
Software Evolution Principles Applied to a Real Case: Process
Information Management in a Nickel Factory

Raul E. Menendez Mora 1, Mauro M. Garcia Pupo2
, Nuria Medina Medina3

,

Marcelino Cabrera Cuevas
1

•
2Universidad de Holguin, Cuba 3

•
4Universidad de Granada, Spain

1raul@facinf.uho .edu.cu, 2mauro(@,crista1.hlg.sld.cu, 3nmedina@ugr.es, 4mcabrera@ugr.es

Abstract
Maintenance is considered on many tendencies as part of a wider discipline called
Software Evolution. The formal and well defined concepts provided by this discipline
permit accomplishing software maintenance in a consistent and reliable way. This work
is based on three foundations for evolution: an architecture, a set of mechanisms and
models, and the concept of parametrizable system; and it describes the application of
these concepts to a real system at the Cuban "Ernesto Che Guevara" Nickel Factory in
order to automates part of its maintenance.
Keywords: Software Evolution, Metamodeling, Parameterizable Systems.

1. Introduction

Software development is an iterative process in which the product changes with
extreme ease, which causes the maintenance of the software to be complex.
Traditionally, the focus of the development of software for the maintenance has pursued
improving this property, since maintenance takes approximately between 50% and 70%
of the total cost of the development. Although the inclusion of new errors when trying
to fix others causes a progressive deterioration of the product, maintenance is necessary
to correct errors, enlarge or adapt the software or simply to perfect it. At the moment,
numerous tendencies (Lehman et. al., 2001a, 2001b; Madhavji et. al., 2006; Medina et.
al., 2002; Parets and Torres, 1996, 1999) consider maintenance a part within a much
wider discipline denominated software evolution. The formal and well-defined concepts
that are provided by this discipline allow carrying out the maintenance in a consistent
and reliable way, reducing accordingly the deterioration of the software which is the
main cause of the crisis or rather "chronic illness" that the software goes through from
its birth.

The "Comandante Ernesto Che Guevara" Nickel Factory, located in eastern Cuba is
one of the biggest industries in the country. In 2004, technological changes in the
process of production of the factory affected sigriificantly the information systems that
supported the information management of the production process. The main objective of
this paper is the combination of several evolutionary theories applied with the purpose
of developing more robust and flexible computer systems in favor of an information
management that represents the objective reality of the factory over time.

International Journal of Computing Anticipatory Systems, Volume 20, 2008
Edited by D. M. Dubois, CHAOS, Liege, Belgium, ISSN 1373-5411 ISBN 2-930396-07-5

Specifically, the paper is structured as follows: Section 2 establishes and defines the
concepts; models and architectures that constitute the main evolutionary principles
applied in a practical way to improve the software systems used in the nickel factory.
Section 3 describes the practical application of the presented evolutionary theory with
relative details. Finally, section 4 presents brief conclusions of the work carried out.

2. Theoretical Principles

2.1 General Concepts of Evolution

A system is characterized by being active, stable and evolutionary in its
environment and with reference to its purpose. In this way, the modeling of the system
should cover three representations: functional (external), organic (internal) and
historical (genetic). Moreover, if the modeler is capable of representing itself as any
other object of the system, it constructs a systemic model of itself On the other hand,
we will take process to mean: "all change in time of matter, energy or infonnation",
activity in which two fundamental elements intervene: the changed object (processed)
and the object that produces the change (processor).

From the Representation System viewpoint (Le Moigne, 1990a) it is interesting to
distinguish between the active intervention of the object as processor and the
performance of the object as processed. The first one shows "the operation, the almost
visible immediate activity, the active and intentional intervention", the second
represents "the evolution, the internal transfonnations, the mutations, the equilibrium
ruptures that although they don't affect the nature, the uniqueness of the represented
object, they can concern their forms and behaviors" (Le Moigne, 1990b).

2.2 Architecture for the Evolution of a Software System

A software system is a group of processors that interact with each other and with the
environment, so that the whole system can be seen, from a functional perspective, as
one processor (Parets, 1995). The modeler executes changes in the system during the
development process, and also later during its functional life. These last changes modify
the structure or functionality of the system in order to produce adaptations that
guarantee the utility of the interaction of the software system with its environment.
Therefore, the ability of a system to evolve implies the anticipation of the types of
modifications a system can undergo during its development and operation. Then the
developer will be able to, in the future, to carry out necessary changes (structural or
functional) in the software system and adapt it to its surroundings in an easier and more
flexible way (Medina et. al. , 2002).

