
Abstract 

A Particle Structure with Spatial Frequencies, 
and a Possible Hollow Mass 

Gilles Nihart 
Laboratoire de Physique Theorique Fondamentale de Paris 

23 Boulevard Bessieres, F-75017 Paris, France. 
lab.phys.theo@club-intemet.fr 
gilles.nibart@club-intemet.fr 

Daniel M. Dubois 
Centre for Hyperincursion and Anticipation in Ordered Systems, 
CHAOS asbl, Institute of Mathematics B37, University of Liege, 

Grande Traverse 12, B-4000 LIEGE 1, Belgium 
http://www.ulg.ac.be/mathgen/CHAOS 

Daniel.Dubois@ulg.ac. be 

In our previous paper [1], plane waves of any free massive particle were described with 
a transversal distribution that is defined by a new quantum number, the Bessel order /3, 
which shows the possibility of a hollow structure. 
The present paper will consider any free massive particle with spherical waves 
described by their radial distribution. The scale of different Bessel orders is defined and 
the properties and structure of the presence density are given. Then it is deduced that 
particles can have a hollow mass and can be made passive with an inefficient cross
section. 
Finally, an application to Cosmology is proposed and it is suggested that antimatter of 
extremely high Bessel orders, in galaxy bulge and in star nucleus, may be a solution to 
the three problems of galaxy stability, dark matter and antimatter in the Universe. 
Keywords: dark matter, antimatter, hollow mass, quantum theory, distribution. 

1. Introduction 

Quantum Theory has inherited the idea of "point-like particle" from the concept of 
"mass point" in Newton's mechanics and the concept of "point-like electric charge" 
from classical electrodynamics. The hypothesis of a point-like fermion leads 
mathematically to a divergence of its electric field at a null distance and a divergence of 
its self-energy (section 1.1 in ref. [ 1 ]), from the viewpoint of classical mechanics. 

Nevertheless the concept of point-like electric charge has been justified by the 
problem of its stability: if the electric charge is expanded in space, the distributed 
charges should interact with repulsive forces [2]. Such a problem does not concern the 
mass, as gravitation is attractive. 

The magnetic energy of a moving fermion leads to another problem: the magnetic 
field of the fermion requires a hollow structure (the section 2.3). 
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An other reason is the difficulty to build a pertinent model of fermion: classical or 
semi-classical models (3] cannot be fully consistent with quantum theory as far as 
particles have an internal structure limited by a boundary of finite radius. These 
problems are consequences of the localization of a particle, as a point or a solid sphere 
in space, which might be avoided by models that are built on the wave nature of 
fermions (section 1.2 in ref. [1]). Therefore some authors have proposed models with 
internal waves, which are associated with the structure of the particle (4, 5, 6]. The 
internal waves are required to be superluminal waves (7, 8, 9]. 

Our model of particle is not a speculation about the so-called "internal structure" of a 
boson or a fermion, but it is a study of the distribution of waves in the outer space of the 
particle, as it can be deduced from the foundations of quantum theory. The wave nature 
of fermions is to be considered not only in the time domain with the well-known 
frequency v of its phase wave: 

hv = mc2 (1) 

but also in the space domain, with spatial frequencies (the section 3.4). 
In our previous paper [ 1] we have computed the transversal distribution of the plane 

wave of any free massive particle (fermion or boson) and we have shown that the plane 
wave associated with the energy-momentum (E, p) of any mass particle: 

(2) 

must have a transversal distribution such as: 

(3) 

where r0 is a scaling factor which is related to the rest mass m0 as : 

(4) 

where /3 is a new quantum number, the Bessel order which is a positive real number : 

(5) 

We have computed the transversal density of mass presence and drawn several 
figures of the transversal distribution of the density of presence of mass for several 
values of the Bessel order: /3 = 0, 0.33, 1/2, 1, 3/2, 2, 3 and 4 (figures 1 to 10 in section 
2 ofref. [l]). 

The present quantum theory does not predict any value of the Bessel order of each 
mass particle, as the Bessel order /3 is neither related to any kinetic variable, nor to any 
usual quantum number: it is a new quantum number. So a new law will have to be 
postulated. 

In the present paper we recall that the general differential equation of waves have 
both solutions of plane waves with a transversal radial distribution (section 3.2.1) and 
solutions of spherical waves with a spherical radial distribution (section 3.2.2). 
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In the case of plane waves, we study further the transversal radial distribution of the 
presence density (section 3.2.1), and we deduce a few physical properties: a structure 
with spatial frequencies (sections 3.4, 3.5), a hollow structure of phase waves (section 
3.6), an ineffective cross-section (section 3.7), a hollow structure of mass (section 3.8), 
and the presence density extended at the macroscopic scale (section 3.9). 

We also propose some applications to Cosmology: a solution to the problem of 
antimatter (section 4.1) and dark matter (section 4.2), and a new approach to simulation 
of galaxies (section 4.3). 

2. The Problem of Dimensionless Point Particles 

2.1. Electric Energy Divergence of a Point-Like Electron 

Can an electron be a dimensionless mass point and a dimensionless electric charge? 
Has an electron an infinite proper energy? 

As we have shown [l ], the total electric energy of an electron at rest is given by: 

q2 
W=--

8n:e0 a 

so, when the radius tends to zero, the charged sphere would have an infinite energy: 

a ➔ O ⇒ W ➔ oo 

therefore the electron cannot be a mass point. 

