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Abstract
Based on a random sample from the Weibull distribution with unknown shape and scale
parameters, lower and upper prediction limits on a set of lrr future observations from the
same distribution are constructed. The procedures, which arise from considering the
distribution of future observations given the observed value of an ancillary statistic, do
not require the construction of any tables, and are applicable whether the data are
complete or Type II censored. The results have direct application in reliability theory,
where the time until the first failure in a group of z items in service provides a measure
regarding the operation of the items, as well as in service of fatigue-sensitive aircraft
structures to construct strategies of inspections of these structures; examples of
applications are given.
Keywords: Aircraft, Fatigue crack, Initiation, \ù/eibull model, Prediction limit.

1 Introduction

Prediction of an unobserved random variable is a fundamental problem in statistics.
Patel [] provides an extensive survey of literature on this topic. In the areas of
reliability and lifetesting, this problem hanslates to obtaining prediction intervals for
life distributions such as the Exponential and the Weibull. For the Weibull case, several
authors have addressed this issue as well the more complicated problem of deriving
prediction limits for order statistics from a future sample. These include Mann and
Saunders [2], Mann [3], Antle and Rademaker [4], Lawless [5], Marur, et al [6], Mann
[7], Engelhardt and Bain [8], and Fertig, et al [9].

One of the earlier works on prediction for the ÏVeibull distribution is by Mann and
Saunders [2]. They considered prediction intervals for the smallest of a set of future
observations, based on a small (two or three) preliminary sample of past observations.
An expression for the warranty period (time before the failure of the first ordered
observation from a set of future observations or a lot) was derived as a function of the
ordered past observations.

Mann [3] extended the results for lot sizes n: l0 (5) 25 and sample sizes m:2 (l)
n4 for a specified assurance level of 0.95. This method requires numerical integration.

International Journal of Computing Anticipatory Systems, Volume 21r2008
Edited by D. M. Dubois, CHAOS, Liègen Belgium, ISSN 1373-5411ISBN 2-930396-08-3



In addition, the tables provided are limited to sample sizes less than 25 and are given
only for the assurance level of0.95.

Antle and Rademaker [4] provided a method of obtaining a prediction bound for the
largest observation from a future sample of the Type I extreme value distribution, based
on the maximum likelihood estimates of the parameters. They used Monte Carlo
simulations to obtain the prediction intervals. Using the well-known relationship
between the Weibull distribution and the Type I extreme value distribution one can use
their method to construct an upper prediction limit for the largest among a set of future
Weibull observations. However this method is valid only for complete samples and
limited to constructing an upper prediction limit for the largest among a set of future
observations.

The distribution theory for estimators of unknown parameters in Weibull models is
complicate and cannot be described in explicit forms. Nevertheless, using a conditional
method, many problems become analytically manageable. The conditional method used
in this paper is the one conditioned on ancillary statistics, which was first suggested by
Fisher [l0] and promoted further by a number of others (Cox [11], Buehler [12]).
Lawless [5] applied this conditional method to different problems relating to the
Weibull and extreme value distributions. In the conditional method, quantiles for
constructing prediction intervals depend on ancillary statistics of observed data. This
procedure, where the results are based on the conditional distribution of the maximum
likelihood estimates given a set of ancillary statistics, is exact, but it requires numerical
integration, for each new sample obtained, to determine the prediction limits.

We consider in this paper the problem of estimating the minimum time to crack
initiation (warranty period or time to a first inspection) for a number of aircraft structure
components, before which no cracks (that may be detected) in materials occur, based on
the results of previous warranfy period tests on the structure components in question. If
in a fleet of k aircraft there are lçn of the same individual structure components,
operating independently, the length of time until the first crack initially formed in any of
these components is of basic interest, and provides a measure of assurance conceming
the operation of the components in question. This leads to the consideration of the
following problem. Suppose we have observations Xl, ..., Xo as the results of tests
conducted on the components; suppose also that there are lern components of the same
kind to be put into future use, with times to crack initiation Yç ..., Ypn. Then we want to
be able to estimate, on the basis of Xr, ..., X,, the shortest time to crack initiation Yek J
among the times to crack initiation Yb ..., Y*,,. In other words, it is desirable to
construct lower simultaneous prediction limit, Hçg, that is exceeded with probability y
by observations or functions of observations of all ft future samples, each consisting of
rz units. In this paper, the problem of estimating Y6,*-), the smallest of all È future
samples of la observations from the underlying distribution, based on an observed
sample of n observations from the same distribution, is considered. A solution is
proposed for constructing a lower simultaneous prediction limit, Hg, for Y(,un). Various
properties of these solutions are derived, and illustrations are given for some important
special cases. The results have direct application in reliability theory, where the time
until the first failure in a group of m items in service provides a measure of assurance
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regarding the operation of the items.

