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This paper firstly recalls the mathematical model of the Newtonian gravitation law 
applied to the solar system dealing with the Sun and the Mercury planet. The orbits of 
all the planets are given by closed ellipses in the Newton paradigm. This paper 
continues with the introduction of the relativistic correction to this Newton gravitation 
law, for exhibiting the precession of orbits and, more particularly, the advance of the 
perihelion of the Mercury planet. The following section gives the Euler and the First 
Incursive algorithms for the classical Newton gravitation law and the relativistic 
correction of this Newtonian law. The last section of this paper gives the result of the 
numerical simulations of the Mercury orbit around the Sun. It is shown that the 
simulation with the Euler algorithm is not stable and does not give a closed ellipse to 
the Mercury orbit with the Newtonian law. The simulation with the First Incursive 
algorithm gives a perfect simulation of the Newtonian orbit in 88 days. Then, the 
simulation with this First Incursive algorithm of the relativistic Newtonian gravitation 
shows the correct Mercury precession angle that is equal to 80 = 180 degrees, after 
15,000 centuries, in agreement with the experimental data and Einstein relativity. 
Keywords: incursive algorithms, Newtonian gravitation, relativistic gravitation, 
anomalous precession, Mercury orbit 

1. Introduction 

The Newton law of gravitation, based on an instantaneous propagation of gravity, for 
the solar system works rather well, except that it does not show the advance of the 
perihelia of the planets. The case of the Mercury planet is taken as example because its 
precession is the most important aberration in the solar system. This aberration is a 
relativistic effect as explained by Einstein with the General Relativity. 
This paper is organized as follows. After a recall of the mathematical model of the 
Newton law of gravitation, a relativistic Newton law will be corrected to obtain an 
equivalent effective potential as in General Relativity. 
Then, this paper will deduce the precession formula by linearization of this relativistic 
Newton law. This gives the precession amount for the Mercury planet. 
Finally, this paper will give some numerical simulations of the trajectory of the Mercury 
planet with and without precession. 
Let us firstly, recall the mathematical model of the Newton law of gravitation 
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2. The Mathematical Model of the Newton Law of Gravitation 

The Newton law (see, for example, Landau and Lifchitz, 1966) of a material point S of 
mass m (the Mercury planet in this study) is given by 

ma=F 

with the acceleration a= d2s/dt2
, where s = r er is its position vector and F the force. 

In the case of a gravitational central force in r -2
, the force is given by 

F =- µ m er /r2 

(1) 

(2) 

with µ = GM, where G is the gravitational constant, M the mass of the attractive body at 
rest (M >> m) at the origin of axes (the Sun in this study). The distance between the two 
bodies is r. So, from eqs. 1 and 2, the Newton law of gravitation is given by 

m a = - µ m er /r2 

or, in dividing the two members by m, 

a=- µ/r2 er 

(3) 

(4) 

The vector product, x, of the two members by s, in taking into account that the force is 
parallel to s, gives 

s x a= d[s x v]/dt = 0 

with the velocity v = ds/dt, or 

sxv=h 

(5) 

(6) 

where the constant vector h represents the kinetic momentum by unity of mass of S (the 
Mercury planet). This shows that the vector position s and velocity v are constantly 
contained in a fixed plane perpendicular to h. The initial conditions of the movement, so 
and vo, determine this vector h 

h = so x Vo (7) 

Due to this symmetry, the movement can be described in polar coordinates er and ea as 

s = r er 

v = dr/dt er+ r der/dt = dr/dt er +r d0/dt ea 

a= d2r/dt2 er+ dr/dt d0/dt ea+ dr/dt d0/dt ea+ r d20/dt2 ea - r [d0/dt]2 er 

(8) 

(9) 

(10) 

Introducing eq. 10 to eq. 4 gives the two following scalar equations of the movement 

d2r/dt2 
- r [ d0/dt]2 = - µ/r2 (11) 

2 dr/dt d0/dt + r d20/dt2 = (1/r) d[r2 d0/dt]/dt = 0 (12) 

This second eq. 12 gives the following first scalar integral 

h = r2d0/dt (13) 
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which is the constant scalar kinetic momentum, i.e. the projection on an axis e2 , 

perpendicular to the movement plane, of the first vector integral ( 6), 

h = h e2 (14) 