2.2. About the Angular Momentum 

The angular momentum of a little sphere of radius r and mass m is given by: 

J=mr 2 

and a dimensionless mass point would have a zero angular momentum : 

r=O ⇒ J=O 

(6) 

(7) 

(8) 

(9) 

so the discrete values of a spin or orbital momentum predicted by quantum mechanics 
does not match the zero angular momentum of point-like particles. This also shows that 
a mass particle cannot be dimensionless and that there must be a spatial distribution of 
mass. The angular momentum has been excluded from the Principle of Correspondence 
of quantum mechanics, which is expressed in the coordinate representation as: 

.x(x) = X X 

~ • 1,_ d 
A, = -1 n dx 

and in the momentum representation as : 

49 

(10) 

(11) 



Because of the exclusion of spin and orbital momentum from the Principle of 
Correspondence, quantum theory has asserted that they are purely quantum numbers, 
although the angular momentum has been initially defined by classical mechanics. So 
quantum theory has to be enhanced with the introduction of a spatial distribution of 
mass for every type of particle and hopefully it will match the spin and orbital 
momentum operators. 

2.3. Magnetic Energy of a Moving Electron 

Starting from the well known Biot-Savard law: 

dB = tLof d§ I\ Ur 
4n r 2 (12) 

(with the notations used in most scholar books) Paul Marmet has computed the 
magnetic energy of a single moving electron [10] at constant velocity. He considered 
the definition of the electric current I: 

I= dQ 
dt 

as a set of moving electrons of charge e- : 

with a uniform velocity v : 

(13) 

(14) 

(15) 

He defined the density of magnetic energy um as the magnetic energy Um per unit of 

volume Vas: 

U B2 

u =_l!!...=--
m V 2µo 

(16) 

and deduced the differential of magnetic energy: 

dU = tto(e-) v2 dV 
m 32n 2 r4 (17) 

Considering, as it is usual, that the electron has a radius, r, , and integrating to the whole 

volume V, he obtained the total magnetic energy of a moving electron: 

U = µo(e-) v2 1 
m 8n c2 r, 

(18) 

so 
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1 
U--

m r 
e 

(19) 

where the magnetic energy of an electron is divergent at the zero radius, therefore the 
electron cannot be a point-like particle. Further in his paper [10) he demonstrated that 
the magnetic energy of the electron is equivalent, at the first order, to the kinetic part Ek 

of the relativist energy of the electron: 

(20) 

if we take the value of the classical radius r, . 

Finally he interprets the electron radius r, "as the size of a central cavity with radius 

r, in which there is no field, because this would require an amount of energy (and mass) 

which is not compatible with the electron mass". So Paul Marrnet's work shows that the 
self magnetic field of the electron has a hollow structure. 

Similarly we have shown in our previous paper [l] that the transversal distribution of 
the plane wave of a free particle may have a hollow structure at any Bessel order /3 > 0. 

Further more this equivalence of the self-magnetic energy and the kinetic part of the 
relativist mass suggests that the electron might have a hollow mass. 

3. Study of the Transversal Distribution of Particle Phase Waves 

3.1. About the Wave Nature of the Electron 

As we have recalled it in our previous paper [ 1] the electron cannot be conceived as 
an electrically charged point-like mass; it is a quantum of electricity that is associated to 
a wave that has a phase velocity and a group velocity. Electron interferences and 
electron diffractions can be predicted and experimented. 

In its intrinsic referential frame the electron is at rest, so its energy equation: 

(21) 

defines the minimum frequency v O of the electron as a function of the rest mass m0 , 

therefore a wave function is to be associated with the rest mass of the electron. 

3.2. The General Differential Equation of Waves 

The general differential equation of waves: 

(
__!___i_ _ v2 \,, = o 
c 2 a12 f 

has solutions with plane waves and solutions with spherical waves. 

3.2.1. Solutions with Plane Waves 

(22) 

Plane waves represent translations of a free particle with a defined energy 
momentum 4-vector. 
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The case of plane waves has already been studied in our previous paper [1] and we 
recall the expression of its transversal distribution: 

from which we have deduced the transversal radial density of presence dT : 

dT = lJlr · ffir 

(23) 

(24) 

Resulting from a wave distribution function using a Bessel function of order /3 ~ 0, the 
transversal density of presence works as the square of a Bessel function of order /3: 

dir )= a2 J;(r I r0 ) (25) 

3.2.2. Solutions with Spherical Waves 

Here we consider the case of spherical waves. They represent angular momentums, 
which may be an orbital momentum, a spin momentum or both. 

Let's consider the orbital momentum operator I, in spherical coordinates {r, 0, <p}, 
the eigenfunctions of the squared momentum i2 and the projection operator /2 of the 
orbital momentum [11] can be expressed as: 

f(r,0,<p, l,m )= ti(r )· YJ0,<p) (26) 

where I and m are the quantum numbers associated to the orbital momentum I and its 
projection /2 and Li(r) is an « arbitrary » distribution function (SIC !). 