2 Equation for Constructing Simultaneous Prediction Limit

An equation, which shows how to construct lower simultaneous one-sided prediction
limit for the order statistics in all of future samples when one-sided prediction limit for a
single future sample is available, is given by the following theorem.

Theorem | (Lower simultaneous one-sided prediction limit). Let (X1,..., Xn) be a
random sample from the cdf F(.), and let (\,,...,\,\ be the 7th random sample of ze;

"friture" observations from the same cdf,je {1, ..., Ë}. Assume that (ft+l) samples are
independent, Let H=H(X1, ..., Xn) be any statistic based on the preliminary sample and
let Yç,,.1\ denote the r;th order statistic in the/h sample of size mi.Then

- ( -  -  v  > I r  v  
\  " r - t ' i a ' r a ( m r \  ( ^ r )Pr l  {n . . ,1  2H, . . . ,Y , -  * ,>H, . . . , \ ,1 . ,p t>H l=  I  I  I
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j=t  j=l

Pr({n,,, l 2 H, ..',\,i,^, l 2 H, ...,Y1,1,,pyt a) = Û 
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Proof.
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the joint probability can be written as

=[î) 
'['{â[]']tF(r4r'il 

-F(H17*z- - 
F.[î) v(H),tt-or"ir'" ']]

Pr({,,*,..,, > u)-Pr!Y,,,,.,,> H)
= ,

t . l
\ , > /

(4)

,>  H)
(5)

This ends the proof. !
Corollary l.l.If ri= 1, V7=l(l)ft, then

Pt({,,., l > H, ...,\r,^,1 2 H, .'.,Y(r,,r) > H ) =pt(yrr,,r, 2 H ) - (6)

3 Lower One-sided Prediction Limit for Weibull Order Statistic

The Weibull distribution is a powerful modelling tool used in reliabilif analyses to
predict failure rates and to provide a description of the failure of parts and equipment.
The Weibull distribution has been widely used in the empirical modelling of economic
models. Applications include the modelling of unemployment spells, strike durations,
income distributions, the length of a firm's innovation period, and the size of research
and development budgets. Depending on the particular problem, the variable under
consideration may not be fully observed, requiring censoring procedures for estimation.

Based on engineering and macroscopic viewpoints, the mechanical properties of
metallic materials are often considered homogeneous. However, a considerable amount
of scatter has been observed in fatigue data even under the same loading condition. It
may be attributed to the inhomogeneous material properties. As a result, probabilistic
approaches for the fatigue crack initiation and growth have received great attention in
recent years. Along with the development of fracture mechanics for the past three
decades and the need of reliability or risk assessment for some important struchres or
components such as

r Transporfation Systems and Vehicles - aircraft, space vehicles, trains, ships

Pr(Iln,.,l 2H,...,Y1,,,^,12H,...,Y1,1,,-ysrH) =,E, 
,F. ,F, n H

m2

i2

EPr
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Civil Structures - bridges, dams, tunnels
Power Generation - nuclear, fossil fuel and hydroelectric plants
High-Value Manufactured Products - launch systems, satellites, semiconductor and
electronic equipment
Industrial Equipment - oil and gas exploration, production and processing
equipment, chemical process facilities, pulp and paper

the so-called 'probabilistic fracfure mechanics' has thus arisen [13]. One of the
important issues in the probabilistic fracture mechanics analysis lies in the probabilistic
modelling of fatigue crack initiation (or growth) phenomenon. Many probabilistic
models have been proposed to capture the scatter of the fatigue crack growth data.
Some of these models are based on the two-parameter V/eibull distribution. It exhibits a
wide range of shapes for the density and,hazard, functions that makes this distribution
suitable for modelling complex failure data sets. Many authors have considered the
problem of constructing prediction limits for the extreme value and Weibull
distributions. References [ ] and [6] contain good discussions of available procedures.
As a rule, the better procedures involve the use of tables generated by Monte Carlo
methods.

