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Abstract
In this paper the problem of discrete systems goal-directed behavior generating is
considered. The finite-state machine represents a model of a discrete system. The
problem of goal-directed behavior generating is solved by the theory of the universal
finite-state machine. The class of finite-state machine simulated by a family of the
polynomials is described. The using of this “numerical” model of behavior of finite-
state machine allows to apply the algebraic methods to solve the problem of goal-
directed behavior generating. For the described class analysis and synthesis problems of
universal enumerator are solved.
Keywords: generating goal-directed behavior, the finite-state machine (FSM), the
universal enumerator, the numerical model of FSM.

1 Introduction

In the field of systemology attention is traditionally paid to the problems of control
and diagnostics of discrete systems behavior. The problem of goal-directed behavior
generating (GDBG) is one of the same importance. Actually, generating goal-directed
behavior demands consecutive solving of the following problems (both, the actual
system behavior and the differing given one, are posed):

- determine, whether generating the given behavior is possible or not;

— determine the set of system transformations which allow generating the
given behavior by the means of transforming its components and
interrelations between them, changing the modes of functioning, supervision
and outputs monitoring, etc;

— choose the optimum in the set of possible system transformations.

One of the basic features of the process of generating goal-directed behavior is the
opportunity of getting additional information about the system, principles and means of
its fail-safety. The achievement of the given mode of functioning can be carried out by
different means, both internal and external. In the case of internal means, the system
uses structural reservation rated, when designing the system. In the case of external
means, the system uses external (according to its basic components) objects.

In the general case (that is, for an arbitrary discrete system) the problem of
generating goal-directed behavior is algorythmicallly insoluble, but it can be solved by
imposing certain restrictions on the system behavior.

We will deal with finite-state machine (FSM) as a model of a discrete system. As a
rule, finite-state machines are considered as transformers, namely, system functioning is
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studied through consideration of the way input strings are transformed into output
strings. However, sometimes it is even more important to determine the feedback — to
find the group of input strings transformed into the given output string. It is so-called an
inverse problem, in essence, it means determining an output string for the given input
one - that is, the transforming form of behavior. In case the finite-state machine is
represented as a set of generated output strings, the machine is considered to be an
enumerator (and it has an enumerating form of behavior). Conceptually, the problem of
generating goal-directed behavior in case when the structural redundancy is not
available proves to be a transition from the transforming form of behavior to
enumerating form. Actually, the transition from transforming to enumerating within the
framework of the finite-state machines theory is complicated and time-consuming. A
new, so-called "numerical" model of finite-state machine is represented which is based
on its transition from transforming form of behavior to enumerating form, using several
methods of algebra and a number theory.

2 Formal setting of the problem
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| The finite-state machine (FSM) 4=(S,X,Y,5,)) is given, where

| X is a finite set of input symbols,

| Y is a finite set of output symbols,

| S is a finite set of states,

| 5:XxS—S is the transfer function,

| A: XxS—Y is the output function.

| Without loss of generality, we suppose that S=Y and 8=, that is the output of 4 if its
| state. Hence, the initial finite-state machine is brought to the form

} A=(X,53). (1)

| Let X*, S be the sets of FSM input and states strings, respectively.
|
|
|
|
|
|
\
\
|
|
\
\

Definition 1.
The FSM A4=(X,S,0) realizes the family of finite-state mappings {5 N e of the form

8,:5—>S and generates the set of states strings
LX)={s|(3 s" €S)3 peX"):3,(s")=5}.

The transforming form of behavior of the finite-state machine A is represented with

its family of finite-state mappings {5,} _,.. The enumerating form of behavior of the

peX’
finite-state machine 4 is represented with the set of states strings I(X), generated by 4.
The set I(X) is called the enumerable set of 4.

