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Abstract
The subclass method is one of pattern classification methods proposed by Kudo et
al. (1989), which is based on the approximation of each class region by a set of
axis-parallel hyper-rectangles. This study improved it using an adaptive resampling
technique known as boost'ing. Boosting is a well known ensemble learning method as
an effective tool for improving the classification performance. Regarding the subclass
method as a method for controlling the performance of resultant classifier, we could
investigate 1) how the performance of a base classifier effects the classification results
by boosting, and 2) how much boosting can improve the results compared with the
original subclass method. Moreover, we also investigated the result using bagging
which is an another popular ensemble technique.
Keywords : Subclass N'Iethod, Boosting, Adaboost, Bagging, Resampling.

1 Introduction

As attention has been increasing recently in machine learning community, boosting
is a geueral method for improving the accuracy of a given learning algorithm. For
various problems which we confront in practical situation, it is generally difficult
to obtain a highly accurate classifier only from given instances. However, if we
just have to obtain a rough classification result, we might have a something simple
algorithm heuristically in many cases.

For example, Schapire (2002) takes the spam filtering problem. It is generally
a difficult task to detect spam mails with high accuracy. But we will easily have
some intuitive but rough rules such as "if the phrase 'buy now' occurs in the email,
then predict it is spam", which will be significantly better than random guessing.
If we can obtain a môre accurate rule by combining such rough rules, we can avoid
the bothersome problem of constructing the highly accurate single rule for our var-
ious practical problems. Boosting and similar ensemble learning approaches have
been developed for achieving this purpose. Kearns and Valiant (1988) showed that
boosting and its variants can "boost" the weak rule up to a strong rule.

In order to boost a learning algorithm, we first use it for a randomly selected
subset of original training data. Then we obtain a weak classifier. Next, we test it
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for all of given training data. With the cla.ssification result, we select again a subset
of training data for the next step so as to emphasize the data misclassified by the
classifier. Then, misclassified samples at each step will be selected more often in
the subsequent step than correctly classified ones. After this procedure is repeated
many times, we collect the generated weak classifiers and combine them as a final
single classifier which will be more accurate than any of each weak classifiers. Thus,
boosting can improve a given learning algorithm.

In this paper, we study on improvement of the subclass method, proposed by Kudo
et ol. (1989, 1996) from the viewpoint of boosting. The subclass method is based on
approximation of each class region by a set of a:<is-parallel hyper-rectangles. Since
the parameter of the subclass method can adjust the accuracy of approximation,
the subclass method can be regarded as a method for controlling the classification
performance. By using it as a base learning algorithm for boosting, we can also
investigate the relation between the performance of a base lea.rning algorithm and
the classification results by boosting it. In addition, 1rye also investigated the result
wing bagging, which is an another popular ensemble technique.

2 Methodology

In this pâper, we treat only binary pattern classification problems (2 class discrimi-
nation problems) on some feature space .t. For given n, data {(rr, gr), ...,(rn,yn)},
where r; € ,t is a feature vector of data and y; € {-1,1} is its class label, our goal
is to construct a good classifier f : X -+ {-1, 1} which produces -l or 1 for any
(that is, unobserved) data point r e N as precise as possible.

First, we describe briefly the boosting algorithm, the bagging algorithm and the
subclass algorithm.

2.L Boosting and Adaboost Algorithm

The theory guarantees that boosting can reduce the training error (the training
error can approach to zero exponentially quickly as T increases), namely lrye can
boost a weak learner as long as our base learner is always better than random
guessing. Moreover, it also tends to reduce the test error. It is known that boosting
can be regarded as a greedy optimization method for searching the Bayes-optimal
classifier by logistic regression in statistics (Friedman et a1.,200A). It can maximize
the minimum "mârgin" on training data in the viewpoint of large margin classifiers
framework (Schapire ef aI., 1998).

Ad,aboost algorithm (Freund and Schapire, 1996) is one of the most widely used
approaches for boosting. Boosting requires a base learning algorithm (called weak
learner or base learner). If "base learner" can accept weighted instances in the case
of, for example, using C4.5, Adaboost can improve it not by resampling but by
simply reweighting (Quinlan, 1996) which is a more direct implementation of the
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theory. However, ïrre use a more general (but weak) version for boosting the subclass
method. Adaboost algorithm using resampling is shown in Figure 1. We also use
a restart determination due to Breiman (1996b) where we reset all weights to be
equal and restart if either weighted error e(') is not less than 0.5 or e(') becomes 0.

ithm

1. Input: Tlaining data 2 : {(rr, yr , . . . r ( r n r a n ) ,  n;  Ç X,y; €.
Number of iterations ?

2. Initialize: ,lt) ': 1/n for all i : !,. . .,Tt
3 .  D o  f o r :  t  :  1 , ,  .  . , 7

(a) 6tt) :: resampled n samples with replacement from D according to
the.weights ,jt) * a probability mass for (rr,y;).