In this section our focus is on prediction limits for future samples of observations
from the two-parameter Weibull distribution and the purpose is to present a technique
for constructing the prediction limits which can be used very generally, for Type II
censored as well as complete data. The procedures should in particular be useful in
situations not handled by the tables in the aforementioned references.

The proposed technique may be useful when we consider, for example, the reliability
problem associated with fatigue damage that arises ûom the initiation of fatigue cracks
originating from rivet holes along the top longitudinal row of the outer skin of the
tuselage (Figure l).

bcttorn mrv

Figure l: Rivet row in consideration.

î - -

Fusclagc
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It is assumed that a fatigue crack can initiate randomly at either side of a hole with
diameter d. Experiments show that the number of flight cycles at which an initial crack
will appear at one side with respect to a particular rivet follows the two-parameter
Weibull distribution.

A post-failure photograph of one of the F-16 479 bulkhead test components (Figure
2) indicates the location of fatigue crack initiation at the radius between the bulkhead
and one of the two vertical tail attach pads. Experiments show that the time to fatigue
crack initiation follows the two-parameter Weibull dishibution.

Figure 2:F-16 479-bulkhead test specimen number -78, post-failure crack initiation.

The probability density function for the random variable X of the two-parameter
Weibull distribution is given by

f (x;o, 6) = 
i(i)" ".'[- [;)'] u' 0,,

where â0 and p0 are the shape and scale parameters, respectively. Writing

S = p + o Z ,

where Z is a random variable with standardized extreme value density,

"f(t) 
= exP(z - €"), - æ 1 z 1 ût

then the density ofS can be obtained as

(7)

(8)

(e)
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The distribution of S is known as the smallest extreme value (SEV) distribution. If
^9:lnX, so that, X:es, then

f (x; tt, o) = ! ! 6"' o 11 
/' expf-(xe-, )'' 

o 
f .xo

(1 1)

With æ1lô and trAnB, Xis distributed as Weibull with shape parameter âand scale
parameter p. Given this, for analytical and computational convenience, this paper works
in the S:lnX scale, the results, however, are reported directly for the Weibull
observations.

Theorem 2 (Lower one-sided prediction limit for ltfreibull order statistic). Let Xf
...1 X, be the first r ordered past observations from a sample of size n from the
distribution (7). Then a lower one-sided conditional (l-a) prediction limit hç-a1 on the
/th order statistic Yl of a set of la future ordered observations fi< ...<Y^ is given by

pr{4 > hu-",;z}= p.{th[#) 
""[5.),"i 

= pr{w, > wç-oy;z\

(10)

*tn

=1-  a ,  (12)

where p and. â are the maximum likelihood estimators of p and. ô based on the first r
ordered past observations (X1, ..., X) from a sample of size n from the Weibull
distribution. which can be found from solution of

,8r"Ç, r p) + (n - r)e'6tot ,,Ol) a"
'a i'4- 

" 
ts) 

({m - i)e* t'"t

i(, -rl (_r),-,-, i,._,"
F\  j  )  n -  j  i
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and

r = 
[[â'r 

tnx, + (n -,)*!*"")[â"f * r, - ù.i) '  -]ârr], (14)

r -  ( z r r z 2 r . . , r z r _ 2 ) ,

z,  = 6u,(  +) , ,= 1, . . . , r  -2 ,'  
lp  I

- (v\ -;r"[&".j.Wr=6ln l :LU) , *u- " ,  
\p  )

Proof. The joint density of ,Sr=ln(X1), ..., S,=ln(X.) is given by

r r  P -  P
Y t  = - - - ,

6

ô
l /  =  -o

o

\ -  / ,
Z , = # ,  i = l ( l ) r .

o

(15)

(16)

(r7)

(20)

( le)

(2r)

