
Mathematical Models Of Discrete Systems Goal-Directed
Behavior Generating

A.A.Sytnik, T.E. Shulga
Saratov State Socio-Economic University, Radischeva, 89, Saratov, Russia

fax: (007 -8452) 7 5-6640, email: shulgaûe@info.sgu.ru
Abstract
In this paper the problem of discrete systems goal-directed behavior generating is
considered. The finite-state machine represents a model of a discrete system. The
problem of goal-directed behavior generating is solved by the theory ofthe universal
finite-state machine. The class of finite-state machine simulated by a family of the
polynomials is described. The using of this "numerical" model of behavior of finite-
state machine allows to apply the algebraic methods to solve the problem of goal-
directed behavior generating. For the described class analysis and synthesis problems of
universal enumerator are solved.
Keywords: generating goal-directed behavior, the finite-state machine (FSM), the
universal enumerator, the numerical model of FSM.

I Introduction

In the field of systemology attention is traditionally paid to the problems of control
and diagnostics of discrete systems behavior. The problem of goal-directed behavior
generating (GDBG) is one of the same importance. Actually, generating goal-directed
behavior demands consecutive solving of the following problerns (both, the actual
system behavior and the differing given one, are posed):

determine, whether generating the given behavior is possible or not;
- determine the set of system transformations which allow generating the

given behavior by the means of transforming its components and
interrelations between them, changing the modes of functioning, supervision
and outputs monitoring, etc;
choose the optimum in the set ofpossible system transformations.

One of the basic features of the process of generating goal-directed behavior is the
opportunity of getting additional information about the system, principles and means of
its fail-safety. The achievement of the given mode of functioning can be caried out by
different means, both intemal and extemal. In the case of intemal means, the system
uses structural reservation rated, when designing the system. In the case of external
means, the system uses extemal (according to its basic components) objects.

In ttre general case (that is, for an arbitrary discrete system) the problem of
generating goal-directed behavior is algorythmicallly insoluble, but it can be solved by
imposing certain restrictions on the system behavior.

We will deal with finite-state machine (FSM) as a model of a discrete system. As a
rule, finite-state machines are considered as transformers, namely, system functioning is
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studied through consideration of the way input stings are tansformed into output
strings. However, sometimes it is even more important to determine the feedback - to
find the group of input strings tansformed into the given output string. It is so-called an
inverse problem, in essence, it means determining an output string for the given input
one - that is, the hansforming form of behavior. In case the finite-state machine is
represented as a set of generated ouQut stings, the machine is considered to be an
enumerator (and it has an enumerating form of behavior). Conceptually, the problem of
generating goaldirected behavior in case when the sfiuctural redundancy is not
available proves to be a ûansition from the tansforming form of behavior to
enumerating form. Actually, the transition from fransforming to enumerating within fte
framework of the finite-state machines theory is complicated and time-consuming. A
new, so-called "numerical" model of finite-state machine is represented which is based
on its transition from tansforming form of behavior ùo enumerating form, using several
methods of algebra and a number theory.

2 Formal setting of the problem

The finite-state machine (FSM) /=(S'Y,I,ô,1,) is given, where
Xis a finite set of input symbols,
Iis a finite set of output symbols,
S is a finite set ofstates,
ô:XxS-+^S is the transfer function"
l:XxS+Y is the output frrnction.
Without loss of generality, we suppose that ^FFand ô=?v, that is the output of,{ if its

state. Hence, the initial finite-state machine is brought to the form
l=(XJ,ô). ( l )

IÊt X' , ^S' be the sets of FSM input and states strings, respectively.

Delinitlon l.
The FSM A=(X-5,6) realizes the family of finite-state mappings {ôo}r.r. of the form

ô":S-+.f and generates the set of states strings

4f )={s l ( l  s '  e  S) (3  peX ' ) :ô , (s ' )=s} .

The fiansforming form of behavior of the finite-state machine A is represented with
its family of finite-state mappings {ôr}r.r. . The enumerating form of behavior of the

finite-state machine I is represented with the set of states strings l4.f,;, generatedby A.

The set 4/) is called the enumerable set of,4.

