
Object-Oriented System Analysis of Anticipatory Systems
in lVeak Sense

Eugene Kindler

", - #iîây#Ji'JJ"trTlT i,'8iffi o"o,' "FAX: +420 596 I2O 478
E-mail: evkind @ barbora.mff.cuni.cz

http://www.osu.cz

Ivan KËivi

. Ostrava University Faculty of Sciences
CZ - 701 03 Ostrava, Dvorakova 7 , Czech Republic

FAX: +420 596120 478
E-mail: Ivan.Krivy@osu.cz

http://www.osu.cz

Alain Tanguy
LIMOS CNRS UMR 6158, University Blaise Pascal, Clermont-Ferrand

Complexe scientifique des Cézeaux, F - 63177 Aubière, France
FAX: +33 473 N5 OOI

E-mail: tanguy @ isima.fr
http ://www.isima.frllimoV

Abstract
The agthors implemented simulation models of anticipatory systems and a translator

that converts models of conventional (non-anticipatory) systems into those of anticipa-

tory systems in the weak sense. The systematic algorithmization leads the authors to

recogrrizing some formal properties that could be viewed in a rather natural way for the

anticipatory systems in the weak sense and that could be automatically converted into

simulation models implemented on computer. The formal properties, i.e. certain con-

cepts of system analysis and their professional names are presented in this paper.

Keywords: anticipatory systems, simulation, object-oriented programming, nested

models, anticipation of anticipatory systems

1 Introduction

The system modelers know a lot of sorts of system, ofæn hierarchically ordered. For

example dynamic systems are classified into three sorts, namely into continuous sys-

tems, discrete event systems and combined continuous discrete event systems (shortly

combined systems). The continuous systems are classified to those described by ordi-

International Journal of Computing Anticipetory Systems, Volume l4'2W4
Edited by D. M. Dubois, CHAOS, Liège, Belgium,ISSN 1373-5411 ISBN 2'93039ffi0-8

nary differential equations and to those described by partial differential equations. The
continuous systems described by the ordinary differential equations can be classified
into a lot of sorts, among which there are compartment systems @escigno, Segre, 1961,
Sheppard, 1962), electronic circuits (composed of idealized resistors, conductors,
diodes, coils etc), systems mapping the processes in analog computers (composed of
function generators, multipliers, integrators etc.) etc. The compartment systems can be
further classified into tracer systems (reflecting mixing matter), into systems occurring
in famous Forrester's "system dynamics" and into systems with chemical reactons. The
discrete event systems are classified according to the dynamic of their struchùre - there
is a large class of systems with transactions, i.e. with temporary elements, a smaller
class of systems with the fixed number of their elements for that it is nevertheless pos-
sible to change their muûral relations, and a class of systems with the fixed structures,
which is a smaller one but important, because it contains e.g. computers at the level of
logical circuits or register transfers.

Such a classification is useful because of a lot of reasons, of which we can emphasize
four ones: leading in analysis of a particular system, common terminology used by per-
sons in their communication about systems, computer modeling of a particular system
and software for computer modeling applicable for the systems belonging to a certain
sort of the classification. During the last 50 years, the computers contributed to that
taslç because they need to get a classification and terminology that can be accepted by
genial idiots (which is one of the metaphors used for computers), i.e. by automata that
admit no intuition, èxperience and good will, which can arise among persons.

The state of the development of the research of anticipatory systems and their applic-
ations seems being matured to form a rather fine classification and a ærminology related
to the anticipatory systems. But - similarly as in case of other branches - neither the
classification nor the terminology can be "decreed" by a person, a book or a paper, but
can slowly develop in combining proposals and their wide accepting. Both the proposals
and their accepting are supported by experience and applications.

The authors modeled various anticipatory systems in the weak sense (Kindler, KÉiv1y',
Tanguy, 200la,b), (Kiivf, Kindler, Tanguy, 2002) and studied formal properties of
transforming a formal derription of a conventional system to a formal description of its
enriching that would be able to anticipate with an internal model (Kindler, Kfiqi,
Tanguy, 2OO2a,b). The present paper contains definitions of terms, to which the authors
came during their work when they communicate about the aspects of the anticipatory
systems in the weak sense and of a more general theme of systems that carry models.
The terms are proposed to serve for the initial steps in the classification and lermino-
logy.

Since several decades of years the authors have used object-oriented programming
and namely SIMULA (Dahl, Myhrhaug, Nygaard, 1968), (SIMLJLA, 1989) and have
continuously observed the great affinity between the object-oriented programming and
the viewing on systems; the modem properties of SIMULA made it a suitable base of
the classifying and terminology of the anticipatory systems in weak sense. Nowadays
the object-oriented programming paradigm is accepted by the whole world community

272

of computer users and system professionals, and therefore its usefulness as the main
stimulus for the classificarion and terminology (and for justifying it) is evident.

