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Abstract

For Donald C. CHANG, the rest mass of a particle is related to a transversal distribution
of the amplitude of its wave function. We have computed the transversal distributions of
the density of presence of a particle from the amplitudes of its wave function, we have
drawn their surface graphs. As a consequence of the wave nature of particles, transversal
distributions show a serie of maxima and minima which depend of a Bessel function Jn
of order n. At the zero radius the density is a maximum for »=0 and it is a null minimum
for >0 which defines a hollow mass.

For John E. CARROLL, the rest mass of a particle should correspond to variations in a
hidden transversal time of a 3+3 space-time. We have computed these variations and we
have found that there is a photon correlation in the hidden time, and that the rest mass
might correspond to oscillations for superluminal particles, but direct or inverse
exponential variations for subluminal particles.

Keywords: rest mass, wave function, hollow mass, Bessel functions, hidden time.

1 Introduction

Historically the word “rest mass” appeared in the special theory of Relativity, as
meaning the Newtonian mass, but it received no theoretical explanation other than a
simple mechanical coefficient of inertia and an identical coefficient of gravitation,
which is intrinsic of every particle. Moreover the mass is supposed to be attached to a
dimensionless point of space, e.g. a gravity center, by classical mechanics and relativist
mechanics.
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1.1 Can an Electron be a Dimensionless Mass Point?

Has an electron an infinite proper energy?
Let’s consider a sphere of radius a with an electric charge ¢. It produces an electric

field E, such as:
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where 4, is a unitary vector in the direction 7. The field is associated with the energy
density &:
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thus the total energy W in the space around the sphere:
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is given by:
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where Q is the solid angle of the whole space. In integrating eq. 4, one obtains:
__ 4
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so, when the radius tends to zero, the charged sphere would have an infinite energy:
a—>0 = W-oee (6)

therefore the electron cannot be a mass point. Although this problem led BORN-INFELD
[1,2,3,4] and others [5,6] to build a theory of a nonlinear electromagnetic field, it was
shown that the electron must have a finite radius [7].

A similar demonstration done with the gravitational field would show that the
proper energy of a mass point is divergent. Therefore any mechanics of mass points is
inconsistent.

As a solution of this problem, we show (in section 2) that any particle may have a
hollow mass, which is described as a transversal distribution of the amplitudes of its
wave function.

1.2 About the Wave Nature of the Electron

Classical models [8] and semi-classical models [9] of the electron try to forget the
wave nature of the electron, as far as they postulate a well-defined radius of the electron.
In the example of ref. [9] the electron is modeled as a torus with an eye radius 7, :
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where 4, is the Compton length:
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The Nobel Prize, Louis de Broglie wrote [10]: “The electron can no longer be
conceived as a single, small granule of electricity; it must be associated with a wave and
this wave is no myth; its wavelength can be measured and its interferences predicted”.
Diffraction experiments with electron beams have shown wave properties
similarly to X-rays diffraction by crystals. The experiments have been done by Rupp,
KIKUCHI, PONTE (authors cited in ref. 10).
The wavelength of an electron:
h
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is related with its velocity v which is understood as a “group velocity” defined by the
Rayleigh equation:
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where the frequency v of the phase wave is related to energy by the relation:
hv=mc (11)
We recall that the phase velocity v, in vacuum is:
V=< (12)
In its “intrinsic” referential frame the electron is at rest, so its energy equation:
hv,=m,c’ (13)

defines the minimum frequency v, of the electron as a function of the rest mass m,,
therefore a wave function seems to be associated with the rest mass of the electron.

1.3 Is the Rest Mass Associated With a Wave Function?

The equivalence between rest mass and energy is only known from fermions mass
creation-annihilation, mass defect in atomic nuclei, disintegration encrgy of decay
processes ...etc. A mass defect or annihilation has its equivalent energy in y photons,
which have associated wave functions but are supposed to have a zero rest mass.

A relation connecting the rest mass and space separation of events in space-time
continuum, has been studied by Arup ROy [11]. An experiment for measuring a very
little rest mass of photon has been performed by Roderic S. LAKES [12]; it is based on
MAXWELL-PROCA equations [13,14] where the Gauge invariance is lost. Another
experiment, done by Jun LUO and al. [15], has been criticized by Jian Qi SHEN [16,17].

A true equivalence between rest mass defect or annihilation and energy of
resulting photons should require the rest mass to be associated with a wave function.