The theory of universal FMS is the basis to solve the problan of GDBG. We cite a
few main concepts ofthis theory.
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Definition 2.
The family of FSM {4--(X,,5,,ô,)},., is given. The name of the family is

identified with a set of indexes I. The FSM l, =(X,S,ô) is called the universal FSM for
the family I, if it is true that
(Vt eIXip,:S, "4 

-->S x.li)(vs eS,[vae.Ç):ôi(s,a; =ô1q,1oorr.

The FSM I = (X, S,ô) is called the universal enurnerator for l.\|", of the family 1

(where (X,.') is enumerable set of A,,iel), if the following condition is satisfied:
(Vie1) 4x,')l:4f).

Theorem 1 tsl
The FSM I is the.universal FSM of the family of FSM {z{},., of the family / if and

only if it is the universal enumerator for {{},., ofthe family.L
Later on in this paper we will consider orily universal enumerators.
Lefs set a problem of GDBG in the terms of the theory of the rmiversal automata.

Suppose that the FSM I models a desirable system behavior. Let l denote the class
of possible behaviors of this system. For every possible system behavior ie.I we
consider the FSM li. Thus, we have the family of FSM {A,},.,. To solve the problem

of GDBG of the systan means tbat every FSM of this family can model somehow the
behavior of A.In that way, the problem of GDBG is solvable if and only if every FSM
of {A,\,., is universal enumerators forl.

The problern of construction of the universal FMS I for the family 1 is called the
synthesis problem of universal FMS. The inverse problem, the problem of construction
of the family .I, for which FSM I is universal, is called the analysis problem of
universal FMS. Hence, the problem of GDBG can be solved by two ways. One way is
to check ttrît A is the solution of ûre analysis problem for each FMS from {.,{},r.
Another way is to solve the synthesis problem for ,4, to construct the class of all
universal FMS for I urd to check that every FMS from {1,},., is a member of this

class.
The construction problem of the rmiversal enumerator is insoluble concerning the

arbitrary family of FSM. Hence, the problem of GDBG is insoluble concerning the
arbirary system too. Therefore, now we bry to isolate classes of FMS, for which this
problem is soluble. One of such classes is the class of FMS simulated by the
polynomials.

The states of the FMS should be enumerated with integers from 0 up to m-1, so that
g = {0,1,...,12 -l\ = GL(m) (it means that 5 coincides with the semigroup of remainders
modulo m). T}c transition function of FSM can be considered as a substitution of the
form:
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(o I ... z-ù
4tl _ l,xeX e)- \ .so q s*r) '

Thus, the system behavior will be considered as a collection of substitutions (2) for
every symbol from input set.

We denote s = (0,1,...,2 - l), J, = (s0,s1,...rr._r). L€t's consider ttre polynomial"t(s)
as the function of vector s of the form:

./,(s) = ao + ats + arst +... + a, s'1mod m\ ,ar e S ,k =f,{, xeX, (3)
where the operations of addition, multiplication, raising to a power are the operations of
ring of remainders modulo m.

Definition 3.
We say that behavior of FSM I (l) is simulated by the family of polynomials

{f ,\ ** (3), if (Vx e xF, is re,presented by the polynomial ft,.that isf,(s) = s, .
The degree of the polynomial simulated behavior the FMS, which has m staûes, is

expressed by following formula.
/ = maxoo,cr r,...,a r) + pl,*t . . -.. pi, t . HOIq1Z",-r 1, p r -1,.. u p t - 1) - l,
where 2"0 pi,...pi' isfactorization of m, p,pr...p areprimenumbers.

The class of FMS simulated by polynomials was investigated We obtained the
calculation method of the polynomial coefficients for given FMS-substitution under the
condition of polynomial existence. The conditions of FSM simulation by the family of
polynomials are also ob+ained. These results are given in articles [6,fl.

Let's cite formal setting of synthesis and analysis problems for the class of FMS
simulated by polynomials.

Synthesis problem
The FMS fanily{A,1,.,:A, =(X,,5,ô,) is given, where li is simulated by the

family of polynomials {/,(')},.x,. It is necessary to consûuct ûe FMS A<X$,6),

which is simulated by the family of polynomials {"4 }*x and is universal for family

lA'\ n,'

Analysis problem
The FMS l=(XJ,ô) simulated by the family of polynomials {î,\,.* is given. It is

necessary to construct the family of FMS {A,l,.r:A,=(X,,5,ô,), where l; is

simulated by the family ofpolynomialr {,t"' | ,.*,,andA is universal for this family.
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3 Construction method of enumerable set of the FMS simulated bv
the family of polynomial

As it was pointed out in l, the problem of GDBG is equivalent to synthesis and
analysis problems of the universal FMS. To solve these problems the method of
construction of enumerable sets for considered class of FMS is necessary. Let's
consider the mechanism of outcome of such sets.