In the usual quantum theory, this distribution function is not considered, as it is an 
arbitrary factor. It is then implicitly identified to the Dirac function, and we have: 

ti(O) = 1 (27) 

for r = 0 on the trajectory of a point-like particle. 
In the usual mathematical resolution, we search for the eigenfunctions YiJ0,<p ), 

which are common to the two operators i2, and /2 and this way of computation implicitly 
require that angular variables 0, (f) can be separable: 

(28) 

Obviously it is just a hypothesis of simplification. So the physical conditions of 
separability of angular variables 0, <p should have to be precisely explained by quantum 
theory. The eigenfunctions of the projection /2 of the momentum are written [12]: 

<I> (cp)=-1-e im{{) 

m J2ir (29) 

and the eigenfunctions of the squared momentum i2 are written [ 11] : 

( ) ( r .1 21 + 1 I - m ! ( ) 
0 1m 0 = -1 ·l • - 2- (l+m)! ·P(" COS0 (30) 
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where 1:;m(cos0) is a Legendre polynomial associated to the polynomial r;(cos0 ). 
As particles cannot be dimensionless, a distribution function ~(r) has to be introduced. 
We think that plane waves and spherical waves should be in a logical coherence. Plane 
waves propagate without any change in their cylindrical distribution, but spherical 
waves propagate with a spherical expansion in space, which has to satisfy the law in 1/r 
and the homogeneous spherical density has to satisfy the law in l/r2 because it is related 

to a solid angle. So we postulate the following spherical distribution: 

(31) 

where /3 is the Bessel order. 
The spherical distribution is formally related to the cylindrical distribution by: 

'l'r(r) = -yr ~(r) · e±iniJ (32) 

although the radius vector r has 3 dimensions for spherical distributions and only 2 
dimensions for cylindrical distributions. Consequently the presence density of the rest 
mass in 3 dimensions has to be expressed as: 

(33) 

and so the spherical presence density is related to transversal presence density by : 

(34) 

3.3. Relations of the Scaling Factor to the Compton Length and the Wave Number 

The Compton wavelength is the coefficient in the well-known equation of the 
Compton effect: 

(35) 

So it has been introduced as: 

(36) 

From equations (4), (36) we deduce that the scaling factor r0 is related to the Compton 

wavelength as: 

A, 
r: =A =-c 
0 C 2n: 

so the scaling factor is identical to the "reduced" Compton length. 
Let us now consider the wave vector k of a mass particle defined by: 

53 

(37) 



P=1ik (38) 

where P is the momentum, the wave number k of the phase wave of the particle or of a 
photon is deduced as : 

me= 1ik 

m=mor 

where m is the relativist mass. So we have: 

(39) 

(40) 

(41) 

The minimum frequency v O of the electron ( equation 21) corresponds to the minimum 

wave number: 

(42) 

with the following relation: 

(43) 

and finally we have: 

(44) 

3.4. A Structure with a Spatial Frequency 

All transversal distributions have a primary maximum at a smaller radius l'j and 

several secondary maxima at greater radii r > l'j , which are each separated with a 

minimum of zero density. The Bessel order /3 and the scaling factor r0 , together, define 

the transversal distribution of the presence density of any particle. 
The Bessel function Jp(x) with large arguments: 

x>>l/32 -¼I (45) 

has an asymptotic form [13]: 

J (x):ae ~ co{x-/3!!__!!_) 
f3 fnx 2 4 

(46) 

so the resulting recurrence relation between its roots zp,; is: 

Z13 . - Z13 ·-1 = 7r , l , l (47) 
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Therefore the two successive zeroes of the transversal distribution of the phase wave are 
separated by half a period. 

We can then express in its asymptotic form, the transversal distribution lflr(r) of the 

phase wave as: 

v,,(r) ~ a ~ 2 '• co{.L - f3 n - ,r ) ,.H 'o 2 4 
(48) 

and the transversal radial distribution dr(r) of the presence density as: 

drCr)"" a 2 .£..lcos2(.L - f3 ,r - ,r) 
7r JrJ r0 2 4 

(49) 

In both equations the successive zeroes match a similar recurrence relation: 

(50) 

So we see that the transversal distribution dr(r) of the presence density has a spatial 

period: 

and that the transversal distribution lflrCr) of the phase wave has a spatial period: 

A= 2nr0 

which is identical to the Compton length: 

A=?. 
C 

(51) 

(52) 

(53) 

The spatial period depends only on the rest mass of the particle: it is independent of the 
velocity of the particle. 

From the spatial period we can define a spatial frequency N as: 

then from equation (44) and from: 

N=-1-
2,r r

0 

we can introduce the spatial frequency f2 as: 

Q=2nN=k0 

(54) 

(55) 

(56) 

So the transversal radial distribution of the phase wave has a wave nature in the space 
domain with a spatial frequency. 

The presence density has the spatial frequency 2N and the spatial period .A/2. 
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3.5. Spatial Frequencies of Some Particles 

As we have shown, we can compute numerically the spatial frequency of some 
particles from its rest mass. We sum up the numeric results in the array below: 

D t A aa rray 1 p . rt" ft rope 1es o ransversa ra ia waves o some pa 1c es. l d. 1 f rt" 1 
electron proton neutron 

rest mass m0 9.1093897 10·31 kg 1.6726231 10·27 kg 1.6749286 10·27 kg 

scale factor r0 3.86159325 10·13 m 2.10308932 10·16 m 2.10019447 10·16 m 

spatial period A 2.4263106 10·12 m 1.32140999 10·15 m 1.3195911 10·15 m 

spatial frequency N 4.12148387 1011 m·l 7.56767396 1014 m·l 7.56767396 1014 m•l 

3.6. A Hollow Structure of Phase Waves 

3.6.1. The Radii Value Depends on the Bessel Order 

The radius '1 is defined as the radius of the main maximum of presence density. The 

ratio '1 /r0 is a function of the Bessel order /3. At Bessel orders /3 > 0 radial distributions 

have a central hole due to the properties of Bessel functions. The radius r2 of the central 

hole is defined as the shorter radius of half the main maximum of presence density. The 
ratio r2/r0 is a function of the Bessel order /3. We have computed the main maximum, 

the ratio '1 /r0 and the ratio ri/ro as functions of the Bessel order /3, numerically with the 

software MathCAD 6.0 SE, until the order 400. The results are given in the data array 2. 