The theory of universal FMS is the basis to solve the problem of GDBG. We cite a
few main concepts of this theory.
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Definition 2. _

The family of FSM {4, =(X,,5,,8,)},., is given. The name of the family is
identified with a set of indexes I. The FSM 4, =(X, S,3) is called the universal FSM for
the family 1, if it is true that
(VieD@,:5,x X, >Sx X" )(VseS,)VaeX,):3,(s,a)=3(0,(s,a))-

The FSM A=(X,S,8) is called the universal enumerator for {4},, of the family 7

(where I(X,.‘) is enumerable set of 4,,iel), if the following condition is satisfied:

(Viel) LX)SLX).

Theorem 1 [51
The FSM 4 is the universal FSM of the family of FSM {4},_, of the family 7 if and

only if it is the universal enumerator for {4},., of the family I.

Later on in this paper we will consider only universal enumerators.
Let's set a problem of GDBG in the terms of the theory of the universal automata.

Suppose that the FSM 4 models a desirable system behavior. Let 7 denote the class
of possible behaviors of this system. For every possible system behavior ie] we

consider the FSM 4. Thus, we have the family of FSM {4, },_,. To solve the problem

of GDBG of the system means that every FSM of this family can model somehow the
behavior of A. In that way, the problem of GDBG is solvable if and only if every FSM
of {4}, is universal enumerators for 4.

The problem of construction of the universal FMS 4 for the family 7 is called the
synthesis problem of universal FMS. The inverse problem, the problem of construction
of the family I, for which FSM 4 is universal, is called the analysis problem of
universal FMS. Hence, the problem of GDBG can be solved by two ways. One way is
to check that 4 is the solution of the analysis problem for each FMS from {4},,.

Another way is to solve the synthesis problem for 4, to construct the class of all
universal FMS for 4 and to check that every FMS from {4,},., is a member of this

class.

The construction problem of the universal enumerator is insoluble concerning the
arbitrary family of FSM. Hence, the problem of GDBG is insoluble concering the
arbitrary system too. Therefore, now we try to isolate classes of FMS, for which this
problem is soluble. One of such classes is the class of FMS simulated by the
polynomials.

The states of the FMS should be enumerated with integers from 0 up to m-1, so that
S ={0,},...,m — 1} = GL(m) (it means that S coincides with the semigroup of remainders
modulo m). The transition function of FSM can be considered as a substitution of the
form:
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o,:

X

(0 1 .. m—l)
,xeX 2

Thus, the system behavior will be considered as a collection of substitutions (2) for
every symbol from input set.

We denote s =(0,,..,m~1), s, =(S),5...,5,,.). Let’s consider the polynomial f(s)
as the function of vector s of the form:
fi(s)=a,+a;s+a,s*+..+a;s' (mod m),a, € S,k =1, xeX, 3)

So S 1

where the operations of addition, multiplication, raising to a power are the operations of
ring of remainders modulo m.

Definition 3.

We say that behavior of FSM A4 (1) is simulated by the family of polynomials
{f:}1ex ), if (Vx e X)B, is represented by the polynomial fx, that is £,(s) = s, .

The degree of the polynomial simulated behavior the FMS, which has m states, is
expressed by following formula.
[ =max@qy,0,,....a )+ py*~ - pit™ - HOK([2%7'], py, =L,e.r 2, 1)1,
where 2% p..p;* is factorization of m, p,, p,...p, are prime numbers.

|
|
|
1 The class of FMS simulated by polynomials was investigated. We obtained the
calculation method of the polynomial coefficients for given FMS-substitution under the
| condition of polynomial existence. The conditions of FSM simulation by the family of
| polynomials are also obtained. These results are given in articles [6,7].

| Let’s cite formal setting of synthesis and analysis problems for the class of FMS
| simulated by polynomials.

|

|

|

\

|

|

|

Synthesis problem
The FMS family{4,},, : 4, =(X,,S,8,) is given, where 4; is simulated by the

family of polynomials {f”},. x,- It is necessary to construct the FMS A=(X.S,5),
which is simulated by the family of polynomials {f,},., and is universal for family
{4}ier-
Analysis problem .

| The FMS 4=(X,S,5) simulated by the family of polynomials {f,}, , is given. It is
necessary to construct the family of FMS {4}, :4, =(X,,S,5,), where 4; is

simulated by the family of polynomials { fxm } zex, » and 4 is universal for this family.
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3 Construction method of enumerable set of the FMS simulated by
the family of polynomial

As it was pointed out in 1, the problem of GDBG is equivalent to synthesis and
analysis problems of the universal FMS. To solve these problems the method of
construction of enumerable sets for considered class of FMS is necessary. Let’s
consider the mechanism of outcome of such sets.