With eq. 13, eq. 11 can be written as 

d2r/dt2 - h2/r3 = - µJr2 (15) 

The integration of this eq. 15 gives the following law of the conservation of energy 

E = (l/2)(dr/dt)2 + h2/2r2 - µ./r (16) 

or 

E = T + Vefl(r) (17) 

where E is the constant total energy, defined by the initial conditions, T the kinetic 
energy and Veff the effective potential energy 

Yert(r) = h2/2r2 - µ/r = h2/2r2 + V(r) (18) 

where 

V(r) = -µ./r 

is the gravitational potential energy, which derives from the force by unit mass 

F/m= - V V(r) 

(19) 

(20) 

For obtaining the analytical solution of the gravitational equation, it is useful to work 
with (u, 0) instead of (r, t), with the new variable u given by 

u = 1/r (21) 

With this new variable u, the constant scalar kinetic momentum eq. 13 becomes 

d0/dt = h u2 (22) 

and the radial velocity and acceleration are given by 

dr/dt = - h du/d0 

d2r/dt2 = - h2 u2 d2u/d02 

so eq. 15 becomes 

- h2 u2 d2u/d82 - h2 u3 = - µ u2 

or, in dividing by h2 ,;; 0, 

d2u/d02 + u = µ/h2 

and the conservation of energy eq. 16 becomes 

E = (1/2)( h du/d0)2 + h2u2/2 - µu 

The general solution of this eq. 26 is 
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(23) 

(24) 

(25) 

(26) 

(27) 



u(0) = C1 cos0 + C 2 sin0 + 1/p 

with 

p = h2/µ 

and where C1 and C2 are constants of integration to be defined by initial conditions. 

(28) 

(29) 

In choosing, as initial conditions, the perihelion at 0 = 0 for which du/d0 = 0, eq. 27 
becomes 

E = h2u2/2 - µu 

and the maximum root of u is the value of the perihelion uo given by 

Uo = (1 + e)/p 

where e is the eccentricity 

e = ✓[1 + 2Eh2/µ2
] 

With these initial conditions, the analytical solution eq. 28 becomes 

u(0) = (e cos0 +1)/p 

or 

r(0) = p/(1 + e cos0) 

For E = -µ2/2h2
, the movement is a circular orbit ofradius p = h2/µ. 

For -µ2/2h2 < E < 0, the movement is given by an orbit which is an ellipse. 
These orbits are closed ellipses. Indeed, it exists a third specific integral 

V X ( s X V ) - µ s/r = p 

where the vector P is constant. Eq. 35 can be written as 

rv2 er-rvv-µer=P 

where v2 = v.v (scalar product). In polar coordinates, this integral becomes 

(h2/r - µ)er- (dr/dt)hee = P 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

Let us remark that this third supplementary integral is due to the degeneration of the 
movement. This only occurs for two types of central potential for which all the 
trajectories are closed. These are the potentials for which the potential energy is 
proportional to 1/r or to r2

, this second potential corresponding to the spatial oscillator. 
This conservative vector P is along the major axis of the ellipse and directed to the 
perihelion. This is easy to show that P is constant by calculating the time derivative of 
eq. 23 as 

dP/dt = (-h2/r2)(dr/dt)er + (h2/r - µ)(h/r2)ee - (d2r/dt2)hee + (dr/dt)(h2/r2)er 

= - ( d2r/dt2 - h2/r3 + µ/r2
) h ea = 0 

by using eq. 15, and the value of P is 
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(39) 

where e is the eccentricity of the orbit (eq. 32). 
As the perihelion is the minimum radius of the orbit for which the radial velocity is null, 
in choosing as initial condition a null radial velocity, dr/dt = 0, eq. 23 shows that P is 
parallel to er and remains constantly parallel to er. 
This means that there is no precession of the orbit, contrary to the experimental data in 
the solar system. 
For the Mercury Planet, the experimental data are given in Table 1. 