The principles of the object-oriented programming are not explained in details, be-
cause they can be supposed being so common and well-known in the human society of
today like e.g. knowledge of writing. Only some terms will be introduced, in order to
diminish the Babylon of the terminologies to which almost every school of the object-
orientation contributes by presenting its own titles of concepts. Further synthesis of the
object-oriented programming with other phenomena (agents, block, automatic translat-
ion) will be slightly mentioned as ways to the new knowledge and views covered by the
proposed terminology and classification of anticipatory systems.

2 Tools for Description of Complex Systems

2.1 Object-OrientedParadigm

The science of the present time is open to the exact studying of complex systems.
These systems correspond to the real entities met in life sciences, technology and
socials science. Computer modeling enables the description and the modeting of such
complex systems by offering a lot of tools (databases, knowledge systems, simulation
languages) to the human society.

object-oriented programming appeared soon as a very efficient tool for expressing
concepts. It was published by Dahl (1970), who was one of rhe inventors of that pro-
gramming paradigm. The object-oriented programming enables to formulate concepts as
classes, to order them according to the contents and extent and to introduce individuals
that carry class content and are able to be modeled at computers. Such individuals are
called instances of the corresponding classes. A class A can be classified as a subclass
of class B if it is introduced by a slatement that it has all properties and abilities intro-
duced for class ̂ 8. Then the. instances of A are considered also as those of B.

The object-oriented paradigm corresponds to the organization ofknowledge and con-
cepts in every domain handled by a science, a æchnology or any organ for controlling
the society. The first programming language oriented to rhat paradigm was sIMULA
(Dahl, Myhrhaug and Nygaard, 1968), which has exisæd since 1968 almost unchanged
until the present days. It was only slightly enlarged (Simula, 1989) but one can say that
the computer progmm products elaborated e.g. in the 1969 can be used b-v the imple-
mentations prepared for personal computers and work-stations in the present millenium
or at the end ofthe last one.

In the object-oriented paradigm, the contents ofthe concepts are reflected in the clas-
ses so that any class has its attributes and its methods. The attributes reflect the common
quasi-static properties of the concept and those properties are "copied" as individual
data structures of any instance of the class. For example, when the class rectangle has
been introduced to have attributes length and width that reflect the dimensions of a ge-
neral rectangle, then any instance of the class has the attributes called length and width;
different instances can have different values of any of these attributes, but - moreover -
these values of an instance (i.e. a rectangle) can change during the existence of the inst-

273

ance (the rectangle can "grow" or "diminish", etc.). But an instance cannot accept other

attributes during its existence, i.e. attributes that are not introduced in class rectangle

(that limitation causes that we use the words "quasi-static" above). Among the attri-

b|tltes, reference attributes can occur, the values of which point to some objects (instan-

ces of classes); these attributes reflect the structural relations among instances that are

present in the same system.
Beside the attributes, the object-oriented paradigm supposes that the classes contain

methods, i.e. algorithms, that reflect the dynamics with which the instances can influ-

ence a system, i.e. a community in which certain instances are present. An instance of a

class A ian be demanded to perform any of the methods introduced for A; in such a

case, the instance performs the method and applies it to its own attributes. But the refer-

ence attributes enable an instance to work with attributes of other objects. Moreover, the

methods can have Parameters.
The described tools were designed in SIMULA at its very beginning phase and after

more than ten years they stepwise penetrated into the programming practice in the world

under the terms object-oriented programming, obiect-orientation, obiect-oriented pro-

gramming paradigm etc., being built into the new popular programming languages (for

éxample C+r, SmallTalk) and into several languages that were not so popular' All those

languâges were calted obiect-oriented programming languages. When one uses them to

aescrlUe a dynamic system (i.e. a system the state of which changes in a time regarded

as the Newtonian one, i.e. without relativistic effects) the dynamics should be decom-

posed into message transfers, i.e. into calling methods: a call sent to an object and ask-

ing it to perform a method p is said î message to the object, the selector of which is p).

tn*ottrer words, the dynamics of a system is initiated so that one of its elements performs

a method that sends messages to other elements, when they perform the methods they

send messages to other elements etc., and so a certain "avalanche" of methods rises,

which reflects the complicated dynamics of the described system'

The tools of SIMULA applied in the paper (Dahl, 1970) referenced above belong to

the object-oriented paradigm. Therefore, in principle, the other object-oriented program-

ming ianguages are able to be tools for formulations of concepts. The concepts can form

formal theories common in scientific branches studying theories, like general syStems

theories and mathematical logic.