In the process of evolution of the software system, the developer is a very important
element because he is responsible to model and design the capacity of evolution of the
system and later to carry out evolutionary actions to produce the necessary changes on
the system. Based on this, there are two ways in which a software system can evolve:
• Evolution of the system, lead by the developer.

384

• Auto-evolution of the system, carried out in an automatic way (depending on
certain mechanisms previously defined by the developer).

For a software system to evolve, its architecture should recognize two levels of
abstraction: system and meta-system. The meta-system provides the developer with
evolutionary actions to create and modify the system. A system can be seen as a group
of related subsystems. Therefore, to guarantee the consistency of the complete system
two mechanisms are needed:
• Restrictions that check that the change on the subsystem is coherent, that is, an

evolutionary action is not allowed to execute if the state of the subsystem does not
satisfy the restrictions imposed for that change.

• Automatic propagation of the change. Sometimes a change affects other elements of
the modified subsystem and it can even have repercussions on other related
subsystem or subsystems that interact with it. This causes it to be necessary to carry
out new changes to maintain a consistent state at global level.

Based on what has been explained, Parets in (1995) proposes the interaction structure
shown in figure la

developer

SS: Software System
MS : Meta-System

MS

Figure la: Two-level architecture.

2.3 Mechanisms of Evolution

SS

user

The evolution mechanisms represent different ways used by the software systems to
change. Each mechanism includes a group of activities that produces the change
through its coordinated execution. On the previous architecture, Torres (Torres and
Parets, 1999) proposes two types of mechanisms: Adaptation and Inheritance.
• Adaptation by Accommodation/Learning: The systems adapt to their

environment learning the best way to use their structure without changing it. This
type of adaptation is carried out in functional environments where the user

385

communicates with the software system using actions from its interface and
perceiving the adaptation as changes in its responses.

• Adaptation by Mutation/Differentiation: This type of adaptation is more radical
than the previous one because it implies changes in the structure of the system that
causes changes in its functional character, but they also introduce new possibilities
of adaptation by accommodation/learning. This modification type needs the
intervention of the meta-system.

• Inheritance: The inheritance mechanism is used in the generation of descendants of
software systems, which inherit the adaptations of its parents. The new system
inherits the initial structure and the changes of the two types of adaptation seen
previously.

2.4 Models of Evolution

An evolution model is a symbolic representation of the particular meaning of the
effect of the changes in a software system. Six models are proposed in (Torres and
Parets, 1999), each of which makes use of one of the described evolution mechanisms
(table 1).

Table 1: Evolution Mechanisms and Models

Mechanisms of Evolution Model of Evolution

Meta-Teleology

Adaptation by mutation/differentiation Teleology

Auto-adaptation metasystem - system

Inheritance of the meta-characteristics
Inheritance

Inheritance of the characteristics

Adaptation by accommodation/learning Auto-adaptation of the system

1. Meta-Teleology directed by the modeler: The modeler carries out modifications in
the structure and operation of the meta-system using actions of its evolution
interface. This model applies the mechanism of adaptation by
mutation/differentiation.

2. Teleology directed by the modeler: Changes in the structure and functioning of the
system are produced by the modeler using actions of the action interface of the
meta-system. The mechanism of adaptation is applied by mutation/differentiation.

3. Inheritance of the acquired meta-characteristics: If the modeler decides so, a new
meta-system can be generated from the old meta-system. The obtained meta-system
inherits the meta-characteristics (structural and functional) acquired by the father
during its evolution. The inheritance mechanism is applied.

386

4. Inheritance of the acquired characteristics: This model is used by the modeler
when it wants to create a new software system from an existing software system.
This model inherits the new characteristics (structural and functional) of the old
system acquired during its evolution. The inheritance mechanism is used.

5. Auto-adaptation meta-system - software system: The meta-system carries out
structural and functional changes in the system without the modeler's direct
intervention. This model applies mechanisms of adaptation for
mutation/differentiation.