Table 1 : Experimental Data for the Mercury Planet 

Observed precession per century 43.1 ± 0.5 arc seconds 
Perihelion distance rmin 45.9 Mkm 
Aphelion distance rmax 69.7Mkm 
Tangential velocity at perihelion Voer 5.11 Mkm/day 
Tangential velocity at aphelion Vaoh 3.365 Mkm/day 
Mean velocity 4.128 Mkm/day 
Period 87.97 days 
Number of revolutions per century 414.93 
Velocity of light 25920 Mkm/day 
GM/c2 1.48 10-6 Mkm 
µ=GM 994.332672 Mkm3 /day 

Kinetic momentum h = rminVoer = rmax Vanh 234.549 Mkm2/day 

Gravitational radius r0 = µ/c2 1.48 1 o-6 Mkm 
Radius of the circular orbit p = h2/µ 55.327 Mkm 
Precession per revolution 88 = 2 7t 3 r0 /p 0.5044 10-6 radian 
Precession per century 88(414.93)(360)(3600)/2n 43.15 arc seconds 

Mean delay duration 1 = p/c 3.1 minutes 

Mean tangential delay distance rh = hie 9.050 10-3 Mkm 

In this Table 1, the distances are given in Mkm = 106 km. 
Let us recall that the perihelion is the shortest distance from Mercury to the Sun and the 
aphelion, the largest distance. At the perihelion and aphelion, the velocity of Mercury is 
a tangential velocity (the radial velocity is zero). 
This paper continues with the introduction of the relativistic correction to this Newton 
gravitation law, for exhibiting the precession of orbits and, more particularly, the 
advance of the perihelion of the Mercury planet. 
The next section deals with the relativistic correction to the Newtonian Gravitation. 
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3. The Relativistic Correction to the Newtonian Gravitation Law 

In 1916, Einstein presented his theory of the General Relativity (GR) and explained the 
precession of the Mercury perihelion. 
A few months later, Schwarzschild (1916) gave the solution of the Einstein equation for 
the geometry outside of a spherical star as follows: 

ds2 = - (1- 2µ/c2r) (c dt)2 + ( 1 - 2 µ/c 2rr' dr2 + r2 (d02 + sin20 d<ji2) (40) 

where ds is the line element, c the speed of light, and (r, 0, <!>) the spherical coordinates. 
It was shown that the solution is independent of time, t, and also independent of the 
angular coordinate <j>. The two natural conserved quantities are thus the energy per unit 
rest mass and angular momentum per unit rest mass, respectively. The conservation of 
angular momentum leads to planar orbits ( chosen for 0 = rc/2) 
The following "GR effective" potential was derived: 

VGRert(r) = (c2/2) [ ( 1- 2µ/c2r) (1 + £2/c2r2
)- 1] 

where the angular momentum is given by 

£2 = (r2d<j>/dt)2 

(41) 

(42) 

Let us remark that this <I> angle, in spherical coordinates, corresponds to the 0 angle, in 
polar coordinates, in the preceding section. So eq. 42 is similar to eq. 13. 
As this is not the purpose of this paper to demonstrate all the results of the General 
Relativity for the precession of the Mercury perihelion, let us give the well-known 
result of the precession amount which is given by 

8<j> = 6 re (µlhc)2 (43) 

The advance of the Mercury perihelion predicted by this formula 43 is 43 arc seconds 
per century and corresponds to the exact experimental data. Historically, this result was 
the first proof of the validity of the General Relativity who made Einstein so confident 
in his theory. 
In view of comparing the effective potential of Newton and Einstein, let us first rewrite 
the eq. 41 as 

VGRert(r) = (c2/2) [ ( 1 - 2µ/c2r) (1 + h2/c2r2
)- 1 ] (44) 

with eq. 42 as 

h2 = (r2d0/dt)2 ( 45) 

by renaming the variables ,f, by hand <I> by 0. So the precession eq. 43 is rewritten as 

80 = 6 n (µ/hc)2 (46) 

The GR effective potential can be developed as 

VGRert(r) = h2/2r2 
- µ/r- µh 2/c2r3 (47) 

to be compared with the Newtonian effective potential eq. 18. 

8 



(18) 

So, the correction to make to the Newtonian potential is to add a deviation of the 
potential given by 

8V = - µh 2 /c2r3 
( 48) 

With this correction, the Newton law of gravitation given by eq. 15, becomes 

d2r/dt2 - h2/r3 = - µ/r2 - 3h2ro/r4 (49) 

h = r2 d0/dt (50) 

with 

ro = µ/c2 

The corrected potential is 

V(r) = - µ/r - h2r0/r
3 

and the corrected effective potential 

Ve.o(r) = h2/2r2 - µ /r - h2r0/r3 

is identical to the effective potential ( 47) of the General Relativity. 
With the variable u = 1/r, eq. 49 becomes, similarly to eq. 26, 

d2u/d02 + u = µ/h2 + 3rou2 

(51) 

(52) 

(53) 

(54) 

The linearization of this eq. 54 gives the formula of the precession of the perihelion of 
the Mercury planet. 