2.2 Block Orientation and Local Classes

Much more than the object-oriented programming was implemented in SIMULA. It

is namely the block orientation and the agent orientation.

Block orientation existed already in Algol 60 (Backus, 1960)" then it was rejected by

the theoreticians of structured programming in the 70-ies and since the end of the 90-ies

it has very slowly rerurned, although it has existed without problems in SIMULA since

1967 and. in its certain successor BETA since the 80-ies (Madsen, M0ller-Pedersen,

Nygaard, 1993). The block orientation enables a nesting of theories, i.e. formulation of

"on""ptt
of entities that have their own theories, i.e. that have something like minds in

which they can have their own concepts. In place of minds, we can consider (computer)

274

models. In other words, such languages enable to formulate formal theories with local
concepts, i.e. with concepts that can be used only by some elements of the theories. The
consequence of it is that one can describe (and then model) systems containing elements
that cany models of systems. In other words, the consequence is that the object-oriented
programming languages that are also block-oriented can servc for formulation of
concepts conceming the systems in which models of other systems are nested. These
models can reflect a system similar to that in which they are, or a system rather differ-
ent. The first case may exist in case that one describes an anticipatory system of the
weak sense, i.e. using its own model for getting information supporting the anticipation;
that model is the nested (internal) one.

Theoretically, one can neglect the measurable flow of time. Thus the object-oriented
languages that are, also block-oriented can be used for the modeling of anticipatory
systems of the weak sense. Nevertheless, in practice the measurable flow of time is not
negligible. And in such a situatiorL the internal model should be a simulation one. Note
that certain simulation aspects exist also when the intemal model is not implemented at
computing technique; for example the intemal model that exists in the mind of a person
who is inside a certain system and anticipates about it, often respects the rule demand-
ing the same ordering of events in the modeled system and in its model - such a rule is
essential for simulation models.

23 Quasi-ParallelSystems

For the formulation of concepts concerning the simulation of systems that have
simulating elements one needs to use programming languages that admit "life rules" as
compon€nts of classes. Such life rules have a form similar to that of conventional algo-
rithms and are executed when an instance of a class arises (is generated, enters the stu-
died system). An execution of such an algorithm is called process. The tools common in
conventional algorithms and applied for adapting the algorithm to the instantaneous
situation - like jumps, branchings and cycles - can occur in the life rules and can cause
that the processes conesponding to different instances of the same class behave differ-
ently, contrary to the fact that they "live" according to the same life rules.

The "lives" of the components of a real system can progress in a parallel way. The
processes that model the lives at a conventional (i.e. monoprocessor) computer cannot
run in a parallel way and therefore the computer switches among them so that the obser-
ver of the computing gets an illusion that the processes are performed in a parallel way.
The system of those processes is called quosi-parallel system.

For a real system, one supposes a real time in which it exists or should exist. ln case
of simulation the corresponding model should exist as a part of the existence of a certain
real thing called canier (of the model) that exists in the same real world as the real sys-
tem and that computes in the same physical phenomenon which is the real time as that,
in which the real system develops (but not necessarily during the same time interval).
The carrier can be e.g. a person who imagines the future, or - more frequently - a com-
puær. When the simulation model works and when the carrier is a computer, a quasi-
parallel system exists at this carrier.

275

Contrary to the fact that certain sorts of quasi-parallel systems were introduced

already in the first discrete event simulation language GPSS (Gordon 1961, 1969) and

that the authors of SIMULA built the general tools for forming quasi-parallel systems

into the object-oriented already in 1967 (Dahl and Nygaard, 1968), only a small number

of every object-oriented programming language admit them. Beside SIMULA it is only

BETA, JAVA and MODSIM. Unfortunately, MODSM is not block-oriented. But also
the other two languages suffer by certain obstacles. BETA demands a rather strong dis-

crimination between the elements that belong to a quasi-parallel system, and the other
ones (Vrba, 1999); when that discrimination is mapped to the description of the simulat-
ed system, the result is that an element that actively lives (i.e. according to its life rules)
and is assigned with a certain name used in the simulated system, cannot have this name
when it ends its active life (e.g. when it exhausts all its life rules). It is a serious obstacle
for applying BETA.

A bad situation is with JAVA, too (Brassel, 2001). In (Vrba, 2000) examples are
presented, illustrating that in this language the quasi-parallel systems do not behave
deterministically and therefore that the computrer simulation cannot be reproduced.

When one describes a (may be real) system in JAVA it is admitted to include
description that concerns only the corresponding model, i.e. that concerns something
existing only in the intemal physical reality inside of the computer and that has no
mapping in the modeled system. Against it, SIMLJLA is an ideal tool for exact descript-
ion of the systems, because - beside others - its tools for representation ofconcepts do
not allow to penetrate into their computer representation. In other words, when one
describes a system that should be modeled SIMULA does not allow him to exPfess any-
thing that happens in the corresponding computer model.