/(s,,, s,i F,6) = # *Ai*r[Y 
- *r(+)) *r[- r -')"'o(T)

(18)

Let p,6 be the maximum likelihood estimators (estimates) of p, obased on 51, ..., S,

and let

and

Parameters pand oin (18) are location and scale parameters, respectively, and it is well
known that if p and ô are estimates of p and, q possessing certain invariance
properties, then the quantities Vt and V are parameter-ùee. Most, if not all, proposed
estimates of p and o possess the necessary properties; these include the maximum
likelihood estimates and various linear estimates. Z;, i=I(l)r, are ancillary statistics, any
r-2 of which form a functionally independent set. 

'We 
then find in a straightforward
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manner that the joint density of V1, V, conditional on fixed r (2,22,..., Z,-2) , is

/ '  '  \
f(v,v;z) = s(z)v'-' expl I(2, +q)v-!exp[(2, +v,)v] -(n-r)expl(2,+v)vf 

l,
\  i= l  i=l  )

v1 e(-æ, æ), ve(0, oo). (22)

( * - l  ( r  r  \  \ - t

e(z) =[ 
J I 

t' *o[] (,, + v,)v -lexp[(2, + v,)v] - (r - r) exp t@, + v)i)dvdv 
)

(23)

is the normalizing constant. For notational convenience we include all of 21, ..., z,itr
(21); z,-1 and z, casbe expressed as function of z 1, . . ., zr only.

Writing

o, -lnY, - p
f f  - - ;

o
Q4)

where 17 is the /th order statistic from an independent second sample of n observations
also from the distribution (7), and noting that exp(W) is the /th order statistic in a sample
of m observations from the standard exponential distribution, we have the density of Z
as

.f (.) =;-:!: *[l - exp(-e-)]/-r[exp(-e') f'-t e' exp(-e*)
( t  - t ) t (m- t) t '

mt ,|-r r/ - l\= 
a-ffir)t'"à[ ,- )eD'"-iexpl-(m-i)e'f' 

we(-æ'æ)' Qs)

Since ll is distributed independently of v1, V wê find the joint density of w, v1, v,
conditional onz, as the product of (22) and,(25),

Note that

f (w,v,v;z) = f (w)f (v*v;z).

u ,  _ lnY ,  -  p  _W -4V  .
l t  ,  -  -" t  

6  v  
,
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making the transformationwT(w-v1v)lv,r1=\t1,v=r we findthe joint density of w1,vy,v,
conditional on z. as

f  (w,,vr,v;z) =
(l -r)t(m - l)r.

n(,)Ï[[' 
, 

t),-r,'-'-,"'"^o[r' + r)u,u * 
[*, 

. 
â',)')

* e"p(- (m - 7)exp[(w, + u,)v]) 
"*p[- 

opta"{Éontr," ]+ (n -')*otr,"f))] ,

ru;e(-æ,oo), v1e(-oo, æ), ve(0, oo).

Now v1 can be integrated out of (28) in a straightforward way to give

f (w,,v;z) = 
u #- t)t9(z)r(r 

+ 1)

t  . , , - roon( -  \  I
g I f / - l') 1- 1;r-' -,, 

"-' ""n[ui 
'')1* - i1u "xplw'v] |

"àlt, i  ) *-t l
L [(z 

- r)exn[lv,u] + lexp[z,u] + (n - r)exp[z,v)) 
-J

(28)

w7e(-oo,æ), ve(0, oo).

Thus, for fixed w1r-o; (-co <w11-ay <co),

(2e)

Pr{l/', > wu*1;z} -- 
I lf @,,r;zPwdv
0 w$_d,
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,-l

I

n!')*Ïl- 
*'("â'' 

)[i 
*ot'' vf + (n - 11 expç"'1) au

(' ;t)*ÏT*+ 
"t u'"'' u' 

(r* - i)"*-' +f e" s *('' ù + (n -')e'6'G" ù) au

+f f l- t)(-1;t ' - '  
*,  

,- ,  udî ' ,nÇ1'b)({- , i t^t, ,r i t \  .  ,  " . ,  
- i \-r

).1 . l+ lv,-,s ,=, lfe,at"l,,,t)+(r-r)",6t"(,,,Bll a,
F { . j )m- j  d  ( ' ' "  )