The nonlinear relativist Newton eq. 54 can be written as 

d2u/d02 + u = 1/p + 3rou2 

with 1/p = µ/h2 and r0 = µ/c 2. 
For d2u/d02 = 0, eq. 55 becomes 

3rou2 - u + 1/p = 0 

and the following roots are two stationary solutions 

u, = (1 - ✓p - 12ro/p])/6ro 

u2 = (1 + ✓p - 12ro/p])/6ro 

As ro/p << 1 is very small, the first term in the Taylor series can be used 

u1 = (1- [1 - 6ro/p])/6ro = 1/p 

u2 = (1 + [1 - 6ro/p ])/6ro = l/3ro 

The first root corresponds to a stable orbit and the second one to an unstable orbit. 
Let us linearize the non-linear term u2 around the stable orbit as 

u2 = (u - u 1 + u 1)2 = (u - u,)2 + (u,)2 + 2(u - u 1)u1 ;:::; 2uu1 - u/ 
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(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 



so the linearized equation becomes 

d2u/d02 + u = 1/p + 3ro(2uu, - u/) 

or 

or 

(62) 

(63) 

d2u/d02 + (1 - 6ro/p)u = (1 - 3ro/p)/p (64) 

This linear equation 64 represents an harmonic oscillator of frequency equal to 

u:>2 = (1 - 6 ro/p) (65) 

the period of which being given by 

T = 2n/ro = 2nl✓[l - 6ro/p] (66) 

As 3ro/p << 1, the period 66 can be developed as 

T = 2n[l + 3ro/p] (67) 

The period of the orbit without the relativist correction is T = 2n, so the correction gives 
an advance 80 of the perihelion 

T = 2n + 6mo/p = 21t + 80 

so the advance of the perihelion of Mercury is given by 

80 = 6 7t ro/p 

(68) 

(68) 

which, with r0 = µ/c 2 and 1/p = µ/h 2
, is identical to the precession eq. 46 predicted by 

the General Relativity. 
The numerical data for the Mercury planet, given in Table 1, are as follows : 

ro = 1.48 1 o-6 Mkm (70) 

p = 55.327 Mkm 

so 

ro/p = 2.675 10-8 

(71) 

(72) 

By century, there are 414.93 revolutions of the Mercury planet. Introducing these data 
in the eq. 69 of the precession, expressed in arc seconds by century, is given by 

80c = (6mo/p)(414.93)(360)(3600)/2n = (3ro/p)(414.93)(360)(3600) 

= (3ro/p) 5.3774928 108 = 43.15 arc seconds/century (73) 

which is in agreement with the observed precession, 43.1 ± 0.5 arc seconds, of the 
perihelion of the Mercury planet. 
The following section gives numerical algorithms for Newton law of gravitation and the 
relativistic Newton law of gravitation for the Mercury planet. 
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4. Numerical Algorithms for Newtonian and Relativistic Gravitations 

It was shown ( eqs. 1 to 7) that the vector position s and velocity v are constantly 
contained in a fixed plane perpendicular to the kinetic momentum h. 
Let us define the position vector s with the two following components x1 and x2 in the 
orthonormal axes e, and e2 defining the plane of the planet orbit 

where the origin x, = x2 = 0 defines the position of the Sun. 
So the velocity is given by 

v = ds/dt = dx1/dt e1 + dx2/dt e2 = v1e1 + v2e2 

and the acceleration is defined by 

a= dv/dt = dv, /dt e, + dv2/dt e2 = a1e1 + a2e2 

The square of the radial distance, between the Sun and the planet, is 

s.s = r2 
= x1

2 + x/ 

(74) 

(75) 

(76) 

(77) 