(b) Tiain the "base learney'' lrtt)(r) with B(t).
(c) Test ft for D and measure its weighted error.

€(t) .- 
frl"orr.,*6(r)(æ;)) 0(')'-
d: l

(d) If not g q 6(r) ç 1/2 then restart with urjt) ::l/n (i.e., go to (a))
Therefore, we can obtain 0 < e(t) ( 1/2 (i.e., c(t) > 1).

(e) Update the weights so as to emphasize the misclassified samples

",,(t+r) .- | wlt) x t 1 a{t\ lf ya : 1'(t\ (x;) (correctly classified)
wi '- 

l?rIt) x a(,) if yt * 1rJ) @,;) (incorrectly classified)

(f) Normalize the weights so as to satisfy Xi=r rit*t) : 1.
4. Output: Combined learner as weighted majority voting

Figure 1: Adaboost algorithm

2,2 Bagging

This paper also discusses an another popular approach called, baggi,ng (Breiman,
1996a) for combining weak classifiers. Bagging uses each subsampled training data

f (r) ::,tr' (Ëf", attr;nrtr 1r;)

boost by resampli

(1 -  et t)) /eto
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parallel, whereas boosting uses them sequentially. The algorithm is shown in Figure
2. It is well known that bagging tends to reduce the variance of the overall estimate
and it can stabilize the base learning algorithm. It is quite often found to improve
the performance of complex and unstable classifiers.

m
1. Input: nmg r r ,An) | ,  r i  € .  . f  ,A i  e

Number of iterations ?
2 .  D o  f o r :  t  :  I , .  .  . , 7

(a) B(t) :: resampled n bootstrap samples from 2
i.e., randomly select n samples ftom D with replacement.

(b) T[ain the "base learner" lrlt)(x) with B(t).
T

!attrlr;

Figure 2: Bagging algorithm

2.3 The Subclass Method

The subclass method, (Kudo and Shimbo, 1989; Kudo et al.,1996) based on approxi-
mation of each class region by a set of hyper-rectangles so that each hyper-rectangle
includes training samples in a positive class ma:cimally and excludes those of other
classes (a negative class). Thus, it basically requires a sort of combinatorial exami-
nation of samples. The revised version (Kudo et al., 1996) resolved this problem of
computational complexity by introducing randomized mechanism. The algorithm is
summarized in Figure 3.

Thus, the subclass method includes a kind of random search. Because the num-
ber of iterations, .L, in randomized subclass method are directly connected to the
accuracy of approximation for the target class (1 ( # of rectangles ( l), one can
control heuristically the "roughness" of the generated rule by .early stopping of the
random search. Of course, if we stop the search or iteration too early, this kind
of compromise makes the result poor or unstable. However, we can often expect
that the generated classifier is at least better than random guessing, and in this
case, it is possible to boost the early stopped results. Even for the classifiers other
than the subclass method, if the learning algorithm includes some random search or
convergence-type iterated algorithm, then similar approach will be possible.

Thus, the use of subclass method with early stopping as base classifiers can give
a insight on the problem of what type base learning algorithm should we use. This
model selection problem essentially have a problem-depend (or data-depend) aspect.
Therefore, we performed an empirical study for some real datasets and examined the
performance of boosted/bagged subclass method compared to the previous results.

3. Output: Combined lea.rner by voting /(r) :: sign
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a positive sample set from samples of a target c
and a negative sample set from the other samples.

1 .  Input :  Pos i t i ve  da taP:  { r r ,  . , . , rn ] -  andnegat ivedata"Â/ :  {Au. . . ,A* l
the number of iterations ̂ L.

2. Ini t ia l ize: Q : :  A, ulo) i : l  for al l  i  :  1,  .  .  . ,n
3 .  D o f o r :  I : I , . . . , L

( a )  6 : =  A
(b) Reorder positive samples oI P by choosing them with the probability

proportional to tlw[t)
( c )  D o  f o r :  i  :  1 , . . . , f l

( c - I ) ô i = ô + { r i }
(c-2) Check the exclusiveness of /. Here, / is exclusive.

if the hyper-rectangle spanned by @ does not include
a n y y e N .

(c-3) If / is exclusive , then wlt) t: .lt-t) + L
Otherw ise ,  Ô: :ô - { tn }

( d )  @ : : o + { d }
4. Removing duplication of ô.
5. Output: Output iD.