First of all, we note that, if the transformation generated by input symbols
x1,x2,...xn is simulated by polynomials f,,f, ,...f, respectively, then the

transformation generated by input string =xi,x,,...,x,, is simulated by polynomial

15 =1, , (-, (6)Xmodm)

*n-1
Infact, let t=xix, f, (s)=a, +a,s+..+a,s', f, ()=b, +bs+..+b;s".
Then
Ji = fay )= F, ([ () =by +by(ay +ays +...+ ays' ) +...+ b (ay +a,s +...+a,s') =

= (by +bia, +bya,” +...+ba,') +(ba, + 2b,a.a, +3b,a’a, +...+ Iba, " a,)s +

+.+(ba +b(aya, +aa, +..+a,a,)+b, iaiajak +ot Ib,aol"la,)sl +i i
prhn
+(ba')s"” = Co+es+eystes +o s+ 612.5‘12.
Since the semigroup of remainders modulo m generated by element seS:
<s>={s,s7,.s""™"} is the cycle semigroup with the period m, and the index 7,
(ry +my —1=1), values s'(i>]) are repeated starting with degree /, that is

ro+i my+rg+i 2mg+rg+i fong+ry+i
(] o*+7 ot LRa()

sty =5 =.=F§ =.,i=0,m, -1.

Thus, if we replace s™**" i=0,m —1,k>0 with s°" and group together
coefficients of the polynomial, then we obtain the polynomial of degree /.

Let’s consider the semigroup (F, -), where F is the set of the polynomials (3)
simulated behaviors of the FMS (1), - is substitution operator of functions: f;-f,=f,(f;).
Later on, instead of (F, -) we will write in abbreviated form F and we will omit sign -.
Obviously, the cyclic semigroup generated by element f;: F,= < f; > is finite. Therefore,
there are the whole positive numbers » and m (the index and the period of semigroup F;

respectively), that F, =< f, >={f, [ 2ses [ i } -

a
Let’s denote ¥ = XX...X...x
e 2

Consider the behavior of the FMS 4 if the stings x* is input. If we input serially the
symbol x several times, we will obtain the family of the substitutions & , ,SXZ yerey O PP

which are simulated by polynomials £, fx2 yeens fx" ... respectively. Since it is true that
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f o = f - for a=m-+r-1, where r is the index, m is the period of the semigroup
F=<f,>, the equalityd .., =8 , is truly. Thus, if we input the symbol x o times, we

will obtain all possible substitutions. To calculate number o we will use the following
easy method.

Method 2

Enter: The FMS 4=(X,S,5), |S|=m, and the polynomial f; (3) simulated behavior of 4
for input symbol xeX.

Exit: The set of different polynomials £, f ,,...f . simulated behavior 4 for input

strings, which consists of only x , and corresponding o.
Let p=2.

Step p.

a) Calculate the polynomial f, = f.(f ,-). Letj=1.

b) Compare the polynomial f » With the polynomial fx .

If f,()=1,0), then a.=p-1. The method is finished.

If f,(s)=s, then a=p. (In fact, f ;..(s)=f.( [, = f.(s), j=r=1). The

method is finished.
Else, if j<p-1, we increase j by 1 and repeat the operation b). If j=p-1, then we
increase p by 1 and execute step p.