6. Auto-adaptation of the system: The software system develops an adaptive process
with neither the modeler nor the meta-system participates actively in it. It applies the
mechanism of adaptation for accommodation/learning to only carry out changes of
functional type.

In figure 1 b, the six evolution models are superimposed on the structure of interaction
of figure la. Each arrow has associated the number of the represented evolution model.

modeller

l

15: J Action interface
- Evolution interface

I

e scendent:
: MS /:SS :
'--------•

Figure lb: Models of evolution.

2.5 Parameterizables Systems

Pararneterizable systems are considered to be those that establish in advance a series
of variables that allow the adaptation or modification of the system. For example, two
types of systems that frequently follow this adaptation philosophy are: Adaptive
Commercial Systems (SAP, 2007) and Content Management Systems (CMS) whose
objective is to organize and structure contents by a wide community of users (Boiko,
2004).

The achievement of a good pararneterization is a decisive step in the aspiration of
achieving a better adaptation of the software system in different environmental
conditions. The parameters constitute options of configuration that the system provides
to the user without direct intervention of the developer or the meta-system. With time,

387

most of these systems transfurm the parameters in metadata serving as a starting point
for a more complete evolution.

3. Practical Application in the Nickel Factory

The "Comandante Ernesto Che Guevara" Nickel Factory has had an Intranet since
2002: "Intranet 8 Hours" whose name reflects duration of the work shifts in the
company. However, at the end of 2004, technological changes that occurred in the
production process implied modifications in the system of shifts that altered the
sampling system, which had repercussions in the control of the mining and
metallurgical processes. As a result, the system of process control that existed until then
did not reflect the true operative and metallurgical state of the factory. This situation
gave way to the following thought: How to facilitate the adaptation and/or evolution of
the "Process Management System" in the face of changes similar to the previously
mentioned changes? The solution that we found consisted on the application of the
evolution model "Teleology directed by the modeler" along with parameterization
techniques.

3.1 CheNET Corporate Portal

CheNET (Menendez, 2006) is an open corporate portal, with support for distributed
content that is supported by the integration and corporate collaboration of the different
systems that compose it (figure 2). It is based on roles with facilities to personalize and
configure the systems or applications, roles, users and access permissions. The portal is
comprised of a public area where, among other services, it offers information about the
nickel factory, and a restricted area that contains the main systems in charge of the
management of processes and supplies, and the administration and security system.

<<subsy stem >>
Zona Pllblica

<<subsystem >>
Nuestra Empresa

Portal Che Net

< <subsyst@m > >
Zon3 Re stringida

GestiOn Cadena de
Suministros (External Package

<<subsystem >>
GestiO de: Procesos

- Sisterra de .Administr3d6n y
Seguridad

Figure 2: Portal CheNET: Public and private area (main systems).

388

It is a distributed web portal, which is an advantage for the process of upgrading to
new versions in the client stations. In short, the portal presents a client/server
architecture in four layers: Presentation (User interface), Application (Business logic),
Data Access (Communication interface that separates the functionality of the system
from the database system used) and Databases (Data of the business). This separation
allows the logical grouping of the elements according to their features and interrelations
so that if it becomes necessary to carry out modifications in the system they are only
carried out in the layer or layers that contain the affected elements. Except for the layer
of Access to Data, the other layers can contain structural and/or functional components
of the meta-system. For example, in the database layer we can find structural elements
of the meta-system like the meta-class ·Muestra·· where also functional components of
the meta-system appear, implemented through insertion triggers in the corresponding
data table (figure 6).

i: -::subB/st?m >:::-, 1

1 Ecvm::im:i::i
en~..-;;istica '

<-=St~S.'\~!(;<t'n,=>;,
Lhw:Ja:ijt{asi!'-8

mlnt'.!fa

<...::.st.i:1S';1StGtn ·:...~

FP!Vi

~..-.:$1.beysren-r:o.;,<
Pf-R

---,

PRNH3

---,
~<GubsYEt9m~~

PSC

-t~~ub-s'ysranr.»
P•C:S

<<SIJO,\S({lfl)PP

Pliln,,
t6rrn,:.am'f~t1ca

Figure 3: Portal CheNET: Process Management System.