Several authors have discussed whether phase waves are truly physical waves or
just interfering functions of statistical probabilities. As photons wave functions matches
Maxwell electromagnetic field, the question concerns only particles with non-zero rest



mass. A quantum-state tomography method has been experimentally used [18] to
determine photon wave functions. It has been possible because photons are quanta of the
electromagnetic field.

Hans de VRIES has studied the relativist kinematics of the wave packet [19] and he
has found that any particle is moving with space-time shifts. He stressed that phase
waves cannot propagate through a physical medium, for the phase wave of a particle at
rest has an infinite velocity and an infinite wavelength.

On the contrary, Kiyoung KiM [20,21] has proposed a model of DIRAC vacuum
[22] (with negative energy particles) where wave functions can propagate.

Daniel M. DuBois [23], Daniel M. DuBois and Gilles NIBART [24] have
developed a theory of a dual Relativity derived from forward-backward space-time
shifts. The continuous version of the discrete forward-backward space-time derjvatives
uses complex coordinates where imaginary components represent the space-time shift.
From this theory the authors have justified the use of plane waves in quantum theory as
an interpretation of the mass-energy conservation of quanta during their propagation.

In quantum theory, mass particles are associated to plane waves with the usual
equation:

Vi=¥ b (14)
where is a normalizing constant, the waves propagates in the direction of the vector
Y g propag;

x, with no transverse distribution.

So this means that the energy of a particle is homogeneously spread over the whole
plane of its associated waves. Thus, particles plane waves are as wide as the whole
universe: it does not explain the Compton length in the Compton scattering.

As a given free particle has a propagation direction (given by the initial
momentum) and a starting point (initial coordinates), its presence probability should not
be homogeneous in the whole universe: it should then have a finite distribution of
presence probability in transverse directions. Moreover, if the energy distribution is
homogeneous in a plane wave, i.e. if the energy density is constant, the total energy in
the whole plane would be infinite and this is impossible. So a non-uniform distribution
of energy density is required in any plane waves.

2 The Transversal Distribution of Rest Mass in the Wave Function

Donald C. CHANG [25,26,27] has proposed “a slight modification from the
traditional Copenhagen interpretation of the wave function™ with a physical plane wave,
which has a distribution of amplitudes in transversal directions.

Donald C. CHANG has postulated that (p. 4 in ref. [26]) “the wave function must have a
cylindrical symmetry” and he has given the general expression of the wave function of a
free particle, shown below:

'/’k(x’t)zl/lo'V/T(kAX)"//L(k'Xat) (15)




where the longitudinal component y/, is the usual wave function and the transversal
component ¥, is “the probability density of the particle in the transverse plane” (p.4 in
ref. [26]). From the usual relativist equation propagation of the electromagnetic field:
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he has computed the transversal component as:
vk Ax)=aJ(lr) " (17)

where J, is a Bessel function of first kind and order #, a is a normalizing constant, and r,
4 are polar coordinates in the transversal plane. Donald C. CHANG has shown that (p.8
in ref. [26]) the number / is related to the rest mass as:
nl

my == (18)
and thus we understand it as an inverted radius 7, :
h
= 19
To myc (19)

which acts as a scaling factor of the variable » in the Bessel function J (r /7).

The equation (16) is a Laplace-like equation in the 3+1 Minkowsky space-time,
and the Laplacian operator V? in polar coordinates leads to the Bessel equation of the
transversal component ¥/, .

Mathematically the solutions have not to be restricted to Bessel functions J;, of
integer orders: # is not necessary an integer as Donald C. CHANG supposed it (p.5 in ref.

[26}).
Bessel functions of positive half-integer order n+'% are also solutions of the Bessel
equation, and they must be included.

As examples, the Bessel function J, of order 2 :

Jy(rin)= f% sin(r /7, ) (20)

and the Bessel function J, of order 3/2:

J%(r/fa)a}—,z;ff,— {—Siir(;%r—”l-—cos(r/rg))J (21)

are aiso solutions, aithough the Bessel function of negative order — Y%:
2n
Tr

J(r/n)= cos(r/r,) (22)

is excluded because its divergence at zero radius:
limJ_(r/r,)=eco (23)

Furthermore, Bessel functions of positive decimal order are also solutions, and
they must be included (they can be computed with series).