Let’s consider the semigroup F, generated by polynomials f ,f, .../, ¢

F, =< 3 W A, > The elements of this semigroup have the form f P B s
o " /R ey S
where 0< B, <, Obviously, F, is finite. Let F, be a set of different elements of

Fy.
Let’s denote o;=m;+ri-1 (i=1,n), where m; is the index and r; is the period of

semigroup £, =< fx‘), that is f .. = f . To obtain different elements of Fj, it is
enough to consider the strings ¢ = x;j‘ xsz .._xf,f" , where the maximum number of x; in ¢
in succession is au;.

In fact, if £ =tx""'t"  then
£ = i, () = fo(f g oM = £ (f (S W) = £ ()= v
thatisd, =8 ..

Obviously, the set F; represents in essence the set XY, the set of strings of states
generated by the FMS 4.
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Let’s determine what polynomials of form ¥ 4 Pa b By belongto F:.
i

Obviously, the elements f, ,f,,,..f,, are the members of this set. Let the

equality f,p (s)= f, .(s) is truly for some string ¢ of length p, where

?
f, n=T ,It'lsltpl(l t| is the length of string 7). Therefore, the polynomial f,p (s) is
not included into ¥ ,: . Besides, any polynomial simulated substitution, which includes
string 7 , as a prefix or as a suffix, is equal to some polynomial, simulated substitution,
which is generated by strings shorter than #,. Therefore, such polynomials are not

included into F; either. In fact,
(V1) for, (8) = f:(fo(8) = [ (fols)) = £, (5),
(VOV 1, o (5) = FulFo () = fol Lo (D) = ().
If such polynomial f. is not exist, then f,‘p (s) is included into F .
Let the equality f,P (s)=c=const (ce[0,m-1]) is truly for some string 7, of length
p. Hence, any polynomial simulated substitution, which is generated by the string

included 7 , as a suffix, equal to constant ¢ and so, it is not included into F ,; either.
In fact,

V1) fo ()= £, (Fy () =c;
Let the equality f,p (s)=s is truly for some string , of length p. Then any
polynomial simulated substitution, which is generated by the string included ¢ , asa

suffix or as a prefix equal to some polynomial simulated substitution, which is
generated by strings shorter than 7 , . Therefore, such polynomials are not included into

F] either. In fact,
V) fy, (8) = £, (fo()) = f(s),
V1), () = £, (S, (8)) = f(5).
Let the set SUF={t,s} be the set of strings of input symbols {xi,x,,...,x»}, that
(tap€SUF) & @ 1:\1 | <ltgl, £, (5) = £, ().
We suggest the method of construction of all different elements of semigroup F,.

Method 2
Enter: The FMS 4=(X,S,8), X={x,,X,,...,X, }, |S|=m and the family of polynomials

A f., (3) simulated behavior of A for input symbols x,,X,,...,X,
respectively.
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Exit: The set L(X b , set strings of states generated by A, that is enumerable set of 4.

Step 1.

By using the method 1 we calculate numbers o;=m;+r-1 (i =1,—n), where m; is the
index and #; is the period of the semigroup £, = ( 1. )

Let F, ={fy s Sys Sy, }- Let Ti={x1,x3,....%s} be the set of string of length 1 in
input set {x1,x2,...,%,}. For this step let SUF= {xff*‘ }‘,J; , P=2.

Step p.

(At the step p we construct the elements of the semigroup F, fx Babh Bk such as
i M

B, +B, +..+PB, =p, that is the polynomials simulated the behavior of A for the
strings of length p.)

a) Let’s construct the set of the strings 7', = {t; | 1, in the following way. Construct
strings of length p: add to the right every symbol from input set {x;xa,...,xn} to every
string from 7,.;, thatis Vk €1, , construct string ¢, =15,x,, j=Ln.