Data Array 2. Radius '1 of the main maximum and radius r2 of the hole. 

Bessel order maximum r1 I ro r2 I ro 
of the density of at the main nt half the main 

distribution presence maximum maximum 
0 1.000 0.000 NIA 

0.1 0.747 0.464 0.009 
0.2 0.633 0.677 0.074 
0.3 0.558 0.855 0.169 
0.4 0.503 1.015 0.273 
0.5 0.461 1.166 0.380 
0.6 0.428 1.309 0.488 
0.7 0.400 1.447 0.595 
0.8 0.376 1.581 0.703 
0.9 0.356 1.712 0.809 
1 0.339 1.841 0.916 
2 0.237 3.054 1.961 
3 0.189 4.201 2.989 
4 0.160 5.318 4.010 
5 0.140 6.416 5.026 
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Bessel order maximum r1 I ro r2 I ro 
of the density of at the main at half the main 

distribution oresence maximum maximum 
6 0.125 7.501 6.040 
7 0.114 8.577 7.051 
8 0.105 9.648 8.062 
9 0.098 10.711 9.071 
10 0.092 11.772 10.079 
20 0.059 22.219 20.138 
30 0.046 32.525 30.178 
40 0.038 42.786 40.200 
50 0.033 52.924 50.225 
60 0.029 63 .187 60.246 
70 0.026 73 .367 70.264 
80 0.024 83.543 80.279 
90 0.022 93 .640 90.294 
100 0.021 103.775 100.307 
200 0.013 205.237 200.318 
300 0.010 304.468 300.345 
400 0.008 406.243 400.516 

3.6.2. The Hole Radius as a Function of the Bessel Order 

The radius r2 of the central hole (defined as the lower radius of half the main 

maximum) can be computed from the ratio rif r0 as a function of the order /3. 
The function r/JJ)) has no known mathematical expression, so we have approximated it 

with the following linear function (using the software MathCAD 6.0 SE): 

ri(/3) =A+ B/3 (57) 
ro 

defined with coefficients A, B depending on the Bessel order, given in the data array 3: 

Data Ar ray 3. Coef 1cients A, B for mtervals o Bess fi f el orders 
intervals of Bessel orders A B 

0.1 to 0.9 -0.154 1.069 
1 to 9 -0.034 1.010 

10 to 100 0.035 1.0031 
100 to 400 0.300 1.0004 

Our applications to cosmology (in sections 4.1, 4.2) use very high Bessel orders (section 
3.11.4). Our first approach may have accuracy less than 1 % so we may consider that: 

(58) 
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3. 7. The Concept of Ineffective Cross-Section 

With strictly positive Bessel orders, the presence density has a null minimum at the 
centre of the particle. Moreover at higher Bessel orders the presence density of the 
particle is quite zero from the centre of the particle until very near a given radius r2 , and 
this results into a lower probability of interaction of a particle P, with a particle P2. The 
presence density of a particle at Bessel orders 100 and 400 are shown with a zoom on 
the hole, respectively in figures 1 and 2 where the x coordinate represents the ratio r/r0 • 

(l,()Jj 

fo{l00,x)2 

125 

Figure 1. Transversal radial density of presence at Bessel order 100. 

(Hlt16 
, 

J(40<1,:t) -

IHKl4 

(1.002 

0 ......, __ -i., _ ______ _... __ ,c__....L._...JL.____.'---L-_._.Jll__._JL....;L..I ....... ....IL---L.J 

300 3.Y.I 315 425 415 SOO 

:t 

Figure 2. Transversal radial density of presence at Bessel order 400. 
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The figure 3 with a zoom at a very low density scale, shows that the presence density 
is quite zero from the centre of the particle until very near the radius Yi . 

-

-

01--------------------------- -

I I I I I I I 

0 .50 100 ISO 200 :?.SO 30() 400 

Figure 3. Zoomed graph of density of presence at Bessel order 400. 

Let us consider two particles P1 and P2 (e.g. an electron and an anti-electron), they 
can interact only at a close enough distance which is experimentally defined by their 
efficient cross-section. If the particle P1 has a high Bessel order, the radius Yi of its hole 
is much greater than the efficient cross-section of the particle P2 so they cannot interact, 
whatever their usual properties: therefore P2 comes out of the scope of P1• We then say 
that the particle P1 has an inefficient cross-section. 

3.8. A Hollow Structure of Rest Mass 

Can the mass of a particle remain confined in a sphere of radius Yi in which the 
presence density is zero? Obviously the answer is no. Therefore the hollow structure of 
waves implies also a hollow mass. Let us remark that in current quantum theory the 
normalization of wave functions, leading to probabilities, have discarded the absolute 
values of scalar coefficients, which represent the intensities, or amplitudes of waves in 
optics, i.e. the scalar 1/fo in the plane wave equation (2): 

(59) 

In this way the normalization has also discarded the distribution of mass. 
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In our previous paper [ 1] we have emphasized that the plane wave of a mass particle 
is the wave function of its rest mass. The two major arguments are the following: 
1. The frequency v is related to the relativist mass and has the minimum v0 which is 

related to the rest mass by the relation (21): 

(60) 

2. The transversal distribution of the plane wave depends on a scaling factor r0 which 

is related to the rest mass by the relation ( 4 ): 

n 
ro = - 

m0c 
(61) 

So we have suggested that the transversal distribution of the presence density of a 
particle can represent the distribution of the rest mass, but it is true in only the 2 
transversal dimensions. We have postulated a distribution function (31) in spherical 
waves, which is also in relation to the distribution of energy and mass for the same 
reasons as here above. And we have deduced a spherical presence density (33) which 
can represent the radial distribution D(r) of rest mass in 3 dimensions. Consequently 
from the hollow structure of phase waves (section 3.6) we deduce a hollow structure of 
the rest mass which have the radial distribution D(r). 