Discrimination: For a given sample r, frnd the largest subclass ô e A including
r, where the size is measure by the ratio of samples included in the subclass to the
size of the positir,e sample set. Label r by the class of the largest subclass. If no
subclass includes r, the nearest subclass is used for assignment of class label.

Figure 3: Subclass algorithm

2.4 Strength of Base Learner for Boosting

In order to use boosting and bagging, we have to determine only two things: the
type of "base learner" and the number of rounds, 7. Clearly. "base learner" is a key
ingredient of boosting/bagging algorithm because we need a good base learner for
successful results. However, it is unclear how to choose a base learner appropriately
for each problem. When a base learner is too weak, then we cannot expect good
performance. On the other hand, when we use a strong base learner, it will lead to
overfitting (Meir and Râtsch, 2003) or too much computational cost.

If our base learner is better than random guessing in many cases, we can expect
at least the smaller training error than that of original one. However, in practical
situation, we often fixed the number of round ?. Thus, the performance of boosted
classifiers for unseen test samples is directly related to the choice of base learning
algorithm.
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As a base learner of boosting and bagging, most existing works has been typically
used the learning algorithm such as decision tree classifiers like C4.5 and MC4 (or
just a decision stump), neural networks (two-layer perceptron, RBF nets, SVM,
etc.), Naive-Bayes classifiers. Then the investigation of when we use the subclass

method as a base learner is one of our motivations. Boosting is a kind of greedy and

empirical method for improving a given base learner. In practical situation, whether

it works well or not depends on the property of training data. Hence, we need the

empirical study (this is a essential restriction came from the famous No Free Lunch

Theorem in algorithm-free learning theory which states that in the absence of prior

information about the problem there are no reasons to prefer one learning algorithm

over another (Duda et a1.,2001)).
Thus, one of the prominent keywords for boosting-like approaches is "rough".

We can investigate not only how effective the boosted/bagged subclass method is

compared with the original subclass method, but also how the "roughness" of a base
Iearner can effect the boosted results in practical situation'

3 Experiments

S.L Efects in 2-Dimensional Classiffcation Problem

First of all, we confirmed intuitively the effects of boosting and bagging for the sub'

class method by visualizing the decision boundary in 2-dimensional classification
problem. Here, we used 2-dimensional data for a binary classification problem used
in Fukunaga (Fukunaga, 1990). The results is shown in Figure 4. We can see that

boosting makes the minimum margin large, which is a illustration of the fact previ-

ously mentioned in the subsection 2.1. !tr'e can also see that bagging makes boundary
smooth and stable. Nloreover, from this figures, we can understand intuitively how
the subclass method ç'orks.

Figure 4: Decision boundaries of original subclass (left), Adaboosted subclass (cen-
ter), and bagged subclass (right). The number of round is 100.
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3.2 Subclass Method vs. Boosted Subclass Method

Using datasets from UCI Machine Learning Databases (Murphy and Aha, 1996),
Friedman (Friedman, 1977) and UCI Irvine (Sklansky), we compared three types
of algorithms, subclass method (SUB), adaboosted subclass method (Boosted), and
well-known decision tree classifier (Ca.5). We used 6 datasets which is for binary
classification and have numerical features with no missing values: sonar (203 sam-
ples, 60 dimensional), musk (476 samples, 166 dimensional), wdbc (b6g samples,
30 dimensional), wpbc (198 samples, 32 dimensional), mammo (86 samples, 6b
dimensional), and fried (100 samples, 10 dimensional).

The original subclass method requires (S of samplesxf of features) times search.
However, this randomized version often works well even when the number of itera-
tion (.L in Figure 3) is restricted to a fixed constant.

Results by early stopped version can be generally unstable because its successful
result is based on some kinds of luckiness in terms of the randomness. However,
when it is used for boosting, we can obtain better generalization performance than
before. Table 1 shows that the parameter .L can indeed control the classification
performance for unseen test samples. Table 2 shows the results of recognition rate.
For evaluation, SUB is based on 10 times average of lO-fold cross validation, and
the boosted/bagged version is based on 5 times average of 10-fold cross validation.
We used the fixed number of boosting iteration 7 : 100.