Obviously the equation (17) has the cylindrical symmetry:
v kax)=aJ(r/r) "’ (24)
as the Bessel function J,(r/7) depends only on the radius r and the circular function

+ind

e '""of the angle & always corresponds to the unity radius. The three Donald C. CHANG
surface graphs a, b, ¢ in figure 1 of ref. [26] have been drawn from the complex function
v, at the Bessel orders n = 0, 1, 2 respectively, but only the graph a has the cylindrical
symmetry required by the equation (17).

In the Donald C. CHANG graphs b, c, in figure 1 of ref. [26] the cylindrical
symmetry has been lost because the Math software draws a surface graph from the real
component of the complex function ¥, : we could reproduce these graphs with the
software Mathcad 6.0 SE and we have seen that his graphs b, ¢ of orders n =1, 2 show
rather the following function:

v kax)=aJd(r/r)cosnd (25)
which has not the cylindrical symmetry.

The transversal density of mass presence of a free particle is:

dr(kAx)=WT'WT (26)
and thus
d(kax)=a’JAr/r) (7

We have drawn (with Mathcad) the surface graphs of the mass presence density
d, for the Bessel orders n=0,n=0.33,n=12,n=1,n=3/2,n=2,n=3 and n =4.

An example with a decimal Bessel order is given in figure 4 and two examples
with a half-integer Bessel order are given in figures 5 and 7.

For only n = 0, the mass density is maximum at the zero radius: J_; =1, as shown
in figure 1.
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Figure 1: Transversal density of mass presence with the Bessel order zero.



For any value »n > 0, the mass density is null at the zero radius ¢_, =0 and is

maximum at a radius 7 which depends on the Bessel order », therefore any mass
particle possesses a hollow mass, as shown on the figures 4 to 10.

Since the decimal Bessel order » = 0.1, a hollow mass appears, as we can see it in
comparing the figures 2 and 3, which are zoomed on the maximum density.
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Figure 3: Zoom on the hollow mass with the decimal Bessel order 0.1.

A higher Bessel order generates a larger hollow, a lower maximum of density, and

a mass density which is more widely spread out in space, as shown on the figures 4 to
10.
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Figure 6: Transversal density of mass presence with the integer Bessel order 1.
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Figure 7: Transversal density of mass presence with the half-integer Bessel order 3/2
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Figure 9: Transversal density of mass presence with the Bessel order 3.
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Figure 10: Transversal density of mass presence with the Bessel order 4.

All transversal distributions have a primary maximum at a smaller radius 5 and
several secondary maxima at greater radii » >»#, which are each separated with a
minimum of zero density, as shown in the figures 1 and 4 to 10. So the transversal
distribution of mass has a wave nature with spatial frequencies.

The radius 7, , defined in equation (19), is not the radius of a particle, because it is
smaller than the radius # of the primary maximum:

n>%n (28)
(since the Bessel order > approximately) and because the electron mass is spread over
to all secondary maxima. The usual plane wave is not the limit of this transversal
distribution when the Bessel order becomes infinite.

Donald C. CHANG suggested (p.8 in ref. [26]) that the Bessel order » may be
related to the helicity 4 of the particle with eigenvalues n/, but he has not demonstrated
such a relation. We think that the demonstration cannot be done because the Bessel

int

order » is not related to the total magnetic momentum 1= j+s and the factor ¢’ in
equation (17) defines just the cylindrical symmetry of the transversal distribution of the
mass density.

The Bessel order n and the radius factor 7, together, define the transversal

distribution of the mass presence density of any particle. Unfortunately the present
theory does not predict the value of Bessel order of each mass particle.

As a consequence of Donald C. CHANG’s theory, the relativist expression of
energy (p.7 in ref. [26]) becomes:

B =cp+#r) (29)
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or:

2
E’= c?[ Pl ) (30)
r

0
Finally his generalized wave function depends on the four parameters: @ k, r,, n.

The three parameters @, k, 7, are respectively related with energy £, momentum p, rest
mass m, of a free particle, but the Bessel order # is not related to any kinetic variable.

Donald C. CHANG assumes the existence of spatial transversal oscillations (p.10 in
ref. [26]), where the function c//T(k /\x) represents variations of the wave density in

space, but there is no temporal oscillation in this theory.

The idea of temporal transversal oscillations can be found in the model of rest
mass proposed by John E. CARROLL [28,29] with the equation (31) in section 3. We
study this in the following section.