First of all, we note that, if the tansformation generated by input symbols
xl,x2,...,xn is simulated by polynomials .fo,-f,r,...,.f,, respectively, then the
transformation generated by input sting l=x1,x2,...J,, is simulated by polynomial
-f,(s) = .f,,U,,-, (.,.1,, (s))Xmodz).

In fact, let t = x1x7, /,, (s) = ao + af +... + a,s', f ,,(s) = bo + b,s +...+ b,st .
Then

. f , - - f o r r b ) = f o ( , f , , ( s ) ) = b o + b r ( a o + 4 r . r + . . . + a , s ' 1 + . . . + b , ( a o + a l s + . . . + a , s t ) t =

=(ào+brao+brao2+ . . .+b ,ao t )+ (b ra r+2bzao ,a r+3b rao2a r+ . . .+ lb ,ao t - t a r ) s+

+. . .+(bra,+br(aoa,+atat- t+. . .+a,ao)+b,  io ,oror+. . .+ lb,aot- ta, )s '+. . .+',ll;o=,

+ 1b,a,t1st '  = c0 +clJ + crs ' . . .+ c,s '  + c,rrs '"  +. . .*  crzst2 .

Since the semigroup of remainders modulo m generated by element seS:
<J>={s,J2,..J'ot'o-rI is the cycle semigroup with the period rno ând the index re
(ro + mo- I =/), values s'(Èf are repeated starting with degree /, that is
s r o + i  -  s a o + r o + i  =  r 2 a q + r . + l  = . . .  =  5 b o + r o + ,  = . . . r i =  0 r r l ,  _ l

Thus, if we replace s'bb*'o"i,i =o6i,trro with s'o+i and group together
coefftcients of the polyromial, then we obtain the polynomial of degree /.

Let's consider the sanigroup (F, .), where F is the set of the polynomials (3)
simulated behaviors of the FMS (l), . is substitution operator of functions: f-rt=-fy(f,).
Later on, instead of (4 ') we will wdte in abbrreviated fomr F and we will omit sip ..
Obviously, the cyclic sanigroup generated by elementf,: F,: <f* > is finite. Therefore,
there are the whole positive numbers r aridm (the index and the period of semigroup F,
respectively), tlnt F, -< f , >= {f ,, f ,,,..., f ,",,-,\ .

Let's denote xo = {r:*..j.

Consider the behavior of the FMS I if the stings x" is input. If we input serially the
symbol x several times, we urill obtain the family of the substitutions ô , ,ô ,. ,..., ô ,, ... ,

whicharesimulatedbypolynomials f,,f,r,...,.f,,... respectively. Sinceitistruethat
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f ,oa 
= f ;, for a=m*r-L where r is the index, rz is the period of the semigroup

Fr <1,>, the equalityô,"., = ô,. is tnrly. Thus, if we input the symbol x o times, we

will obtain all possible substitutions. To calculate number a we will use the following
easy method.

Method 2
Enter: The fMS,4=(XJ,ô), lSl=ia, and the polynomial I (3) simulated behavior of,{

for input symbol xeX.
Exif The set of different polynomialsf, ,.f ,r,....f ," simulated behavior ,{ for input

strings, which consisb of only r , and conesponding cr.
Lety2.

Step p.
a) Calculate the polynomial f ,o = f ,(f ,,-,). Letfl.

b) Compare the potynomial f ,, *iùûre polynomial f,i .

If / 
" 
(s) = f ,i(s), then a=P-I. The method is finished-

If f,,(s)=r, then o:p. Gn fact" f,1,r$)= f,("f,t(s))=/](s),7=rl). The

method is finished.
Else, ify'<p-I, we increasei by I and repeat the operation b).If i:p'l, then we

increasepby I andexecute step p.

Let's consider the semigroup {l generated by polynomials .fo,f,r,...Ï,,i

Fr=(f,,,f,,,...,,f,,).The elements of this semigroup have the torm f 
4,,rllr...rlir...,

where 0< g7, sar-. Obviously, F,r is finite. I'et F; be a set of different elements of

F*
Let's denote d;=ln;*7;-l (i=il), where mi is the index and r; is the period of

semigroup r,, =(f,,\, that is f ,i, = f ,, . To obtain different elements of F,e, it is

enough to consider the strings , = fr,tt ,prl' ..t:lr , where the maximum number of xi in t

in succession is qi.

