chen is "a set of quantum time paths" and every time path is possible
with a given probability, which corresponds to a particular quantum state. Every
quantum time path has a specific direction in the multi-dimensional time manifold and
the direction of every time path can be represented by an angle. Any time angle is a
hidden variable in the sense of the Bell's theorem [45].

In a 2D time manifold, polar coordinates (t,01 are used, and in a 3D time manifold
spherical coordinates Q,AO are used. So hidden variables are time path angles (QQ).

As clocks are macroscopic devices, any measured time is the mean length r of all
probable time paths (clock) or the true length r of a collapsed state (detection device).

4.4 Wave-Package Collapse Conjecture on Multi-Dimensional Time

We can explicitly develop quantum axioms from the wave-package collapse
conjecture of Xiaodong CHEN, as stated below:
e the set of time paths (with its hidden angles QQ) allow the distribution of all

expected values of an observable within the multi-dimensional time manifold ;
o different expected values ofan observable correspond to different time paths having

different angles ;
o the whole distribution of time paths is modified by any time measurement ;
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. the current time path of a detector (an observer or a measuring device) allows only
one possible interaction in the multi-dimensional time manifold, and this interaction
gives only one expected value of the observable as a measured value.

5 About the Definition of the 3D Time From a Velocitv or a
Momentum

JoRcr and FneNco [54] have defined a time vector with a geometric projection of
the clock time t on the 3-space axis 11, x2,.rj, such as:

l i = t c o s a i  f t = 1 , 2 3 )
with a projection angle cq defined by vector directions:

a ,=( i , , i )  ( i  = t ,z , t )

(28)

(2e)

(31)

where î is a velocity. As the relativist mass is a scalar, an equivalent definition can be
proposed with a momentum vector p:

a,= (i,,û) (i = 1,2,3) (30)

Hitoshi Ktreoe [46] has defined his time vector from the momentum of a test particle.
In that definition, the time vector f is not a vector variable but a function and its

components t*, ty, tr, are not intrinsic cootdinates, because they depend on a given
velocity V or a given momenûrm p which has to be introduced to define the time
vector.
The velocity i or the momentum È may be that of a moving body (a projectile) or the
velocity û may be that of a second referential frame.

If the velocity I is that of a moving body, time components ta, ty, tz, in equations
(4) page 37 ofreference [54] should be defined as:

[i = 1,2,3.)
xi

Jæ+æ;æ
dt

As the time vector depends on a body velocity, we can not define a coûrmon vector time
for nvo moving bodies. So it is not ar intrinsic time of the observer.

If the velocity f is that of a second referential frame as it is considered in the
Joncr and FRaNco's paper [54], it means that the time components of the observer O
depends on the direction of the second observer O'. Therefore the vector nature of time,
according to these authors, requires two related observers {O; O'}.

However the Jonco and FneNco's theory [54] of vector time is not consistent with
the Relativity, because their vector Lorentz transformation (the 4 first equations at the
top of page 43 in reference [54]) does not reduce to the well-known special Lorentz
transformation for the angles:

a=o;  F  =o (32)
These authors igrrores that after A. Einstein, a general Lorentz transformation has been
established in the tensor formalism by S. Kichenassamy [55] and in the vector

t i =

J J



formalism by C. Morrrn [56] and M.-A. TorrxBrar [57], and it is firlly compatible
with the Relativity.

6 About the Relativist Space Time Entanglement

6.1 About the Symmetry of Coupled harmonic Oscillators

D. Han, Y.S. KIM, and Marilyn E. Noz [58] have built the O(3,3) group to
describe the symmetries of two coupled harmonic oscillators and they have shown that
the Lorentz group O(3,1) has a local isomorphism in q3,3) depending on the choice of
a time direction.

Considering âny two coupled harmonic oscillators (eq. 2.1 in ref. [58]), there is a
very particular referential where the two harmonic oscillators appear to be independent
from each other, i.e. decoupled (eq. 2.12 in ref. [58]). It means that a particular observer
does not perceive the space-time entanglement of some coupled harmonic oscillators.

Their "local isomorphism" between O(3,3) and SL(4,R) is truly an endomorphism
of O(3,1) in O(3,3), which is defined by the choice of one of the 3 time directions (s,t,u)
as there is a Lorentz group in every time direction.

ln another paper, Y.S. Kttvt, and Marilyn E. Noz [59] have explained that two
coupled harmonic oscillators are entangled in the sense of quantum theory. They have
shown that the wave equation of two coupled harmonic oscillators:

(33)

where 4 is a coupling parameter, and the wave equation the covariant harmonic
oscillator:

v,(", ",) = 
h ^rl_- + "-"(4 + r,)' + e*"(x,- * f ]

(34)

(35)

v,,(r,t)= #*{-+a'o(z 
+ ct)' + "*'o(r- "I]

are formally identical, and the substitution:

\ - ) z  x 2 - ? . x o = c t

shows that space and time are entangled in the wave function of covariant oscillators.