This completes the proof. D
Corollary 2.1, A lower one-sided conditional (1-a) prediction limit ft1r-ay on

minimum Y1 of a set of z fufure ordered observations Yr< ...<Y^ is given by

(30)

the

pr{{ > hu-",;z}= r'{;t"[}), t^(ryJ',] = pr{v > wç-o1iz}

(- ; 
t)#in'-'""' u'''' u' 

(:# . f e" a ̂(,' B) + (n - r) e"8 ba.' il) a"

(3 t)

Thus, when l: 1, (I2) reduces to formula (31).
Corollary 2.2. Ar upper one-sided conditional (1-a) prediction limit ft(r-") on the

maximum Y^ of a set of m future ordered observations Yr< ...<Y^ is given by

pr{)., < h(' -o\ ;zI = r,{ s,^( \l . t 
"[l#], "] 

= pr {w^ <,}'' ", ;zl
| .  \ 8 , /  r t ' / J

ù-l

t
Z-/
j=0

-  l -

EC)#\, " "'s 
2'"6 " 

u' 
(f "' 

t'"r' F) + (n - 11 e' d ̂(* t o))' av
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- l -

= l -  d .

Corollary 2.3.If r=n and n is large, (12) should be more or
Also, 21, ..., Z, wltl be nearly independent and approximately
extreme values, with pdf

:; [['; ) tli iu^'""'É'G" 
u',(" * t)"'nt;'o' *f"'s ̂ {'" Â) + (' - ')"'8'"t" ' a)', a'f

n[';')#*!''-'"

> h,,-",;z)= r,i; t"[;) 
",'(rbt},]

(32)

less independent of Z.
distributed as standard

Our first step is to replace zr, ..., zninthe numerator of (12) by nE{'VSry=-ny,where

70.577215... is the Euler constant. We now suppose that (llfil rexplz,vl will be

approximately equal to the moment generating function for (33), with dummy variable
v. Since E{exp['w4]]=f(1+4;, we approximate the above sum in the denominator of
(12) by rf(l+v). We thus arrive at the following approximation to (12), where r-n,

PrtI =Pr{W > w,-o,);z}

=7- a. (34)

f"('w) = e'* exp(-e''), 
'we(-co, co).

/ - l'l(-_l)"'_' *t 
"-2"-*rlr(t + fll-, dv

(33)

on a particular type of structural
for a complete sample of size r: n

i  )  n - i  d

4 Examples of Applications

4.I Assigning Warranty Period

For instance, consider the data of fatigue tests
components (stringer) of aircraft IL-86. The data are
:5, with observations (Table 1).
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Table 1: The data of fatisue tests.

Observations Time to crack initiation
(in number of 104 flight hours)

Xl 5

X2 6.2s

X3 t . )

X4 7.9

X5 8 . 1

and results being expressed here in number of 104 flight-hours. On the basis of these
data it is wished to estimate a lower 0.95 prediction limit on Yr in a group of m = 5
identical components (for a fleet of m =5 aircraft IL-86) which are to be put into service.

Goodness-of-fit testing. We assess the statistical significance of departures from the
Weibull model by performing empirical distribution func,tion goodness-of-fit test. V/e
use the ..S statistic [15]. For censoring (or complete) datasets, the J statistic is given by

ç [rn(x,., lx,)] ç[,rntx,., l+l)
.s ='<ft+,1 u, - )  =?\ ! '  != 0.184,' 

çf ln(x,-, /x,) I St In(x,.,/+) I
â t M i ) î \ M i )

(3s)

where lr/2]is alargestinteger <rl2,the values of Miare giveninTable 13 [5]. The
reject region for the a level of significance is {.5 >.&;r-a}. The percentage points for
.Sn;r-aw€re given by Kapw and Lamberson [15]. For this example,

.S :0. 1 84 (,,S2=5: 1-o=6.95=0.86. (36)

Thus, there is not evidence to rule out the Weibull model. The maximum likelihood

estimates of unknown parameters f ard â are f =7.42601 and i=7.9081,
respectively. It follows from (31) that

=Pr{Wr> wç_oyz}

=PrWr> -8.4378;z\=0.0000141389

{ ),;,,[4'*,.],"]p) (. / I )
t^

Pr{{ > hrr-or;zl = Prtô ln

0.0000148830
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and a lower 0.95 prediction limit for ){r is hç1-s1=2.5549 (x10") flight hours, i.e., we have
obtained the warranty period (or the time to the first inspection) equal to 25549 flight
hours with confidence level y =l-a= 0.95.