In fact, iç t =t'xfi*tt", then

.f ,(s)= fr ,y,^, , , (s)= fr( f4,*,("4 '(s)))  = f ,"( f  , ; , ( , f , ' (s)))  
=.f , ,1, , , , (s)= f ,"

that isô, =ô,. .

Obviously, the set Fj represents in essence the set IlX'1,the set of strings of states

generated by the FMS l.
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I

Let's determine what polynomials of form f ,1, -u,f...rp* ... belong 6 4.

Obviously, the elements -fo,-f,r,....f* are the members of this set. Let the

equality f,o(s) = /. (s) is fuly for some sning t o of length p, where

î, .eF), l i l< lrol l l r l  isthelengthof str ing r) .Therefore,thepolynomial I , (s) is

not included into fj. Besides, any polynomial simulated substitution, which includes

sting / o as a prefx or as a suffix, is equal to some polynomial, simulated substitution,

which is generated by strings shorter than t ,. Therefore, such polynomials are not

included fio F; either. In fact,
(Y t').fr,o3) = f,;("4,(s)) = .f ,. (f ,,(s)) = .f ,,,. (s),

(Yt ' ) f ,0, ,$)= f , , ( f ,o(s))  = fr(- f , . (s))  = . f , . , , (s).

If such polynomial /. is not exist, then lo (s) is included nto F) .

Let the equahty .f,,(s) = c = const (ce[Qz-l]) is truly for some shing l, of length

p. Hence, any polynomial simulated substitution, which is generated by the sking
irrcluded r , as a sufFrx, equal to constant c and so, it is not included into F, either.

In fact,
(v t') f",@) = f, o(fi G)) = c;

Let the egualrty f,r(s)=s is truly for some string /, of length p. Then any

polynomial simulated substihrtion, which is generated by the string included I , as a

suffrx or as a prefx equal to some polynomial simulated substitution, which is
generaæd by strings shorter ûan l, . Therefore, such pollmomirls are not included into

/?j either. In fact,
(Vt')f*,(s)= f,o("4,(s)) = fr$),

(v t') f,o,'$) = .f,'(f,o(s)) = l,(s)'

Let the set SUF={t,r) be the set of stings of input symbols {xyx2,...,x,}, that

{t,*esUF)e (3 r': I i t <l r",rl, f ,* (s) = 4. (s) ).
We suggest the method of construction of all different elements of semigroup F7.

Method 2
Enter: The FMS l:(XJ,6), X={x*xr,...,t,}, lSl=z and the family of polynomials

-fr,-f,r,....f,, (3) simulated behavior of A for input symbols x17x2t.",x,

respectively.
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Exit The set L(X*'1,set strings of states generated by A, that is enumerable set ofl,

Step 1.
By using the method 1 we calculate numbers cl;:mi|7yl (; = l,n ), where z; is the

index and 4 is the perid of the seinigroup ,,, =(f ,,).

Let F)=U,r,f,r,...1,,\.Let T:{xtllz,...}o} be the set of string of length I in

input set {n*2,. . .}n} . For this step let SUf= ltî,"|,=ç, nL

Step p.

(At the stepp \ile constnrct the elernents of the semigroup ,^ f ff f* *;* such as

9i +Fi, *...+Fr. =p, that is the polynomials simulated the behavior of I for the

stings of lengthp.)

a) Let's constnrct the set of the strings To = {t'ol n,- in the following rvay. Constnrct

stings of length p: add to the right every symbol from input set {x1,x2,...,rn} to every
string from Tp;,thatis VÈ e /r-, constnrct string t', = tf-rx, j =t,".

Such string t is included unto Te if and only if it has not any strings, which is merrber
of ,SU4 as a suffix. Hence, if a sting is represented by form t=/tr4,Q"4eSUF), then it
isnotincludedrntoTp.If To:A, thenprocessof constnrction of F), setofalldiffer€nt
elements of semigroupF,r, is finished. L(X'> = 4' Else we execute operation D).

à) For every sttng Qnp,*i e To we calculate the polpomial
-f,o(s) = .f ,r-ni(r) = /,r C4o-, (t)) .