Process Management is an important system in the portal because it allows the
management of all the information related to the production process. The system is
comprised of 14 subsystems or mcxlules that are shown in figure 3: four management
and/or control subsystems (Prcxluction Dispatch, Electric Dispatch, Metallurgical
Accounting, and Energy Economy), six prcxluction plants (Mineral Preparation Plant,
Reduction Ovens Plant, etc.), a basic mining unit, a central chemical laboratory and two
auxiliary plants (Power Station and Water Ptnifying).

3.2 Evolution and Adaptation in the Process Management System

The technological process of the factory is characterized by a great number of
chemical analyses that are carried out on a high quantity of samples in the different
stages of the process. Some of the things that are determined for each sample are: the

389

plant where the sample is taken, the sampling type that is carried out, the chemical
analyses to carry out and their frequency. The identification of the elements that change
more frequently in the processes carried out is decisive in order to apply evolution
techniques on the software system that controls them. The samples and their
characteristics (sampling frequency, chemical analysis, etc.), the indicators of the plants
and the indicators of the technical devices were identified as unstable in the productive
flow of the factory.

Figure 4 shows a fragment of the Process Management Class Diagram, where we can
see part of the structure that allows the above mentioned pararneterization (Frequency,
Plant, Sample, SampleC2, SampleC2_ 43, Parameters of Analysis, Generic Group, Type
of Sampling, Specific Sample C61 ad Specific Sample C61_335). Since the equipment
where the chemical analysis are carried out provide several results, called analysis
parameters, the generic groups (figures 5 and 6) contain the group of analysis
parameters that are obtained in one given moment in time. The generic goups improve
the efficiency in the entry or modification of data by the technicians in charge of
carrying out this task. In addition, the metaclass ·Muestra·· relates and describes all its
instances, for example, the samples "MuestraC2" and "MuestraC61PUNlUAL" that are
also classes.

Modelo de
Usuario

Modelo en
Tiempo de
Eje cuci6n

UMFrecuencia

<<instan ce: off>>

<<instance>>
MuestraC2_ 43

TipoMue streo

<< instan ce off>>

« instance>>
MuestraC6 1 PUNTUAL_335

Figure 4: Process Management System class diagram fragment.

The control (component) used to enter the results of the chemical analysis carried
out on a sample is shown in figure 5. It is divided in two areas: the selection of filters
(frequency, plant, generic group and sample) and the entry of information that adapts to
the selected filters. The analysis parameters that the technician should fill out are
grouped according to their generic groups (Humidity, Granulometry, etc.).

390

R ,.:;. Er1>'od• mdJl/;1><
j Ar,ik,15 ,,...,;,,,<.,.,.

t~..U- C!!ril~~

:,; i'.:J ~ do <!$..

:•; . .'.:J kep.11t,>•

Ito•
Most-:at ! Cb.duu teglt.tl ~
O(led,c.61\

"1Mllt • ~

+
+

Figure 5: Central chemical laboratory: Central samples (data entry mode).

CREATE PROCEDURE spProftue~trasTodoPorFrecuenciaPriltro
@Id_Frecuencia int , @Id_Tipottuestre o int
AS
SELECT dbo . tProGruposGenerico3 . Id AS Id_GrupoGenerico ~

dbo . tP r oGruposGenericos. GrupoGenerico AS Noni:lreGrupoGenerico ,
dbo . tProMuestra~ . I ct AS Id_Muestra1

dbo . tProMuestras .NombreComp l eto AS Noni:JreCompletoMuestra,
dbo . tProMuestras . Id AS ld_frecuencia; dbo , tProPlantas.Id AS Id_Planta ,
dbo . tProPlantas . DescPlanta AS Noiri:lreCompletoPlanta

FROM dbo . tProFrecuencias INNER JOIN dbo . tProftuestras INNER JOIN

WHE RE

dbo . tProMuestras GruposGenericos 00 dbo . tProMuestras . Id = dbo , tProftues tras Grupo5Genericos . I
dbo . tProGr uposGenericos ON dbo . tProMuestrasGruposGenericos . Ict Gr upoGenerieo dbo . tProGrup
dbo . tProPlantas ON dbo . tProKuestras . Id_Planta = dbo . tProPlanta~ . Id ON ~o . tProTrecuencias .
(dbo . tProMuestras . Id_ Freeuencia = Bld_Frecueneia)

~Urn (dbo . tProl'Juestras . Id_Tipol'luestreo Bict_TipoHue:,tre o)
ORDER BY NombreCompletol'Juestra

(;C) • ···-.

i20 Niquel Disuelto - Total 105 C-2 6
' ~2--H-ume--d-ad-----------------~ 6 106 C-'I .