4.2 Planning In-service Inspections for Detection of Initial Crack after Warranty
Period

Let us assume that in a fleet of m aircraft there are m of the same individual structure
components, operating independently. Suppose an inspection is carried out at time r7,
and this shows that initial crack (which may be detected) has not yet occurred. We now
have to schedule the next inspection. Let Ir be the minimum time to crack initiation in
the above components. In other words, let Ir be the smallest observation from an
independent second sample of rz observations also from the distribution (7). Then the
inspection times can be calculated recursively as

r, = Pexp(w,.ç-o116), .i>2, (38)

where it is assumed that ee:O, 4 is a time of the first inspection (wananty period), w; is
determined from

pr{)ï > r,;\ > r 1 4n)= p,it h[â) 
"r"[;} 

t'[â) 
" "[ïr] "]

= pr {w, > w i,<r- ot;ry > w i -t,1r- o1, zy = # ] :*t?a = | - a
Pr {lT, > w 1 _1,11 _oy', zl

or, equivalently, from

(3e)

pr{{ > r,;zt=-{t"[â) ,t^(i) ' ,] =r.,* >w'<,-oyzl

= (l- a)r , jàl,

t v  c

0

(40)

F and 8 are the MLE's of B and â, respectively, and can be found from solution of (13)

and (14), respectively.
But again, for instance, consider the data of fatigue tests on a particular type of

structural components of abcraft IL-86: x1=5, x2=6.25, x3=7.5, x4:7.9, 15:8.1 (in

* ,  
. _ ,  , à i . n ( , , t p \ (  w  j . .  - i -  ê , - / .  , ; r  

\ - r

l v ' - 's  
,= ,  

|^s ' " , . r - " ,  + ie ' i ' " t "  iJ  +(n-r1e '6n(r , ro) l  dv
. ,  l - l
n \ j = I  , /

\ - r
, , 4 < t ^ t -  I  a l r  fw Ltnvi t  e t l l .""6n(' , ,  i )  + (n - r1e,6hG,, B) 

|  dv
\ t=l '/
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numberof l0"flighthours)giveninTable l, wheret-n=5 andthemaximumlikelihood
estimates of unknown parameters p and 6 are B=7.42603 and 8=7.9081,
respectively. Thus, using (38) with q:2.5549 (x104 flight hours) (the time of the first
inspection), we have obtained the following inspection time sequence (see Table 2).

Table 2: The inspection time sequence.

wi Inspection time ri
(x104 flight hours)

Interval ri+r-ri
(flight hours)

7o:0

wr= -8.4378 t5 2.5549 25549

wz= -6.5187 rz= 3.2569 7020

wz= -5.5145 rr 3-6975 4406

wa: -4.8509 rq= 4.0212 3237

ws= 4.3623 rs= 4.2775 2563

wa= -3.9'193 ra= 4.4898 2123

wt= -3.6666 tz= 4.6708 r810

i wt= -3.4038 ta= 4.8287 r579

l4le= -3.1780 rs= 4.9685 1398

5 Conclusions

The method of constructing prediction limits for future samples from a Weibull
distribution introduced in this paper utilizes all the information in a sample, but since it
involves the use of numerical integration, many may prefer to use this technique only in
situations not readily handled by other of the methods described earlier. With modern
computing, however, the conditional prediction limits are not difficult to calculate and
should be recommended when the ability to do computations is available.

Although the results of this paper can be obtained through simulation, the simulation
results are unstable; they vary from one to another. From theoretical as well as practical
points of view, analytical solutions should be used if they are avallable. The results of
this paper provide such analytical solutions. Furthermore, the techniques used in this
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paper can be applied to obtaining explicit formulae for computing prediction limits for
any other location-scale distributions.
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