3.9. The Presence Density in a Set of Particles 

Although phase waves 1/fk(x,t) defined in equation (2) are added to compute 

quantum interactions, transversal presence densities dT(r) defined by equations (24, 25) 
are added to compute the presence density of the rest mass in a quantum system of 
interacting particles. When spherical waves are considered, spherical presence densities 
D(r) defined by equation (33) are added to compute the presence density of the rest 
mass. And in the case of the gravitation interaction spherical presence densities D(r ) are 
also added to compute the presence density of the rest mass. 

Let us consider a set of electrons Pi , P2, . .. P0 • To simplify let us consider that they 
are on the same radial axis in given positions s1, s2, ... Sn. The total presence density 
D(r) of rest mass at a great radial distance r on the axis is then given by: 

D(r )= a'2 :2 ~J;f r~s;) (62) 

where /3i is the Bessel order of each electron. Squared Bessel functions are added with a 
difference in the spatial phase, which is due to Sj. 

Linear combinations of squared Bessel functions result in a total presence density of rest 
mass where null minima disappear and microscopic fluctuations are more or less 
smoothed. Similar considerations apply to a set of anti-electrons, a set of protons or a 
set of neutrons. 
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3.10. The Presence Density at the Macroscopic Scale 

At the macroscopic scale, we may neglect the microscopic fluctuations of the 
presence density of a particle in radial directions of space. 

Obviously it is already done in usual quantum theory that never considers any 
transversal distribution. 

We may define an average presence density. It may be <D(r)> from equation (33) or 
< dr(r )> from equation (25) as: 

< dir )> = a2 < J;(r !r0 )> (63) 

Taking the approximation (46) for large arguments (45) we obtain: 

< d (r) >"" a2 .2. fa < cos2(L- 13 n - n )> 
r nr r

0 
2 4 

(64) 

which simplifies into: 

< dr(r) >"" a2 ~ 1:1 (65) 

The above equation seems formally to be independent of the Bessel order, but it is 
not true: the mathematical validity condition of the approximation is: 

and so physically we can take the condition: 

lrl > Yo 132 

(66) 

(67) 

and therefore it excludes all radii r, which are shorter than r2 , i.e. it excludes all 
positions inside the hole. 
Moreover at the cosmological scale, it not pertinent to consider microscopic fluctuations 
and the equation (65) can be used as an exact cosmological law: 

d (r) = a2 1..-.l 
T 7r lrl (68) 

which applies to the presence density of mass at distances r from the centre of a particle, 
which are greater than the hole radius r2 • 

3.11. The Scale of Bessel Orders 

From the plane wave solution (2) of the general wave equation (22) we have seen 
that the Bessel order /3 appears to be a new quantum number which has a continuous 
spectrum. 

61 



The distribution function has different properties at different values of the Bessel 
order; therefore we can build a classification of all possible Bessel orders. 

3 .11.1. The Bessel Order Zero 

For /3 = 0, the main maximum is in the centre of the particle with the highest level: 

(69) 

The figure 1 in ref. [1] shows its surface graph. The distribution function is continuous, 
even at zero radius where the derivative takes the value zero. 
This continuous distribution with f3 = 0 can replace the Dirac distribution which is often 
implicitly used in quantum theory. It is a continuous distribution with spatial 
frequencies. 

3.11.2. The Low Bessel Orders 

When the Bessel order f3 > 0 the presence density has a null minimum at the zero 
radius: 

(70) 

The main maximum stands at a radius l'j where the derivative is always zero. 

The radius l'j is not null, so the distribution of the presence density has a hollow 

structure. 
The diameter 2 l'j of the hole depends on and increases with the Bessel order /3. 

"Low Bessel Orders" are mathematically defined as the following interval: 

/3 E ]0,3/2[ (71) 

The derivative of the distribution function has not the value zero at the zero radius, 
and thus the presence density derivative is discontinuous at the centre of the particle, for 
every positive Bessel order less than 3/2. 

The figures 3, 4, 5, 6, 7 in ref. [1] show surface graphs for the Bessel orders 0.1 
(zoomed), 0.33, 0.5, 1.5 respectively. 

3.11.3. Medium Bessel Orders 

Medium Bessel orders are physically defined as giving a main maximum radius l'j in 

the quantum scale. 

3.11.4. High Bessel Orders 

High Bessel orders are physically defined as giving a main maximum radius l'j in the 

macroscopic scale. Extremely high Bessel orders are physically defined as giving a 
main maximum radius l'j in the cosmological scale. 
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Let us consider a galaxy with a radius Rg of 105 light year, i.e. 9.46 1020 meters. Its 
ratio to the scale factor 'o of the electron is: 

R 
......!.. = 2.45 · 1033 

ro 
(72) 

and it shows that microscopic fluctuations of the presence density are not to be 
considered in the study of gravitation in a galaxy. 