2 Humedad 6 107 C-'I .

11 S6lidos en Productos Finales

17 Granulomet ria 1 . 180, 0 . 850, ...

5 Az~re - Carbone

~J 5 Azufre - Carbone

..J 5 A.z~re - Carbone

, no

109

109

109

173

17'1

r a 6

C-6 .

C-6.

C-6 ,

C-6, 1 PUNTU.I.L

C- 6,1 PUNTUAL

391

lNomb r eCompletoPlanta

P l anta Cale inae i6n y Sinter

P l anta Cale inae i6n y Sinter

P l anta Caleinaei6n y Sinter

Planta Calcinaci6n y Sinter

Planta Caleinaci6n y Sinter

Planta Calcinaci6n y Sinter

P l anta Ca l einaci6n y Sinter

P l ante. Calcinaei6n y Sinter

Planta Caleinaci6n y Sinter

Figure 6: Fragment of a meta-procedure: Functional component of the meta-system in
the database layer.

The main improvement added from an evolutionary point of view is that making use
of the double level of abstraction proposed in the section 2.2, the control adapts at all
times to the structure of the system described in the meta-system. If a parameter of the
sample changes, for example, the concentrated chemical analyses in a generic group, the
control automatically detects it by means of meta-procedures and updates the data-entry
area. The meta-procedures (figure 6) are methods stored in the Database layer that
return the meta-characteristics of the different classes (MuestraC2,
MuestraC61PUNTUAL, etc.) whose meta-class is the class "Muestra". Figure 6 also
shows some meta-characteristics of some samples and how a generic group (Humidity)
can be used in different samples (C-4.1 , C-4.2 and C-4.3) and how a sample (C-6.1) can
also contain several generic groups ("Solids in final products", "Granulometry 1.180,
0.850 . . . " and "Sulfur - Carbon").
Two evolution examples permitted to the developers and super-users of the system are
described in detail in sections 3 .2.1 y 3 .2.2.

3.2.1 Example 1: To Modify the Frequency

In order to modify the frequency of sampling of the sample
"MuestraC61PUNTUAL" (for example, from 2 to 4 hours) it is only necessary to
modify the value of this property in the instance i:J. the class "Muestra". The presence of
a one to many (1 - 1.. *) relationship between the meta-class "Muestra" and the class
"Frecuencia" (figure 4) it allows that each instance of the first class (each sample type)
corresponds with only one of the instaoces of second class (a concrete frequency).
Similarly, this change is done for the sampling type or the plant where the sample is
carried out, among other parameters.

3.2.2 Example 2: To Add a New Central Sample

There are three types of samples: special, central and special analysis. To add a new
central sample (figure 5), it is necessary to create a new instance of the class "Muestra".
Let us imagine, for example, that a new sample SM9 that will be taken in the Mineral
Drying Plant with a frequency of sampling of 6 hours is added. As a result, an event
goes off that creates a new class "MuestraSM9" with the indicated characteristics and
whose properties by default will be Id (identifier of the instances of this class),
DateTime (time when the values are inserted) and AnalysisPararneterl (at least one
analysis parameter for the sample is assumed). The developer or super-user should
rename the AnalysisParameter 1 (like Sulfur or Carbon in Figure 5) and link it with a
specific generic group. As many additional analysis parameters as necessary can be
created. All the added parameters are recorded as instances of the class
''ParametrosAnalisis".

392

At the moment, these facilities are not included in the Presentation layer. However,
they are carried out in a more rudimentary interface, although its inclusion in the web
interface of the portal is foreseen in the immediate future. It has not been carried out for
commercial reasons and not because of technical causes. Thanks to the previously
defined mechanisms the structure can be changed without reprogramming the system.