Such string ¢ is included into 7}, if and only if it has not any strings, which is member

of SUF, as a suffix. Hence, if a string is represented by form t=1 tsur (ta€SUF), then it
is not included into T,,.. If T,=O, then process of construction of F,, set of all different

elements of semigroup Fy, is finished. L(X")=F,’ Else we execute operation b).

b) For every string #,~t,.1x; € T, we calculate the polynomial
.flp (S) = f;p_(xj (s) = f:j (f;p_[ (S)) *

Let’s compare the polynomial f‘P with every polynomial of F,. If Bt; 1<k<p, that
f,P )=/, . (s), then string f, is included into SUF and is excepted from 7, If
f,P (s) = const , then t, is included into SUF . Else the polynomial f,p is included into
F,.If f,p (s) = s, then polynomial f,P is included into F, and 1, is included into

SUF and is excepted from 7,. Thus, after execution of this step F consist all different
polynomials simulated behavior of A for strings of length i, i=1, p. We increase p by 1
and execute step p.
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4 Universal FMS Criterion

To solve the problem of GDBG (that is synthesis and analysis problem of universal
FMS) it is necessary to have some criterion defining whether A is universal for the
family {4,},., - Such criterion is represented by the following theorem.

Theorem 2

The FMS A=(X,S,5) simulated by the family of the polynomials { f,} .., is the
universal enumerator for the family of FMS {4,},, : 4, =(X,,S,5,), where 4; is
simulated by the family of polynomials {f,”},.y,, if and only if

(Vie I(Vxe X,) f? e L(X"), where set L(X") is constructed by using the
method 2.

Example
The FMS A=(X,S,8), | SEm=6, X ={x,,x,,x,} simulated by polynomials

£, (s) =257, f, (5) =55, f,,(s) =1+ 25" and FMS 4,=(X,,5,0;), X ={x,,x,} simulated
by polynomials f"(s) =4 +2s", f’(s) =5+4s” are given. Let’s define, whether 4

is the universal enumerator for A4;.
By using method 2 we construct the enumerable set of 4:

L(X'):F; :{fxl’fxz’fxa’fxlxz’fx%’fxlxl’fXSXZ’fx%’fXZIIXZ’fxszn}’ Where

fu =251, =581, =1425%, 1, =4s2,fx% =8, fry =2+45%, f,,,, =5+45°,
f3 =344 fn = 44287, [y =3428°

fO)=4+25 = £ (eLX),

fO)=5+4s> = f, ()e L(X").
Therefore, A4 is the universal enumerator for 4.

5 Solution of analysis problem of universal FMS

Let L,(X’)be the enumerable set of 4. Then, according to theorem 2, the FMS

simulated by any subset of the polynomials of given set is enumerated by 4 and any
FMS simulated by the polynomials, which are not the member of this set, is not
enumerated by 4. Thus we construct the family of the FMS {4,},., : 4, =(X,,S,3,), for

which 4 is the universal enumerator by the following way.

Let ILA( X')|= n. We construct 2" —2 subsets if given set, that is all subsets
except for the null and the subset that equal to L,(X ). We single out subsets
{F,} .= Where F,is set of subset of set L,(X ") of cardinality k. We construct 2" —2
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FMS by following way: Vkk=1n-1 we construct the FMS 4,=(X,S50,), where

X, ={x,,x,,..x,} and the transfer functions are simulated by polynomials {_ﬂgﬁ)} oiE?

that {f*, £% ..., f¥Y e F, . Let's remark, there are C ¥ (the binomial coefficient)

x| X2 l’__’ Xk
FMS, thatis i=1,C*.
‘ Example
| The FMS A4=(XS,8), | SEm=3, X ={x,,x,} simulated by the polynomials
foi()=s+s’,f, (s)=2s" is given. Let’s construct the family is the FMS
{4} : 4, =(X,,5,8,), for which 4 is the universal enumerator.
We construct the enumerable set of A4:
L(X.)___ F; = {j:‘l’f;z’fxlz} , where fxlz (s)=0.

Since, it is true that |L,(x")|=3, the family {4}, contain 2°-2=6 FMS,

|

|

\

\

‘ namely C; =3 FMS which has one-element input set and C; =3 FMS which has two-
’ element input set.