Table 1: Control the strength of classifiers using the subclass method

data

sonar
musk
wdbc
wpbc
matnmo
fried

68.8
86.3
94.2
65.2
73.3
80.0

4 Discussion

The result in Table 2 shows that boosting and bagging for the subclass method per-
forms well. The prominent and important result is that of boosted subclass method
with .L : 1. In Table 2, the result of L : 1 is often the best and boosted subclass
method with Z : 1 can give the subclass method a significant improvement in per-
formance. When L : L, the subclass method approximates a target class by just a
single rectangle. Though just one time search seems to be too unstable, nevertheless
the average result became often better than the original. This unstability for early

60 208
166 476
30 569
32 198
65 86
10 100

1 70.3 70.9 7r.7
80.0 88.8 89.1 89.3
93.5 95.8 95.9 96.5
67.7 75.7 77.0 78.0
65.5 67.1 66.9 66.2
58.5 69.7 73.2 72.0
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Table 2: Original subclass method vs. boosted/bagged subclass method

data
boosted subclass baeged subclass SUB ,o

L = L l  l U  I  I U U I 10010 1000
sonar
musk
wdbc
wpbc
malnmo
fried

75.7 74.3 74.5
90.3 88.0 87.8
96.2 96.1 96.1
77.2 78.6 79.3
74.9 71.4 69.8
65.0 80.2 80.2

72.0 74.3 74.5
86.5 88.4 89.1
94.9 95.6 96.0
77.7 78.4 79.8
74.4 65.1 61.6
57.0 n.2 78.0

7t .7
89.3
96.5
78.0
66.2
72.0

68.8
86.3
94.2
65.2
73.3
80.0

stopping is resolved by combining many classifiers in boosting procedure. It would
appear that the result of adaboosting accept our early stopping strategy. the reason
for why L : I works well seems to be came from the following fact: The stronger
classifier (in subclass case, larger .L means strong appmximation of a class region)
might have a small change of decision boundary for resampled training data. Thus
when we use a fixed number of round, ?, it tend to have a small contribution at
each round to the conclusive result for combined ela.ssifier. In contrast, the decision
boundary of rough cla.ssiûers for each resampled data is very different usually. On
the other hand, for bagging, we obtained better results in almost cases with the
increase L (i.e., the performance of a base learner).

This result can also leads us to the new algorithm for the subclass method. In
randomized procedure of the original subclass method, we can use adaptive resarn-
pling instead of random shuflling of samples (see Figure 5). Schapire (2002) gave
the experimental result for comparing the boosting C4.5 and the boosting decision
stumps. C4.5 is one of decision tree classifiers and decision stump is a single.test
decision tree. Thus, this situation is similar to our relation between subclass method
with .L I I and L :1,. His experiment is based on 27 datasets of UCI benchmark
reported by Freund and Schapire (1996). As a result, boosting stumps can usually
give as good results as C4.5 but it does not have dominant performance compared
with boosting C4.5. Moreover, it often cannot give the better. results than random
guessing, especially in multi class problems. Thus, instead of stumps, the use of a
rectangle approximating a target class is one of possibilities for better and low cost
results, i.e., we can use the boosted subclass method with .L: 1 in Figure 5.

However, the obtained results here are restricted with these data previously listed
and of course we must be careful about the fact that the performance is depend on
the problem. Therefore we need further study on various type of real data for
each problems which we would like to treat actually. The same test for 27 UCI
datasets as Freund and Schapire (1996) will be a promising direction of researeh,
but, unlike C4.5, the original subclass method could not have so far the methodology
on treating the missing data and the nominal (not numerical) data often found in
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27 UCI datasets. But the recent research on the subclass method will be able to
give this type of discussion for boosting.

Repeat Z times:
1) Permute training samples randomly. (random shuffiing)
2) Check the exclusiveness (add or discard) for each sample in a sequential

order.
3) Obtain a subclass. (a rectangle approximating the target class region)

Remove duplication of generated subclasses.

Su using Adaptive
Initialize uni 11. the weights on training sam
Repeat I times:
1) Select training samples according to the weights. (adaptive sampling)
2) check the exclusiveness (add or discard) for each sample in a sequential

order.
3) Obtain a subclass. (a rectangle approximating the target class region)
4) Classify all training samples using only obtained subclass, and update

weights so as to emphasize the misclassified samples.
Remove duplication of generated subclasses.

Figure 5: Procedure of original randomized subclass (top) and proposed rnodified
subclass (bottom). The proposed method is the same as the adaboosted version of
randomized subclass method using earlv stopping with ,L : 1.

5 Conclusion

lve examined ernpirically the effectiveness of boosting and bagging vrhen a hyper-
rectangle base classifier called the subclass method is used. By using the early
stopping strategy with it, we conclude that 1) boosting for the subclass method
performed well. 2) it also worked well using early stopping of random search, par-
ticularly setting tr : 1 can often give the significant improvement in practical per-
formance. In this case, lrye proposed the new modified subclass method and gave
the concise randomized procedure for the boosted subclass method using adaptive
sampling instead of random shuffiing of training samples. 3) boosting seemed not
to require a strong base classifier in practical situations when we use a fixed number
of iteration for boosting.
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