4. Applications to Cosmology 

4.1. First Application: a Passive Antimatter in the Universe 

4.1.1. The Signature of the Presence of Antimatter 

It is commonly assumed that the Universe has emerged from vacuum with some big 
quantum fluctuations that have been frozen by an inflation phenomenon. 

The assumed initial light was made of hot photons that created equal quantities of 
matter and antimatter: quarks anti-quarks pairs, electron anti-electron pairs, and proton 
anti-proton pairs. 

And it is also assumed that the inflation has prevented pair's annihilations back to 
light, while all antiparticles have disappeared during this inflation period. 

Can we believe that half of the mass of the Universe (antimatter) has been 
annihilated, while the other half (matter) has been prevented from annihilation? 
How can it be possible during a so short time of 10-33 second? 

The matter-antimatter imbalance requires the 3 Sakharov conditions [14]: 

1. Baryon number B violation, 
2. C-symmetry and CP-symmetry violation, 
3. Interactions out of thermal equilibrium. 

Actually, there is no experimental evidence of particle interactions where the baryon 
number conservation is perturbatively broken, nevertheless the Big-Bang Standard 
Model is assumed to violate the baryon number conservation non-perturbatively. 
Mathematically, the commutator of the baryon number B and the perturbative 
Hamiltonian His zero: 

[B,H]=BH-HB=O (73) 

So the baryon number violation is an unacceptable U(l) anomaly. 
Moreover the baryon asymmetry of the universe has been naively estimated for the 

standard model. Observational results yield that the baryon asymmetry parameter 77: 

nB -n-B 
,,, =---=-

ny 

is between 2.6 10-10 and 6.2 10-10 as quoted in the literature. 
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Therefore only one antiparticle is cancelled when 10 billion pairs of particle and 
antiparticle are produced. Consequently it is hardly difficult to obtain a baryo-genesis at 
the large scale of the cosmos, which does not include a great quantity of antimatter. 

A.D. Dolgov has reviewed the basic principles of baryo-genesis and the models of 
abundant creation of antimatter in the universe [ 15]. 

The question: "Why did cosmologists postulate that the Universe contains no 
antimatter?" has a very simple answer: "A presence of antimatter would produce 
annihilation of matter before the formation of stars." 

Actually this postulate seems to be contradicted by recently known facts: we have 
detected some quantities of antimatter in our galaxy. 

The European astronomical satellite "Integral" [16] has detected gamma photons of 
511 ke V from the centre of our galaxy [ 17]. Let's also mention an antimatter globular 
cluster with anti-helium in our galaxy "Milky Way" [18]. 

To preserve the postulate of antimatter absence, some authors have explained that the 
positrons may be created from gamma-ray bursts produced by some "mini-starbursts" 
[19], but this statement is not really convincing. 

The Dapnia laboratory of Saclay's CEA has called it a fountain of anti-electrons, 
because the 511 ke V photons flow from the center of our galaxy has been evaluated to 
10+43 per second; it is 400. 10+9 times less than from Sirius. Such observations showing a 
continuous annihilation of electron anti-electron pairs indicate the presence of huge 
quantities of anti-electrons inside the galaxy bulge. 

4.1.2. A Solution: the Presence of Passive Antimatter 

Antimatter is necessarily present in great amount in the Universe because one of the 
3 Sakharov conditions [14] is not met by baryons (section 4.1.1) and the presence of a 
great amount of positrons has been detected in galaxy bulge. So the following questions 
must be answered: 
• How could stars be formed by accretion of matter without being annihilated by 

antimatter? 
• How can a galaxy bulge contain so much antimatter and does not explode? 
The only possible answer is that something in the Universe has prevented antimatter to 
interact with matter. 

A first solution where matter and antimatter are geometrically separated in different 
sheets of the space-time manifold, has been initially proposed by A. Sakharov [20, 21 ], 
next expressed by J.P. Petit in a Newtonian framework [22, 23] and later developed by 
Robert Foot [24]. These theories are at a disadvantage, as they require a very peculiar 
cosmological model with a "twin Big Bang" derived from the standard model. 

The second solution, which we propose here, is a direct consequence of the quantum 
theory extended with radial distributions. Antiparticles at high Bessel orders result in a 
passive state, which forbid any possible interaction with the corresponding particles, 
because of the inefficient cross-section (section 3.7). And reciprocally. 
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4.2. Second Application: a Solution to the Dark Matter Problem 

4.2.1. The Puzzle of Dark Matter 

Fritz Zwicky observed large clusters, such as the Coma cluster, and he found that the 
speed of galaxies is much too great to keep them gravitationally bound together unless 
their mass is one hundred times more than it was estimated from the number of stars 
[25]. According to astronomic computations of star velocities, about 90 % of the 
gravitational mass is an assumed "dark matter". Today the standard explanation is the 
presence of dark matter. 

To explain dark matter, it has been proposed several hypothetical particles [26), 
which should play a key role in the nucleo-synthesis. So every candidate to dark matter 
can have several cosmological implications. 

Some prospects for dark matter are the following: sterile, massive or extremely high 
energy neutrinos [27, 28, 29, 30, 31] , WIMPs (Weakly Interacting Massive Particles) 
[32, 33] which are tracked with the Edelweiss experiment [34), neutralinos which are a 
particular type ofWIMPs [35, 36, 37], axions (light neutral pseudo-scalar particles) [38, 
39, 40), Higgs Dark Matter [41], matter unification [42], sub-quantum physics [43], and 
so on . .. 