‘ 4 =(X,,88,), X, =15}, rP@=9s55%

4, =(X,,8,8,,), X, ={x}, f1?(s)=25";

‘ 4y =(X,,8,8,,), X, ={x}, £;7(s)=0;

‘ 4, =(X,,8,8,), X, ={x,,x,}, fx(,m(s)=s +52af,(221)(5)=2S2;
‘ Ay =(X,,5,85), X, ={x,,%,}, @) =s+5, f(s)=0;
\

\

\

\

\

\

|

|

|

|

Ap =(X,,5,85), X, ={x,x,}, x(|23)(s) = 252:fx(223)(s) =0.

6 Solution of synthesis problem of the universal FMS

Let {4}, :4,=(X,,8,8,) be the family of FMS, where 4; is simulated by

family of polynomials { f x(;')} n; is cardinality of input set of A;. Then, according

j=tmi?
to theorem2 the FMS Ar simulated by polynomials of set F, where
F=U{ FO 9, £}, is the universal enumerator for the family {4},,.

x| Xn

iel
However, it is possible to construct the universal enumerator 4 of the family {4;},.,,
which has cardinality of input set less than cardinality of input set of Ar.
Let’s construct the enumerable sets for the family {4,}:

L, (X =i fx(l"), x(z"),... ,f::, ¥ i f,;'l)}, where the subscript of polynomials

nj+1 3232

| fé"), j=n, +1,p, means that these polynomials are constructed for strings of length ¢

| with number j; and p; is cardinality of input set of L, (X NI @ik #1), (kis
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the subscript of element in some set L, (X;)) that fx‘Jf'" (s) = £ (s), then we have’t

need to include polynomials f,(j"') into the set of polynomials simulated the behavior of

the universal FSM 4. So, 4 is constructed by following way: the polynomial simulated
behavior of 4;, is the polynomial simulated the behavior of the universal FMS 4 if
and only if it can not be generated by the polynomials x(,j) > x(zj ) lf x("jj) Jel,j#i,

this is it doesn’t equal to any polynomial from set L 4, (X ;) (Felj#i).

Example

The family of FMS {4}, ,: 4=(X.S$,5)), |Skm=3, x,=x , ={x,,x,} simulated by
the polynomials f,"(s) =25, £ (s) =1+5+25, fP(s) =2+, fP(5) =2+ 25"
is given. )

The FMS A=(X;S,8), | SEm=3, X ={x,,x,,x,,x,} simulated by the polynomials
fo()=1+5+25%,f, () =2+5",f, (s)=2+5", f, (s)=2+2s" is universal for {4,},,,.

Let’s construct enumerable sets of {4,},_,,:

LX) =P =2 £ =1+5+25*, f1) =1+, fO =2},

L, (X)={f@ =2+ fD =2+2sz,fx(lf) =257, 2 =1+5%, o =0, 1. =2}

Note that £ (s) = £ (s) = 25*. From this it follows that the FMS 4=(X;S,3), | § m=3,
X
X ={x,x,,x,} simulated by the polynomials f, (s)=1+5+25"1, (5)=2+5", f, () =2+25

is universal for {4}, too.

We can propose the others universal FMS for the given family, for example
A=(X8,8), |SkEm=3, X ={x,x,}, simulated by the  polynomials
fo()=1+s,f, (s)= s*. However, we can draw this conclusion only after we construct

the enumerable set of given FMS. Thus, by using this method it is impossible to
construct all universal FMS for given family.

7 Conclusions

In this research, we isolated the class of finite-state machines for which the problem
of discrete systems goal-directed behavior generating can be solved. To solve this
problem we applied the new approach to modeling discrete systems behavior. This
approach allows to apply the well known algebraic methods to solve the problem of
denumerability of finite-state machines. As a result, the following tasks were solved:

1. The «numerical» FSM model was investigated. This «numerical» model uses
polynomials to simulate transfer functions of finite-state machines.
2. The class of finite-state machines simulated by polynomial families, was described.
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3. For the described class the problem of discrete systems goal-directed behavior
‘ generating was solved.
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