3 The Hidden Time Derivatives Equation of Rest Mass

J.E. Carroll has deduced classical Maxwell equations in the usual 3+1 space-time,
from the symmetry required by geometric algebra [30,31,32,33,34] applied to a 3+3
space-time. His work results in a time which has 3 dimensions with components #,, #, 73,
where the measured time 7 = 7; is the ‘principal’ time #; related to the usual time
coordinate xy =c #;, while ct,, ct, are purely theoretical coordinates as long as the author
defines the velocity v as a derivative by the “principal’ time #;: « the axes Or;, O, are all
transverse to v ».

As the both time components 7, #,, can be neither measured nor observed, we say
that the vector (7, #,) represents a “hidden time”. As the two continuous variables 7, #,
in the differential equation (31) are not related to any known and measurable variable,
they seem to be a pure theoretical construct, and they cannot be subject to any
experimental measurement. So the only possible experimental tests would be done with
the temporal transversal variations of the generalized electromagnetic field.

In this theory, the time directions (7, ;) define a rotation sub-group SO(0,2,R)
which leaves the rest mass invariant, and the rotation sub-group SO(3,1,R) in the time
direction 73 which is the Lorentz group. Therefore the choice of the time direction # as
the observed time has introduced a symmetry breakdown in the group SO(3,3,R) which
produces rest mass waves ¥ from a generalized symmetric field varying in a
3-dimensional time dimensions, including the hidden time (7, 1,).

In the present communication we resolve the hidden time derivative equation of
rest mass (31) and we study whether the scalar mass My has different ‘components’ in
hidden time directions #, .

In section 3.2, we consider the case of a one dimension mass, in section 3.3 the
case of the two dimensions mass, and in section 3.4 we propose some assumptions
about the nature of rest mass waves.

13



3.1 Postulates of the Hidden Time Derivatives Equation of Rest Mass

From a symmetric field propagation equation in a 3+3 space-time, J.E. Carroll has
deduced the equation of KLEIN [35], GORDON [36], and FOCK [37] in the 3+1 spacetime
and also the following wave equation of the rest mass (equation 1.1 in reference 28):

MY = (98] +98) ¥ (31)

where of7+0¢, represents partial derivatives of second order, and ¥ a wave function.

The author has done the following simplification:
=h=] (32)
so we will rather write the rest mass wave equation with international units as follows:

2y - 1 e ¥
Mo cz(atf MY 33)

3.2 Solving the Rest Mass Equation for a 1-Dimensional Hidden Time

\
\
\
| Let’s suppose that the hidden time has only one dimension #, and let’s write
\
\

dr, =0 (34)
in equation (33) we get the differential equation:
MY = ﬁ’—; Wy 35)

1
which is a linear equation of the second order with constant coefficients. Its
characteristic form is:

: Ay"+By'+Cy =0 36)
where y is the unknown function . Its associated algebraic equation is:
AF +Br+C =0 (37
so the differential equation (35) has solutions such as:
Ap)=e" (38)
where r is a root of the equation (37). The equation coefficients are:
A=1B=0C==M, (39)
so the discriminant is:
B* —44AC = 4c’M; (40)

For mass particles M # 0, the discriminant is not null and the equation (37) have
the two roots:
r=xcM, 41
which are both real or both imaginary, depending on the sign of M. Therefore the
general solution of the differential equation (35) can be written:

W)= o™ + B (42)
where the unknown coefficients @, 3 are constants or functions which are independent
from the hidden time ¢.
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3.2.1 About the Case of a Real Rest Mass

Usually M02>0, the rest mass Mj is real for subluminal particles. The rest mass
wave is the sum of an exponential function and an inverse exponential function of the
hidden time and it may also be written as:

¥(1,) = Ach(M, ct,)+ B sh(M, ct,) (43)
where A, B are unknown constant coefficients.

The resulting law of rest mass wave is: when the rest mass wave is an exponential
function or an inverse exponential function or their sum, M02>0, so the particle is
subluminal.

3.2.2 About the Case of an Imaginary Rest Mass

When My’<0 the rest mass is an imaginary number, it is a superluminal particle
[38, 39], i.e. a tachyon [40]. Let us write:

M,=im, myeR (44)
The rest mass wave function is:
(1 )=ae™" + B ™ (45)
S0 it can be expressed as:
‘P([, ) =4 cos(a)z‘l - (p) (46)

where the unknown coefficient 4 is a constant or a function which is independent of 7,
and where @ is the wave phase. Thus it oscillates with the frequency v such as:
w=2xv =cm, 47
The resuiting law is: when the rest mass wave is oscillating in the hidden time,
My*<0, so the particle is superluminal. We recall that the relativist energy decreases as
an inverse exponential with the superluminal velocity [41].