A more fundamental question has been asked [44] : "Does the missing mass problem 
signal the breakdown of Newtonian gravity?» 

Mordehai Milgrom has proposed an alternative [ 45, 46] to dark matter: a modified 
Newtonian dynamics (MONO). R.H. Sanders has studied X-ray emitting clusters of 
galaxies in the context of MONO [47]. A. Lue, G.D. Starkman have proposed 
cosmological scenarios built on MONO [ 48]. S. McGaugh has tested MONO 
predictions against WMAP data [ 49]. 

Another fundamental question can be asked: Does the missing mass problem signal 
the breakdown of point-like particle gravity? 

A new solution is proposed here with a possible hollow mass. 

4.2.2. Dark Matter: Particles at Extremely High Bessel Orders 

Considering the transversal distribution of plane waves and the similar radial 
distribution of spherical waves, we have deduced that there is a distribution of the mass 
corresponding to the distribution of the presence density of any particle. 

Can the mass of a particle remain confined in a sphere of radius r2 in which the 
presence density is zero? Obviously the answer is no . Any mass particle of any Bessel 
order /3 > 0 will have a hollow mass, with correlative consequences on its inertia 
momentum and its angular momentum. 

At extremely high Bessel orders, the hole radius r2 of particles in a galaxy bulge can 
reach the radial distance of peripheral stars, and therefore the mass of such particles is 
mainly distributed far away from the centre of the galaxy. This is the expected property 
of dark matter. It means that a galaxy bulge should contain a specific matter, which 
produces a gravitational field only at large distances. 
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Considering the huge quantity of antimatter that is detected from the galaxy bulge, 
the dark matter effect should be produced by a great stock of passive antimatter at an 
extremely high Bessel order. 

4.3. An Approach to the Simulation of a Galaxy 

4.3.1. Recall About Newton Law 

According to the Newton law, the orbital velocity v(r) of a body around a central 
mass Mis given by the well-known equation: 

v(r) = ✓G:1 (75) 

where r is the radius of the orbit and G the gravitation constant, and the angular velocity 
~r) is given by: 

~r) = v(r) 
r 

and therefore the angular velocity is: 

as we currently observe it with the planets of our solar system. 

4.3.2. Mass Distributions and Star Velocities in a Galaxy 

(76) 

(77) 

Let us consider a model of galaxy with a continuous distribution of mass represented 
by the spherical density D(r). For a star at a distance r from the centre of the galaxy, the 
gravitation is due to an equivalent total mass M(r) at the centre that is defined as: 

M(r) = ff 1 D(r)dV (78) 

where S is a sphere of radius r, and it is usually computed with the equation: 

M(r) = 4n-J:D(p)p 2 dp (79) 

where p is an integration variable. 
To have a galaxy stability, i.e. to allow a galaxy to rotate as a whole, all stars must 

have more or less the same angular velocity ~r) and its condition can be expressed as: 

(80) 

4.3 .3. A Simple Method of Simulation of Star Velocities in a Galaxy 

To simulate the star velocities in a galaxy, we have chosen a simple method of 
simulation: we have computed the angular velocity ~r) from the equation (77) for an 
orbit of radius r around an equivalent central mass M(r) which depends on the mass 
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distribution D(r) as defined by the equation (79). The resulting figures of our 
simulations are not to be scaled as we have set the gravitation constant to G = 1. 

4.3.4. Theoretical Star Velocities Around a Point-like Mass 

In a gravitation field due to a point-like mass (a Schwarzschield field) m(r) is 
computed from equation (77) with a constant mass which we have set to M = 1. The 
angular velocity decreases quickly with the radius, as shown in the figure 4. 

2.0 r---r------,----------.-------.--------r-------, 

16 

12 \ 
I 

co(r) \ -
s 

4 

r 

Figure 4. Distribution of velocities around a point-like mass. 

4.3.5. Theoretical Star Velocities Around a Gauss Distribution of Mass 

Let us consider that a galaxy has a Gauss distribution of mass, defined as: 

D(r )= a' e-a-r' (81) 

where CJ is the usual parameter of the Gauss Distribution. As CJ is acting as a scaling 
factor we have set it to CJ= 1. In this simulation we have normalized the distribution by 
evaluating the coefficient a " to have a total mass M = 1, so: 

a"= Mloo) (82) 

is computed from the integral (79), which is always convergent. 
Around a assumed Gauss distribution of mass the angular velocity decreases too 

quickly to enable the rotation of galaxy stars as a whole, as shown in the figure 5. 
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Figure 5. Distribution of velocities around a Gaussian distribution of mass. 

4.3 .6. Star Velocities Around a Galaxy Bulge of Very High Bessel Orders 

In our first approach to the simulation of a galaxy, we study the effect of a set of 
particles (section 14), which have very high Bessel orders. Therefore we consider here 
that gravitation is only due to the mass in the galaxy bulge. 

Obviously in a future accurate simulation of a galaxy we will consider the gravitation 
due to all stars, and this will contribute to lower the derivative of the angular velocity 
but as it is well known, this cannot reach the condition (80) without much added dark 
matter. However our simulation has reached the condition (80). 

In this simulation, we consider the galaxy bulge as a set of particles of one kind ( e.g. 
only electrons or anti-electrons), i.e. all particles have the same scale factor r

0
• Arid for 

convenience we have set it to r0 = 1 . 

The particles have several different Bessel orders. To simplify, only integer orders 
are considered and spherical densities are added as: 

D(r) = a'-¼ I, A/3 J;(r! r0 ) 

r /3=0 
(83) 

and then integrated with equation (79). The coefficient a' has been set to a ' = I. The 
mass has not been normalized and the total mass has not been computed. 