6.2 A Relativist Model of a Pair of Particles

Starting from a 3-dimensional oscillator which is described in a 3+l space-time
and transformed within the SO(3,1) group, D. HeN, Y.S. Kuvt, and Marilyn E. Noz [58]
have shown that two coupled hannonic oscillators can be transformed within ttre
SO(3,3) group.

Consequently two coupled harmonic oscillators may be described in a 3+3 space-
time and the 3 space coordinates of the second oscillator are working as a 3-dimensional
time for the first oscillator. And reciprocally, the 3 space coordinates of the first
oscillator are working as a 3-dimensional time for the second oscillator.
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In this way, Gilles NBaRt [60] has already proposed a mathematical process
eliminating time coordinates from the system of equations of a pair of particles.
We start from a relativist quançum equation of a particle l, such as:

-fnl"tn,xn,xn,xn )=o (36)
and the similar equation of a second particle B:

-fr(u*xBt,xs2,"",)= 0
where/is a given function, A, B are labels, andxi are space coordinates.

As the correlations of the particles in a pair are defined at the same time l:

t = tn= t "

{x ru x o, x u, ; x Ap x A2, x A3}
with the signature (+ + + - - -) while in its referential the particle I has the
space coordinates:

{xn,*n ,,n ;xBpxB?,x",}

the correlations can be expressed by one or several equations with the time /, from
conservation laws (e.g. energy, momentum, spin). So using equation (38) it is possible
to eliminate all time variables from the system of equations (36), (37) which then
simplifies into a unique equation, such as:

4( *nr *n ,x tz ,xspxo,x r r )=0  (39)

where the 2 sets of space coordinates x,r'x.t2,xÀ3 îrrd xr,xn,)c* are inseparable

variables.
Every equation (36) or (37) is individually transformed within the SO(3,1) group,

but the transformations of both correlated equations (36), (37) belong the SO(3,3)
group.

The SO(3,3) group is related to the metric of the 3+3 space-time having the
sigrature (+ + + - - -). lt means that if we consider rtprtz,x.qz as spacelike coordinates,

xap xR2, x at are timelike, and reciprocally.

For an observer looking at the particle I having the position xn,xn,xn and a

timelike (subluminal) velocity, the 3 coordinates xBp)cR2,xB. will appear as temporal and

the xepxÈ2,xat derivatives will appear as spacelike, because of the apparent

superluminal corelations (E.P.R. paradox) but it does not mean that one of the prticles
of the pair has a superluminal velocity.

In its 3+3 space-time referential, the particle I has the time and space cotrrdinates:

(37)

(38)

(40)

time and

(41)

with the same siglature (+ + + - - -).

Consequently a 3-dimensional time emerges from the space-time entanglement in
a pair of particles or two coupled oscillators. And the relativist explanation of the E.P.R.
paradox and quanfum correlations of a pair of particles just hold in the transformation
group SO(3,3) not in the Lorentz group.
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7 About the Generalization of Dirac Equation to More Dimensions

Although it is easy to extend the Minkowski space-time with 2 additional time
dimensions and write a 3D time derivative operator with a metric of signature (+ + + - -
-), we must be very careful to build the generalization of Dirac equations to the 3+3
space-time because it will include generalized Dirac matrix which have to be associated
to the Lie algebra SO(3,3,C) and generalized Dirac spinors Y which have to be
associated to a spinor representation of the transformation group SO(3,3,R).

7.1 The Mathematical Process to Build Usual Dirac Equations

As the classical Hamiltonian function and the relativist Hamiltonian function are
quadratic forms, from the basic quantum equation:

Hv=ih#Y (42)

they naturally led to quantum differential equations of second order in the space
derivatives: respectively the Schrôdinger equation and the equation of Klrn [61],
GonpoÈr [62], and FocK [63]. Peuu [64] has introduced the electromagnetic field
potentials and his spin operator o in the relativist Hamiltonian function, but his equation
is still of second order in the momentum operator p, i.e. in space derivatives.