Let's compare the polynomial /, with every polynomial of r).If i,t; l<&Sp, that

f,,(s)= f,.(s), then string l, is included into ,SUF and is excqted fro* Zo. If

f,,(s) = const ,then to is included into,SUF. Else the polpomial ,4o ir io"luded into

f) . tt -f,o!) = r, then polynomial /o is inctuded into Fj , and to is included into

SW and is excepted from To. Thus, after execution ofthis step f.j consist all different
polynomials simulated behavior of A for stings of length i, t =t, p . We increase p by I
and execute stepp.
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4 Universal FMS Criterion

To solve the problem of GDBG (that is synthesis and analysis problem of universal
FMS) it is necessary to have some criterion defining whether A is universal for the
farntly {A,1,., . Such criterion is rçresented by the following theorem.

Theorem 2
The FMS l:(XS,ô) simulated by the family of the polynomials {.f ,},., is the

universal enumerator for the family of FMS lA,|,., : A, =(X,,5,ô,), where l; is

simnlated by the family of polynomials l -f ,'')| re x i , if and only if

(Vi e I)(V;r . X,) f! '\ eL(X'), where set I(X') is constructed by using the

method 2.

Example
The FMS A=(X,5,6), lSFzr=6, X={x,x,xr\ simulated by polynomials

./,, (s) = 2s2,.f,r(s) = 5s,/], (s) = l +2s2 and FMS Ar(X$,6ù, x = lx,xz| simulated

by polynomials {')(s) = 4+2s',.f})'(t) = 5+ 4s2 are given. Let's define, whetherl

is the universal enumerator fot At.
By using method 2 we construct the enumerable set ofl:

L(X' ) = F ; = {f ,,, f ,.r,.f ,r, f ,,,r, f 4, f or,.f ,r,.f *g, .f 4,,"r, f ,3,r}, where

f ,, = 2s', 7*, = 5 s, fr, = | + 2s2, f ,r", = 4s2, 7 r, 
= s, f ,r,, = 2 + 4s2,.f,r,, = 5 + 4s2,

f ,? = t + 4s2, frrrr,, = 4 + 2s2, f ,!,, 
= 3 + 2s2

,f , f ' ) {r)  = 4+2s2 --  f  , r , , , r(s) e l (x ' ) ,

,f,1)(r) = 5 +4.r2 = f,r,r(s) e.L(X').

Therefore, I is the universal enumerator fot At.

5 Solution of analysis problem of universal FMS

Let Ln(X.)be the enumerable set of l. Then, accordingto theorem 2, the FMS

simulated by any subset of the polynomials of given set is enumeratedby A and any
FMS simulated by the polynomials, which are not the mernber of this set, is not
enumerated by l. Thus we construct the family of the FMS \A,\ ,., : l, = (X, , S, ô , ) , for

which I is the universal enumerator by the following way.
Let lt^(x')l= ,. We construct 2'-2 zubsets if given set, that is all subsets

except for the null and the subset that equal to Ln(X'). We single out subsets

{4 }*=.-, , where F* is set of subset of set Ln(X') of cardinality fr. We construct 2" - 2
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FMS by following way: vk,k=l,n-l w€ constnrct the FMS '4y1=(Xp$6o), where

Xr = {x1,x2..**} and the transfer functions are simulated by polynomiats {1f}l)},=ç,

that {f;h),f::',...,-f::'Ie.Q. Let's remark, t}ere are cjlme binomial coefficient)

FMS, that is i =r,Cj .

Example
The FMS l:(XS,ô), lSFz=:, X={x,x2\ simulated by the polynomials

-Â, (s) = s + s' ,7,r1s1=2s' is given. Let's constnrct the family is the FMS

{A,\,o : 4 = (X,, S, ô, ), for which I is the universal enumerator.

We constnrct the enumerable set of l:
L(f ) = F) = Ur, f,r, f4\, where "f; (s) = o .