The Newtonian equation for the gravitational field, given by eq. 4 is then re-written as 

a= a,e, + a2e2 = - µ/r2 er= - µ/(x,e, + x2e2)/r3 

or, with eq. 76, the Newton law of gravitation in the orthonormal axes is given by 

dv1/dt= - µ x1/ r
3 

dx1/dt = v1 

dv2/dt = - µ x2/ r
3 

dx2/dt = V2 

(78) 

(79-a) 

(79-b) 

(80-a) 

(80-b) 

with r2 = (x/ + x/) and µ = GM, where G is the gravitational constant, M the mass of 
the attractive body at rest (M >> m) at the origin of axes (the Sun in this study). 
With the relativistic correction of the potential, given by eq. 49, the eqs. 79-a and 80-b 
are transformed to the following relativistic Newton law of gravitation 

dv1/dt= - µ x,/ r3 
- µ 3 (hie )2 x1/ r

5 = (- µ x1/ r
3)(1 + 3(h/c )2 I r2) 

dx1/dt = v1 

dv2/dt = - µ x2/ r3 
- µ 3 (hlc)2 x2/ r5 = (- µ x2/ r3

)( 1 + 3(hlc)2 ! r2) 

dx2/dt = V2 

where c is the velocity of light and h the kinetic momentum. 

(81-a) 

(81-b) 

(82-b) 

(82-b) 

In a recent paper, I have deduced this relativistic correction to the Newton law of 
gravitation from an anticipative effect (Dubois, 2005). 
Let us now introduce the Euler and the First Incursive Algorithms for the Newtonian 
and relativistic gravitations equation systems. For a review of Euler, and First and 
Second Incursive Algorithms, see the paper of Dubois (2000). 
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4.1. Euler Algorithm for the Newton Law of Gravitation 

The Euler algorithm for the Newtonian equation system 79-ab and 80-ab, is given as 
follows : 

V1(t + ~t) = V1(t) + ~t (- µ X1(t)/ r(t)3
) 

x1(t + ~t) = xl(t) + ~t v1(t) 

v2(t + ~t) = v2(t + dt) + ~t (- µ x2(t)/ r(t)3) 

X2(t + ~t) = X2(t) + ~t V2(t) 

4.2. Euler Algorithm for the Relativistic Newton Law of Gravitation 

(83-a) 

(83-b) 

(84-b) 

(84-b) 

The Euler algorithm of the Newtonian equation system 81-ab and 82-ab, with the 
relativistic correction, is given as follows: 

v1(t + ~t) = v1(t) + ~t (- µ x1(t)/ r(t)3)(1 + 3(hlc)2 / r(t/) 

X1(t + ~t) = X1(t) + ~t V1(t) 

v2(t + M) = v2(t + dt) + ~t (- µ x2(t)/ r(t)3)( 1 + 3(hlc)2 / r(t/) 

X2(t + ~t) = X2(t) + ~t V2(t) 

4.3. First Incursive Algorithm for the Newton Law of Gravitation 

(85-a) 

(85-b) 

(86-b) 

(86-b) 

The first incursive algorithm of the Newtonian equation system 79-ab and 80-ab, is 
given as follows: 

V1(t + ~t) = V1(t) + ~t (- µ X1(t)/ r(t)3) 

X1(t + ~t) = X1(t) + ~t V1(t + At) 

v2(t + ~t) = v2(t + dt) + ~t (- µ x2(t)/ r(t)3) 

X2(t + M) = X2(t) + M V2(t + At) 

(87-a) 

(87-b) 

(88-b) 

(88-b) 

4.4. First Incursive Algorithm for the Relativistic Newton Law of Gravitation 

The first incursive algorithm of the Newtonian equation system 81-ab and 82-ab, with 
the relativistic correction is given as follows: 

v,(t + ~t) = v1(t) + ~t (- µ x1(t)/ r(t)3)(1 + 3(hlc)2 / r(t/) 

x1(t + ~t) = xl(t) + ~t v1(t + At) 

v2(t + M) = v2(t + dt) + ~t (- µ x2(t)/ r(t)3)( 1 + 3(hlc)2 / r(t/) 

X2(t + ~t) = X2(t) + ~t V2(t + At) 

(89-a) 

(89-b) 

(90-b) 

(90-b) 

The following last section gives the simulations of the Newton law of gravitation and 
the relativistic Newton law of gravitation for the Mercury planet. 
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5. Simulations of the Newtonian and Relativistic Mercury Orbits 