3.3 Solving the Rest Mass Equation for a 2-Dimensional Hidden Time

Now let us consider the case of the rest mass equation (33) with a 2-dimensional
hidden time:

gy L[& 0
MO\P_Czk o )Y (48)

3.3.1 Introduction to the 2-Dimensional Hidden Time Rest Mass Equation

The general solution (42) of the rest mass equation (35) with a 1-dimensional
hidden time is a particular solution ¥ and ¥ of the rest mass equation (48) in every
time direction #, and #,, as written below:

Wt )= 0" + B (49)
le(tz )= e - g (50)
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Because the rest mass equation (48) is linear in ‘¥ we have the additive solution:
| \P(tl"tz):\}‘l(tl)+\}l2(t2) (51
which is studied in section 3.3.2 but we can also have the multiplying solution which is
studied in section 3.3.3:
\P(lptz): ‘Pl(tl )X\Pz(tz) (52)

3.3.2 The Case of Additive Rest Mass Waves
In the case of additive rest mass waves, the rest mass wave has two components in

¢ and in #;, with the same exponent value c¢My. From equations (48), (49), (50) and (51)
we obtain the derivative:

Mély(’ptz): Mlqul(tx)'*’M:z‘Pz(tz) (53)
where ¢* has been eliminated, and we deduce that squared mass components are equal:
M} =M} =M; (54)
1.e.
M, =1M, =M, (55)
and thus the additive rest mass wave is:
Y(t,t,) =, ™" + B e + o, " + B, e (56)

|

:

\

\

\

\

\

\

|

|

|

|

|

|

|

‘ where the unknown coefficients o, o, B, [ are constants or functions which are
| independent from the hidden time ¢, and #.

| For a subluminal particle, the rest mass wave is the sum of exponential functions
| and inverse exponential functions of ¢; and ¢, and it may also be written as:

; W(t,t,)= 4 ch(M,ct,)+ B sh(M, ct, )+ A, ch(M, ct, )+ B, sh(M, ct, ) (57)
| where the unknown coefficients 4,, 4., B|, B, are constants or functions independent
| from the hidden time ¢; and .

| For a superluminal particle, the rest mass is imaginary:

;

|

|

|

\

|

|

\

\

\

\

\

M, =im, (58)
then the rest mass wave can be expressed as:
W(t,1,) = ™ + B e +a, €™ + B e " (59)
It is a 2-dimensional oscillator:
¥(t,1,) = 4, cos(wt, ~ @, )+ 4, cos(wt, - p,) (60)

where the unknown coefficients 4, 4, are constants or functions independent from the
hidden time 7, and #,, and where @, ¢, are the wave phases. It oscillates with the same
frequency v in the both time directions #,, #,:

=27V =cm, (61)
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3.3.3 The Case of Multiplying Rest Mass Waves

In the case of multiplying rest mass waves, the rest mass M, has two dependent
components M; and M,. From equations (48), (49), (50) and (52) we obtain the
derivatives:

0’ )
‘a_tT q‘(’x:lz ) =My lill(tl )\Pz(tz ) (62)
1
9’ 2
S}le(tp’z): M, \P:(ﬁ )\Pz(tz) (63)
then from equations (48) and (52) we get:
MW (1)) = MY (6 )0, )+ M ), (64)
and we deduce the rest mass components relation:
M; =M+ M; (65)
and thus the multiplying rest mass wave is:
Bloty)=og e + B o e + e (66)

where the unknown coefficients o, o, B, B are constants or functions which are
independent from the hidden time #, and #,. The mass components M; and M, also are
constants or functions, which are independent of ¢; and ;.

An interesting particular case is the oscillation of rest mass components in the
observed time £3:

M, = M,cosw,t
i 0 ) w} 3 (67)
M,=M sinw,t,
with an unknown frequency w:
m, =27V, (68)

For a subluminal particle, the rest mass wave is the product of sums of
exponential functions and inverse exponential functions of #; and of #,, which may be
written as:

W(1,1,)= [A1 ch(M, ct, )+ B, sh(M, ct, )] [A2 ch(M, ct, )+ B, sh(M, ct, )] (69)
where the unknown coefficients 4, 4,, B), B, are constants or functions independent
from the hidden time #; and 2.