Dnec [65] has stessed that quantum mechanics requires equations which are
linear in the wave function Y and in all space-time derivatives, so it requires differential
equations of first order in space-time derivatives. Dirac applied a factoization method
[65] to the equation of Klein, Gordon, and Fock, which led to the well-known Dirac
equation.

The Dirac equation has been discussed by Peur-r [66] and the algebra of Dirac
matrix has been discussed by Pauu [67] and Gooo [68]. Later, the Schrôdinger
equation has also been linearized in space derivatives by LÉvv-Lrnr-orun [69].

The usual Dirac equation, in the spinor form is:
( - ' \

It#-z )v 
=o

where 1 is related to the rest -*. *t,n, 
,^,

I = ;

(43)

(44)

(4s)

Dirac matrix f are complex 4x4 matrix which works with relativist 4-vectors-
They are super-matrix composed of Pauli matrix oi as shown below:

n=1"; i.], ,.=l:. ?] (n=,,2,3)
Pauli matrix are expressions of infinitesimal rotation operators in spinor theory and the
squares of Pauli matrix have the positive signature (+ + + +) as shown below:

4=4=4=4=oo
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which can be represented as a complex vector rf with 4 vector components Vl (tt4,1,2,3).
Thus the Dirac equation has a complex conjugate.

The transformations of bispinors Y belong to the group SL(2,C). lrreducible
representations of the group SL(2,C) are equivalent to irreducible representations of the
Lorentz group which is included in the transformation group SO(3,1,R). So SL(2,C)
contains a spinor representation [70] ofthe Lorentz group.

The Pauli matrix o; are the generators of a Clifford algebra C(E3) of 8 dimensions
on the real set S, with the real vector basis:

c(r, ):  {oo,o,,o,o,ioo,io,, io,, ior} (48)

where E3 is the usual Euclidean space of 3 dimensions [71]. The Dirac matrix f are
associated to the Minkowski space-time E:,r and are the basis of a Clifford algebra
C(Er.r) of l6 dimensions on the real set S.

The quaternions algebra is isomorphic to the sub-algebra C*(E3) generated by the
following matrix:

where os is the identity matrix.
A fermion wave function Y is a bispinor:

Y =\, / ruvr)

c.(rr) :  {oo, io, , io, ior}
so Pauli matrix can be replaced by quaternions in quantum equations, such as:

{ l = o o

l i = io ,
I  i=  io '

[ k = i o ,
and we stress that the product oftwo Pauli matrix is a quatemion:

6 r ' 6 r = i 6 ,  O 1 ' O r = i 6 ,  O r ' O r = i 6 "

(47)

(4e)

Moreover the Minkowski space-time E:,r is isomorphic to the set Q of quaærnions
as shoum below:

(50)

( 5 1 )

(s2)

(53)

V e + q = c t l + x r i + x r j + x r k
because the squares of quatemions units:

(t',i ',1', t ' ) = (1-1,-1,-1)

match the siglrature (+ - - -) of the metric of the Minkowski space-time.
It has been possible to build the Dirac equation with Pauli matrix,

Hamiltonian function of second order, because the set Q of quatemions
factorization solution of the reduced positive quadratic form with 4 terms:

,f(x)= éf +fi +xl+xl (54)
which is the Minkowski metric multiplied by its own signafure. The factorization uses
the quaternions conjugates shown below:

, f (X)=  (c t l+  x , i+x ,  j+  x rk ) . (c t l -  x , i -  x r j - r ,  k ) (s5)

from a
is the
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Remark We may wish to factorize only the positive quadratic form of the
3-dimensional Eucidean space within the Minkowski space-time, but there is no
hlpercomplex numbers with 3 dimansions (see the Hunwrz's theorem in section 7.2).

Furthermore, we know [72] that the subset Q1 of quaternions of unity length is a
Clifford sub-group of C(83) which can be identified to the matrix of the group SU(2)
which represent infinitesimal rotations in the Eucidean space E3. Therefore the algebra
Q(2) of quaternion matrix is the Clifford algebra C(E:,r) of the Minkowski space-time
Er,r and the algebra C(Er,r) is isomorphic to the algebra of Dirac matrix f l7l).
Therefore quaternions, Pauli matrix, Dirac matrix and rotation operators are yery tightly
related to the 3+l space-time structure, as G. NIsnRr [73] have shown it.

Further, the Dirac equation has been re-written as a "nilpotent Dirac equation" by
Peter RowLeNDS [74,75] in a quatemion multi-vector formalism.

7.2 A Mathematical Process to Generalize Dirac Equations

To do the generalization of Dirac equations to an extended metric having more
time or space dimensions, we will have to do the linearization of the positive qr:adratic
form associated to the extended metric, because relativist quantum theory requires
covariant equations of first order in space-time derivatives.