The numerical simulations of the revolutions of the Mercury planet were performed 
with the exact observed data (see Table 1). 
Figure 1 is the framework where the simulations of the orbits of the Mercury planet 
around the Sun will be drawn in the following figures . 
Figure 2 gives the simulation, with the First Incursive algorithm of the Newton law, of 
successive revolutions of the Mercury planet around the Sun, which is a closed ellipse, 
demonstrating so, that this incursive algorithm is stable. 
Figure 3 gives the simulation with the Euler algorithm of the Newton law, with the 
parameters of figure 2, of the 1 rst and the 10th revolutions of the Mercury orbit around 
the Sun, which do not give a closed ellipse, because the Euler algorithm is not stable. 
Figure 4 gives the simulation, with the First Incursive algorithm of the relativistic 
Newton law, of a first revolution (88 days), and a second revolution after 15,000 
centuries of the Mercury orbit. The figure shows an advance of the perihelion of the 
Mercury planet equal to an angle of 80 = 180 degrees. 
Figure 5 gives the simulation, with the First Incursive algorithm of the relativistic 
Newton law, of a Mercury orbit with 58 revolutions around a Sun with a bigger mass. 

Figure 1: Framework where the simulations of the orbits of the Mercury planet around 
the Sun are given in the following figures. The black circle represents the position of 
the Sun at the origin (0, 0) of the orthogonal axes (e1, e2) , where the horizontal line 
gives the e1 axis. The open circle represents the initial position of the Mercury planet at 
the perihelion. The three successive circles have a radius respectively equal to the 
perihelion rper = 45.9 Mkm, the parameter p = h2/µ = 55.327 Mkm, and the aphelion 
r aph = 69.7 Mkm. 
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Figure 2: Numerical simulation, with the First Incursive algorithm, of successive 
revolutions of the Mercury planet around the Sun with the Newton law. The 88 
successive positions of the Mercury Planet represent the daily positions during one 
revolution of 87.97 days, in a closed ellipse, so this incursive algorithm is stable. 

Figure 3: Numerical simulation, with the Euler algorithm of the Newton law of 
gravitation. This figure shows the 1 rst and the 10th revolutions of the Mercury planet 
around the Sun The orbit is not a closed ellipse, so the Euler algorithm is not stable. 
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Figure 4: Initial revolution (88 days) of the Mercury planet around the Sun and the 
revolution after 15,000 centuries. This simulation was performed with the First 
Incursive algorithm of the relativistic Newton law, which shows an advance of the 
perihelion of the Mercury planet equal to the correct angle of 80 = 180 degrees. 

Figure 5: Simulation with the First Incursive algorithm of the relativistic Newton law 
of gravitation with particular values of the parameters. The mass of the Sun is 
multiplied by 2,500 and the tangential initial velocity of the Mercury planet is 
multiplied by 5.025. There are 58 revolutions. 

15 



6. Conclusion 

This paper firstly recalls the mathematical model of the Newtonian gravitation law 
applied to the solar system dealing with the Sun and the Mercury planet. The orbits of 
all the planets are given by closed ellipses in the Newton paradigm. 
This paper continues with the introduction of the relativistic correction to this Newton 
gravitation law, for exhibiting the precession of orbits and, more particularly, the 
advance of the perihelion of the Mercury planet. 
The following section gives numerical algorithms for the simulation of the orbit of the 
Mercury planet around the Sun. The Euler and the First Incursive algorithms are 
detailed for the classical Newton gravitation law and for the relativistic correction of 
this Newtonian law. 
The last section of this paper gives the result of the numerical simulations of the 
Mercury orbit around the Sun. It is shown that the simulation with the Euler algorithm 
is not stable and does not give a closed ellipse to the Mercury orbit with the Newtonian 
law. The simulation with the First Incursive algorithm gives a perfect simulation of the 
Newtonian orbit in 88 days. Then, the simulation with this First Incursive algorithm of 
the relativistic Newtonian gravitation shows the correct precession of the Mercury orbit. 
It is demonstrated numerically, with the First Incursive algorithm, that the Mercury 
precession angle is equal to 80 = 180 degrees, after 15,000 centuries, in agreement with 
the experimental precession angle 80c = 180°/15,000 = 43,2 degrees/century. 
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