Since, it is tnre that lrl(x')l=3, ûe fanily {1,},., contaiî 2t -2=6 FMS,

namely Cl =l FMS which has one-element input set and C1 =l FMS which has two-

element input set.
1, ,  =(X,,S,ô,,) ,  f , ,  ={x},  . , f , ( t t )(s) = s+s2;

1,, =(X,,,S,ô rr), X, ={x}, f' '?)(s)=2s';
1 , ,  = (X, ,5 ,ô  r r ) ,  X1={ : } ,  / ( t3 ) (s )=0 ;

Ar, = (X,5,6 rr), X, = {r, ru },,f,1") {s) = r + s2,,f,l ' tr) = 2s2 ;

Au = (X 2,S,6 rr), X, = {r, rz },,f,1") (") = s * s 2,.f,!tt) (t) = 0 ;

Ar,  =(x ' ,S,6rr) ,  X, = {x,  ,x2},  . f , l t ' ) { t )  --  2t '  , / j " ' { t1 = O .

6 Solution of synthesis problem of the universal FMS

Let {A,\,., : A, = (X ,,5,ô, ) be the family of FMS, where li is simulated by

familyofpolynomials {"f,1)} iJ,o,,niiscardinalityofinputsetofli.Then,according
to theorem 2 the FMS Ar simulated by polynomials of set F, where
F=!J{LÎ, f::',..',f:Il, is the universal €numerator for the family {A,)n,.

However, it is possible to construct the universal enumerator I of the family {A,l ,., ,
which has cardinality of input set less than cardinality of input set of lr.

Let's constnrct the enumerable sets for the family {A,1 ,.,i

L4(x)={f::',f::),...f:l,f:::,,,...,f:;:\, where the subscript or polvnomials

that these polynomials are constucted for strings of length t

is cardinality of input set of I^(Xi). If (li',i', k)(i' *i'), 1È is

tl ,i =n, +1,P' means

with number j; nd pi

308



the subscript of element in some set L46;)) that f 
(') (s) = /.('') (s) , then we have't

need to include polynomials fl)'' nto the set of polynomials simulated the behavior of

the universal FSM l. So,l is constucted by following way: the polynomial simtrlated
behavior of l;, is the polynomial simulated the behavior of the universal FMS I if

andonlyif itcannotbegeneratedbythepolynomials f;",f:: ',...f::!,jeI,j*i,

this is it doesn't equal to any polynomial from set L 
". 

(X;) (j e I j*i).

Example
ThefamilyofFMs {A,\,=r,r:li=(Xa,J,ôr),lSFz::, Xr=Xz={x,,xz} simulatedby

the polynomials {')(s) =2s',ft,G) = l+s+ zs'?,f:'?)G) =z+ t',.fl lr(s)--2+2s,
is given.

The FMS l=(X.S,ô), lSFrrf, X={x,x*xr,.ro} simulated by the polynomials

Â(")=l+s+2s2,f ,r(s)=2+s2,f ,r(s)=2+s2,f , , (s)=2+2s2 isuniversal for {A,\ ,=r,r .
Let's consfruct enumerable sets of {A} ,=r.r:
L46i\= t-fll =x',rtt) = I +s + 2s2, f!\ =|+ s',.1!)), =2Y ,
L ̂(Xl) = tf l'\ = 2 + t', î f;> = 2 + 2s', f ogt = 2s', f fJ, = t * t', f llÀ = 0, f ||),,, = 2\

Note that ,f,lt){") = 
4l'){") 

=?s2 . From this it follows that the FMS l:(,1S,ô), I S Fz:f,

X = {x*xr,xr} simulated by ttre polynomials ,4, (s) =l+s+2s',.fo(s)=2+s',foG)=2+N2

is universal for {1,},=,., too.

We can pr,opose the others rmiversal FMS for the given family, for example
A=(X,5,6), I S tsm:3, X = {x,x.l, simulated by the polynomials

/,, (s) = | + s, f ,,(s) = s' . However, we can draw this conclusion only after we construct
the enumerable set of given FMS. Thus, by using this method it is impossible to
constnrct all rmiversal FMS for given family.

7 Conclusions

In this research, we isolated the class of finite-state machines for which the problem
of discrete systems goal-directed behavior generating can be solved. To solve this
problem we applied tlre new approach to modeling discrete systems behavior. This
approach allows to apply the well lnown algebraic methods to solve the problem of
denumerability of finite-state paçhines. As a result, the following tasks were solved:
l. The <mumerical> FSM model was investigated. This <<numericab) model uses

polynomials to simulate ûansfer functions of finite-state machines.
2. The class of finite-state machines simulated by polynomial families, was described.
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3. For the described class the problem of discrete systems goaldirected behavior
generating was solved.
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