4. Conclusions

A software engineering process based on a double level evolutionary architecture
permits the anticipation of modification types that the software system can undergo and
make them effective by means of evolutionary actions that guarantee the consistency of
the change through the confirmation of restrictions and its automatic propagation. The
representation of the different ways in which the software system changes by means of
formal models of evolution makes the resulting system more robust and flexible.
Finally, the pararneterization of the system permits to foresee a group of variables that
are especially susceptible to the change, establishing this way concrete evolution points.

The evolutionary model implanted in the Process Management System of the Cuban
Nickel Factory "Comandante Ernesto Che Guevara" can be summarized as follows:
a) Study of the parameterizable variables, foreseeing the aspects of the productive

process that can be necessary to modify during the system lifetime.
b) Definition of a meta-level to formalize the changes in the above mentioned

variables.
c) Application of the evolutionary model teleology directed by the modeler based on

a) and b) that permits the modification of the structure of the system by means of
direct intervention of the developer who requests the changes without having to
reprogram the system. This model, as described in the section 2.3, applies the
mechanism Adaptation for mutation/differentiation that in turn implies new
possibilities of Adaptation for accommodation/learning.

In a practical sense, from the developer's perspective all the above-mentioned allows
changes to be carried out in a more flexible, quick and consistent way, by foreseeing
them by means of the previously mentioned evolutionary mechanisms. From the users'
viewpoint, the software reflects at all times the true reality of the enterprise.

Acknowledgements
This research is supported by ADACO project TIN2004-08000-C03-02 (CICYT,

Government of Spain).

References

Boiko, B. (2004) Content Management Bible, 2nd Edition. ISBN: 978-0-7645-7371-2.
Le Moigne, J.L. (1990a) La theorie du systeme general. Theorie de la modelisation.

PARIS. Presses Universitaires de France, ISBN: 2-13-043323-5.
Le Moigne, J.L. (1990b) La modelisation des systemes complexes. PARIS. Presses

Universitaires de France, ISBN : 9782100043828.

393

Lehman, M. Ramil, J.F. and Kahen, G. (2001a) Thoughts on the Role of Formalisms in
Study ing Software Evolution. Proceedings of Formal Foundations of Software
Evolution, Lisbon, Portugal, 8 pps, in Mens T. and Wermelinger M (eds.) Tech,
Report UNL--DI-1-2001.

Lehman, M. and Ramil, J.F. (2001b) An Approach to a Theory of Software Evolution .
Position paper, Proceedings of 4th International Workshop on Principles of Software
Evolution (IWPSE'0l), Vienna, Austria, ISBN: 1-58113-508-4, Pp.: 70-74.

Madhavji, N. Fernandez-Ramil, J.C. and Perry, D. (2006) Software Evolution and
Feedback: Theory and Practice. John Wiley & Sons, Ltd. ISBN: 0-470-87180-6.

Medina, N. Garcia, L. Torres, J.J. and Parets, J. (2002) Evolution in Adaptive
Hypermedia Systems. Proceedings of International Workshop on Principles of
Software Evolution (IWPSE'02), Orlando, Florida, ISBN: 1-58113-545-9, Pp.: 34-
38.

Menendez., Raul. (2006) CheNET: Corporate Portal of the "Comandante Ernesto Che
Guevara " Nickel Factory. Master thesis.

Parets, J. (1995) Reflections on the Process of Conception of Complex Systems.
MEDES: A method of specification, development and evolution of software system.
Ph.D. thesis.

Parets, J. and Torres, J. (1996) Software Maintenance versus Software Evolution: An
Approach to Software Systems Evolution. Proceedings of IEEE Symposium and
Workshop on Engineering of Computer Based Systems (ECBS'96), Friedrichshafen,
Germany, Pp.: 134-141.

SAP Leaming Solutions. (2007). http://www.sap.com
Torres, J. and Parets, J. (1999) A Formalization of the Evolution of Software Systems.

Proceedings of International Conference on Computer Aided Systems Theory
(EUROCAST'99), Vienna, Austria, Lecture Notes in Computer Science 1798, ISBN
3-540-67822-0, Pp.: 269-272.

394

	Casus_v20_pp383-394_Menendez