Obviously, we can easily write space-time derivatives in an extended Minkowski
space-time or an extended Riemann manifold, having additional dimensions (see section
2). For example we can define a 3-dimensional time derivative as the vecton

i +  l a  t (  d  d  a )u,=;at =z[;t 'ar'a, )
associated to a 3+3 space-time which has the following metric:

ds2 = dxir+ dxl, + drt*- dti - dr; - dr:

(56)

(s7)
of signature (+ + + - - -), and which have a symmetry between space and time within
the transformation group SO(3,3,R).

Although it seems to be easy to write a generalized Dirac equation by substituting
the scalar time derivative in the usual Dirac equation, by a vector time derivative, as
shown below:

l A  €
1à t  

n ' ,

the generalized Dirac equation has to be consistent with classical mechanics, with the
theory of Relativify and with basic quantum theory. So it is more difficult to define
correctly extended Dirac matrix and extended spinors in an extended Minkowski space-
time (or in an extended Riemann manifold) because the new Clifford algebras and the
new spinor representation of the new metric has to be consistent with the new
transformation group, e.g. SO(3,3,C).

The consistency requires that the reduced positive quadratic form with 6 terms:

,f(x) = r/,, + f* + r; + t + x| + f,

(s8)
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associated to the extended Minkowski metric, can be decomposed into a product of
hlpercomplex numbers h. So we may imagine a set H of hypercomplex numbers
defined as:

h = xo,ho, + xorho, + xorho, + 4h, + xrh, + x,h,

which faclorize the positive quadratic form such as:

t , * f r+ f r+ f  +*  + r l  =11-
where h* is the hypercomplex conjugate of h:

h* = rorhor - xozhoz- Jorho, - x,h, - xrh, - xrh,

The squares of hypercomplex units must have the following properties:

hf i ,  =+l ,h l ,  =- l ,h i ,  - - l ,h i  =-1,h1 =-1,h3 =-1

so the hlpercomplex metric has the signature (+ - - - - -) which is
signature (+ + + - - -) of the extended Minkowski metric.

The positive term hfi, defines the "realo' component hol of an

(60)

(61)

(62)

(63)

different from

hypercomplex

number h, therefore there is a privileged time direction.
The consistency requires also to build an ineducible spinor representation of the

extended space-time, e.g. the J+3 space-time manifold. We must not forget that "the
geometries in N-dimensional Euclidean spaces can be described by Clifford algebras
that were introduced as extensions of complex numbers'o [76]. And extended Dirac
matrix should be built from the same set of hypercomplex numbers.

The needed set H of hypercomplex numbers has to be a real division algebra, with
the following important properties:
r it has a multiplicative identity element ho: 1,
o every non-zero element h has a multiplicative inverse h-r on both sides,
. every element h has an hlpercomplex conjugate h*, similarly to quaternions q, q*.

After the quatemions, we just know the octonions [77] because division algebras
of hlpercomplex numbers exist only for the dimensions l, 2, 4, 8 according to the
HuRwrz theorern [78] which has been independently proved by Knnvnnr [79], Raoul
Borr and Mu-NoR [S0]. The theorem has been generalized by Horr [81]: all division
algebras have the dimension 2".

Consequently the extension from SO(3,1,R) to SO(3,3,R) or to SO(4,4,R) requires
to use octonions (also named Cayley's numbers). Octonions have 8 dimensions on the
real set S and the resulting extended Dirac matrix f will be equivalant to 8x8 complex

matrix, but the multiplication of octonions is not associative, so the product of 3
extended Dirac matrix may not be associative.

In this way, PRr-ry and Suellnv l47j have proposed a generalization of Dirac

equation with some 8x8 complex matrix '!, but their theory is not consistent in the 3+3

space-time, as we have explained it in section 4.2.
Since the Hunwtrz theorem [78], an extended Dirac equation needs 8 space-time

dimensions to have a dimensional coherence between extended Dirac matrix, extended
Dirac spinors and extended space-time derivatives. To have a space-time synmetry we
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where {pv is a complex metric tensor, beside the usual relativist interval ô2:
ds2 = I u, xe(azr) n e(az, )

might think of a 4+4 space-time with one additional space dimension and a
4-dimensional time.

8 About an Extended Minkowski Space With Complex Coordinates

Several attempts have been done to replace real coordinates of the usual 3+l
space-time by complex coordinates. Such a complex space-time corresponds to the
group SO(3,1,C) and it is considered to have 8 real dimensions in the group SO(6,2,R).