For a superluminal particle, the rest mass is imaginary:

My=im, myeR (70)
Let’s write its imaginary components as:
M =im M,=im, m,m,eR (71)
the rest mass wave can be then expressed as:
Wit f= (04 &m + B e meh )(a/2 em + B, e ) (72)
It is a 2-dimensional oscillator:
\P(tl’ L ) =4 COS(a)l L@ )COS((I)Z L-¢, ) (73)
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where the unknown coefficient 4 is a constant or a function which is independent of the
hidden time #, and #,. The oscillator is composed of two frequencies vi, v»:

® =27, = cm (74)

w, =27V, =cm, (75)
which are both dependent as shown below:

o} + @} =c*m} (76)

The wave function of a superluminal particle with rest mass oscillations in the
observed time 3 can be deduced from equations (67) and (71) as:

W(t,1,)=4 cos[mo cos(ayt, ) ct, — ] cos[mo sin(@y, )ct, -, | 7
with the unknown frequency v4:
o, =27v, (78)

3.4 About the Physical Nature of the Rest Mass Waves

We should discuss about the physical nature of the wave P, which is associated to
rest mass. If we suppose that the rest mass wave W has a known physical nature: the
theory of the rest mass wave ¥ could then be tested experimentally.

3.4.1 Components of the Zero Rest Mass Wave of the Photon

Usually electromagnetic fields are known to propagate and oscillate only within
the observable time ¢ = 13 with the usual Maxwell propagation equation of the photon

wave ¥o:
( o’ __a;__a"?__a'__j\pﬁ (79)

but the zero rest mass wave Wy may have opposite variations in the hidden time (¢, #,)
with the following correlation:
[ & +~a;]\yo ) (80)

o ot

Consequently the two components of the zero rest mass wave ¥, in the #; and 1,
dimensions may be different from zero and thus they might have to be related with the
mass of a pair of particle-antiparticle. The equation (80) will be called the “photon
correlation in the hidden time”.

3.4.2 Rest Mass Wave of Mass Particles

We might suppose that the rest mass wave ¥ of mass particles have a gravitational
nature, but we may rather think that the rest mass wave ‘P has an electromagnetic nature.
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Let’s assume that the Caroll symmetric field propagating the 3+3 space-time
coordinates:

Wt ehet, x, 0%, ) (81)
is physically an “extended electromagnetic field” in the physical 3+3 space-time: it
propagates within the 3-dimensional time, including the hidden time. From this
viewpoint, an electromagnetic beam ¥ with very specific variations in the hidden time,
might interact with the mass wave ¥ of a mass particle, making a perturbation of the
observed mass.

If we could produce an electromagnetic beam ¥ with specific exponential or
inverse exponential variations, it would be able to increase or decrease the gravitational
mass of an interacting particle. If we could produce an electromagnetic beam ¥ which
oscillates in the hidden time, with correct resonant frequencies v;, W, V3, the mass wave
‘¥ of an interacting particle will start to oscillate in the hidden time (z,, #,) too, then the
mass would become imaginary and the particle would jump over the “light barrier”.

4 Conclusion

On the one hand, from Chang’s work on rest mass, we know that the usual wave
function of a mass particle should be modified to introduce the spatial distribution of
amplitudes in transversal directions.

We have drawn several possible surface graphs of the transversal distribution of
mass density, using Bessel functions of positive real orders, and we have shown that it is
consistent with the wave nature of mass particles.

The transversal distribution of mass density is related to rest mass through a scale

factor %, and it depends on a new quantum number: the “Bessel order” which is not

necessary an integer n. As far as its values are not predicted by the theory, the Bessel
order may have a continuous spectrum.

To resolve the divergence of mass point particles at radius zero, we have proposed
to introduce the transversal distribution of wave functions amplitudes with a zero or
positive Bessel order. We have shown that any mass particle of positive Bessel order has
a hollow mass.

On the other hand, the rest mass operator introduced by J.E. Caroll defines
variations in hidden time of an electromagnetic field, which is generalized to a 3+3
space-time. We have studied these variations in hidden time and we have shown that
they are only oscillations (i.e. waves) for superluminal particles.

We have suggested that the photon correlation in the hidden time might have
something to do with particle-antiparticle pair correlations, and we have suggested that
the field variations associated to rest mass might have the same physical nature as a
generalized electromagnetic field which propagates in a 3+3 space-time.
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