The coefficients A
13 

define the abundance of particles of the Bessel order /3. 

68 



The simulation is fully able to approach the condition (80) by adjusting the 
coefficient A/3 and it can even obtain a positive derivative: 

dui._r) > 0 
dr 

(84) 

We have adjusted the coefficients A/3 to have star velocities which decrease slightly 

with the radius r as it is observed in the arms of spiral galaxies. The chosen coefficients 
are the following: 

A = (0.02;0. l ;30;50;80; 120; 150;250;300; 100;500; 

300;600;800;900; 1200; 1500; 1000; 1200; 1500; 1500) 

where the line matrix A starts with the index f3 = 0. . 

(85) 

The figure 6 shows the resulting distribution of star velocities. The graph has a slight 
negative slope after /3 = 3.94 until /3 = 13.2 and it has a positive slope in two intervals : 
after /3 = 0.68 until /3 = 3.94, and after f3 = 13.2 until f3 = 17.4. 
With greater coefficients A/3 at some given orders f3 we can obtain a positive slope 

since any order f3 > 0 as it is shown on the left of the graph. 
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Figure 6. Distribution of velocities around a given set of hollow masses. 

To obtain a nearly flat curve in a wide interval of radii and to approach the condition 
(80), it has been necessary to give a low value to the coefficient A0. This shows that 
particles of Bessel order zero must be in a limited quantity in the galactic bulge. 
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Actually it is possible with anti-electrons because they are annihilated when their Bessel 
order /3 decreases to zero giving y-bursts. 

The figure 7 shows the resulting radial distribution of mass densities. 
2 
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Figure 7. Distribution of mass densities due to a set of hollow masses. 

The equivalent central mass M(r) computed from the integral (79) increases with the 
radial distance r as it is shown in the figure 8, the equivalent central mass M(r) 
continues to increase and seems to reach a maximum at greater distances, but we have 
not yet proven that the integral (79) is convergent with the distribution (83). 
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Figure 8. Equivalent central mass M(r) computed as an integral ofD(r). 
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5. Conclusions 

5.1. Plane Waves and Spherical Waves 

A transversal distribution has been introduced in the equation of plane wave of any 
free massive particle (fermion or boson). 

We have postulated a spherical radial distribution of spherical waves, which is 
mathematically coherent with the cylindrical radial distribution of plane waves. 

The asymptotic distribution function at a large distance shows a spatial structure of 
waves with a main spatial frequency. Thus the so-called "particles" should be 
considered as a system of spatial vibrations, rather than a corpuscle, which might have 
an internal structure, limited by a given radius. 

The radial distribution of the presence density of spherical waves has been 
interpreted as the presence density of the rest mass, because the parameter r0 of the 

distribution is directly related to the rest mass. 

5.2. A new Quantum Number with new Properties 

The Bessel order is a new quantum number, which has a continuous spectrum; 
therefore quantum theory has to be enhanced with transversal radial distributions and 
spherical radial distributions. The present quantum theory cannot predict any values of 
the Bessel order for any known particles, but its applications to cosmology is now 
opening to a new knowledge. 

With the Bessel order zero, the presence density has a maximum at the center of the 
particle which then matches point-like particle predictions at best. 

When the Bessel order is not zero the presence density has a null minimum at the 
center of the particle and the transversal or the spherical distribution has a hollow 
structure, which implies a hole in the presence density and thus a hollow mass. 

At high Bessel orders, the presence density is zero from the center of the particle 
until a given radius 'i, and it results into a lower probability of interaction. 

At extremely high Bessel orders, the presence density is quite zero from the center of 
the particle until a large distance, and it results into an "inefficient cross-section" with 
an extremely low probability of interaction. As an example, an electron of Bessel order 
zero cannot annihilate with an anti-electron of extremely high Bessel order: the anti
electron is then considered as being passive. 

5.3. Applications to Cosmology 

We have proposed two applications to Cosmology. As we know, the presence of 
antimatter in a galaxy bulge is actually proven by y-bursts of 511 keV. Simulations by 
many authors have already shown that a galaxy stability requires dark matter and the 
presence of a dark matter is usually assumed after observations of star velocities in a 
galaxies. 

We have proposed a common solution to these two problems: antimatter (mainly 
composed of anti-electrons) is made passive by extremely high Bessel orders and stored 
in the galaxy bulge (maybe also in star nucleus). And this passive antimatter has a 
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hollow mass with a radius that can reach the radius of the galaxy. Thus it behaves as the 
required dark matter. 

In other words, dark matter is hidden in the galactic bulge, but it produces a 
gravitational mass in long distances. The quantum structure of particles with a radial 
distribution which depends on their Bessel order can have a gravitational effect upon 
stars running at very great distances. 

We think that the Bessel order is always zero in most terrestrial experiments, but it 
may take extremely high values for some particles or antiparticles, under some physical 
conditions: extremely strong gravitation field and / or extremely strong magnetic field in 
galaxy bulges and in star nucleus. 

5.4. Towards a new Big Bang Scenario 

The concept of a non point-like particle and solutions of the wave equation with a 
radial distribution is logically leading to a new Big Bang scenario. 

The assumed inflation period has not destroyed antimatter but another mechanism 
involving hollow mass particles has made the antimatter passive. Moreover the universe 
is using hollow antimatter of very high Bessel orders as a central engine of galaxies. 
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