In a previous communication, Gilles NtsaRT [82] has infroduced complex
coordinates from the definition of a complex velocity: the real component is the usual
velocity related to kinetic energy and the imaginary part is related to potential energy.

Elizabeth A. RAUScHEn and Russel Tenc [83] have defined a Sdimensional
space-time with 4 additional imaginary coordinates. From 4 complex coordinates /
thev have defined an extended interval d,t' which has always real valuss:

dSz = rlp, dzt'dz-' (64)

(6s)
The authors have defined two generalized light hyper-cones in the 8{imensional space-
time. The usual light cone in the real space-time defines the mechanical causality in the
sense of the ZsrueN's theorem [44], and the light cone in the complex space-time
defines a generalized causality with anticipation properties.

After Jean E. CHanoht [84], Gerald K,ctspR [85] has proposed "a new synthesis of
Relativity and quantum mechanics through the geometry of complex space-time". ln
KaISER's theory the complex space-time is a relativist extension of classical phase
space, and according to the latter author it resolves the problem of localization of
quanta.

9 Overview of Several Postulates of Multi-Dimensional Time

Presently we might build several different theories of multi-dimensional time, so
we have to postulate pertinently the basic properties of multi-dimensional time.
Its possible properties are the following (non exhaustive list):
o time may be isotropic" or not isotropic,
o the multi-dimensional time may be a time vector in a given geometry, or not,
o the time vector may be associated to a scalar energy or an energy vector, depending

on the definition of the measured time,
o the Lorentz group and the Minkowski space may be extended to a 3D time, or not,
o êv€ry time direction may be compactified or uncompactified,
I evêry time direction may be an observable or a hidden variable in quantum theory.

As the measured time is the proper time of a clock which is a macroscopic device, the
measured time might be:
r the length along a time trajectory,
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o the length along a preferred time direction,
o a geometric projection on the time direction of an observer or a detector,
r an eigenvalue of the multi-dimensional time observable,
e or the result ofthe collapse of a hypothetic multi-dimensional time wave.

10 Conclusion

The symmerric generalization of the Minkowski space-time to the 3+3 space_time
and the special Lorentz group to the So(3,3,R) group, which is needeà by the
development of some theories of electromagnetism and the development of a reciprocal
theory of tachyons-bradyons, leads to introduce a 3-dimensional time into the theôry of
Relativity and into the relativist quantum theory.

We have shown that an isotropic" multi-dimensional time does not preserve the
causal order (local macro-causality principle) and also produces a general instability of
quantum systems and cosmological bodies, unless there is a general time flow
parallelism related to the time anow.

And the scalar energy conservation principle does not hold with an isotropic
multi-dimensional energy vector, unless there is a general time flow parallelism. So the
scalar energy conservation is a direct consequence of the general parallelism of time
flow.

So we may think that if we could masær the time trajectory of physical systems,
we would start developing new technologies, to produce new tlpes of energy sources.

lVe have shown that the generalization of Dirac equation to more than 3+l space-
time dimensions, with the correlative extension of Dirac 2-spinors and Dirac 4x4
matrix, requires a hlpercomplex algebra of dimension 8 on the real set (octonions)
which introduces a privileged time direction.
As the extended 8x 8 mærix cannot multiply with Gvectors of the 3+3 space-time, we
will have to define an afïîne manifold with4+4,3+5 or 5+3 space-time dimensions.

Some authon have proposed to add compactified time dimensions in a Kaluza-
Kleinlike theory or to add hidden time variables to quantum theory, thinking that it
would provide a physical explanation of quantum inseparability and nàn-local
correlations: in a quantum theory with hidden time variables thsre is no classical time
trajectory, but a quantum distribution of time pæhs.

We have shown that quantum correlations in a pair of particles can be represented
in a 3+3 space-time with symmetries in the so(3,3) group, as the mechanical
correlations in n'iro coupled harmonic oscillators have syrnmetries in the SO(3,3) goup.
Any correlated pair generates a space-time entanglement, which has an intrinsic
eatangled homogeneous 3-dimensional time.

Although the scalar energy cannot be conserved in interactions between separated
particles having energy vectors in different multi-dimensional time trajectories, a
3-dimensional time emerges from space-time entanglements in correlated particles,
which have a scalar energy.

4T



We then think that we should develop a new concept of multi-dimensional time
having a distribution of quantum paths with hidden variables related to space-time
entanglements at the quantum scale and also a strong parallelism of time flow at the
macroscopic level.
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