When the concept of a process is opened for the manipulation offered by the object-
oriented paradigm, it becomes agent. When the life rules of such an agent enter a block
in that classes are introduced, it becomes and intelligent ugent. Such a block represents
a model owned by the agent or a phase in which the agent "thinks", using the concepts
represented by the classes introduced in the block. Therefore it is possible to say that the
optimal tool for exact analysis of the complex system and especially for the anticipatory
ones in weak sense are languages with three orientations, i.e. object orientation, block
orientation and process (or agent) orientation. We can say that SIMULA is as good tool
for analysis of the anticipatory systems as e.g.
mathematics.

3 Terminology

3.1 General Case

theory of sets for pre-computer

For the next explication, it is necessary to introduce some concepts and their nâmes.
There is a real system that should be modeled. It could be also called rystem af the

ftrst regard. This system either exists in the real world or is supposed to exist there. In
case of conventional modeling (including conventional simulation) it is modeled at a
device (e.g. a computer, may be also a brain or a mind) called carrîer of the frnt

276

regard, which exists in the same real world but can exist not only contemporarily (it is a
rare case) but also later and - most frequently - sooner than the modeled system. This
carrier carries a model of the system of the first regard; this model is called model of the
!îrst regard,

In the preceding section, we already introduced that the real system exists in real
time and that it can have a carrier of a model of certain system S; let S be called system
ofthe second regard, the mentioned carrier be called carrier ofthe second regord and,
the model carried by it be called model of the second regard.

The system of the second regard can have also a carrier of a model of a system; let
they be called carrier of the thirtl regord, model of the thirut regard and system of the
third regard. So one can continue to systems, models and carriers of higher regards.

In case of simulation the following relation holds:
Let M be a model of a system S of the n-th regard. Then M is a model of the n-th

regard and it exists at a carrier of the n-th regard in a real time. The states of the
simulated system should have analogies at certain states of the model. Therefore some
moments (of the real time), in which the carrier exists correspond in this manner to the
moments (of the real time), in which the system exists. In other words, there is a certain
set D of moments in that the model exists, so that for any element t of D a certain
moment T of the simulated system exists so that the state r(t) of the model at time T
conesponds to the state S(I) of the simulated system at time T. The state sfr) can be
enriched of the value of l. That value is called simulated time of the n-th regard. Note
that D does not need to cover the whole interval of real time moments during which the
model exists (e.g. at a computer a lot of moments can exist during the time when it
simulates, of which it is computing some auxiliary values for the simulation). The
simulated time can be interpreted also for the elements of D: if t is an element of D and
I is the simulated time for s(r,), then the simulated time at r is defined as dt)=T. For thc
case of simulation, 11<t2 implies 4t)< t(z): "simulated time cannot descend".

3.2 Special Case

The theory admits that the number of the regards is not limited. Also the practice
admits it - often one anticipates in the way as "if I wish know something on future reac-
tions of my partner & I must take into account that X would know something on the
future reactions of his panner I so that I/ would take into account what he expects about
his partner 2...".In other words,.a human can anticipate using a model, in which an
anticipation of another person is included etc. The models of such systems were already
made (Blùmel, Kindler, 1997).

Nevertheless - in a common practice - anticipation using computer simulation
models is rather limited. The usual manner of the present years does not overpass the
first regard. In that case, the determinations "of the first regard" are useless and one can
speak on a real system, its model and the csrrîer of it, artd on the simulated lime sccur-
ring in the model.

For the present development of the informatization of the human society, anticipation
using simulation models of two regards becomes actual: a human-made system is

277

designed so that the anticipation of its behavior is simulated, but it is often evident that

computers will occur in this system to help for temporary decisions: by means of simu-

lation the computer will anticipate certain consequences of the decisions formulated

during the existence of the system (i.e. a rather long time after having finished the

design of the system). The first examples of such a method already exist (Blumel et al.,

1997, chapter 4), (Kindler, 2000).
In such a situation there are exactly two regards and the words "of the first regard"

can be replaced by the adjective erternol and the words "of the second regard" by

inte:rnul. Therefore the erternal system is simulated by an external model realized at an

erternal cafiier and the same extemal system contains an internal carrier among its

own elements so that at the internal carrier an internal model is implemented that simu-

lates an internal system. The real time of the external system is mapped as the eflernol

simulated time in the external model and the real time of the internal system is mapped

as the internal simulation time in the internal model.
[æt our next considering be oriented to the case just introduced. Such case of simula-

tion is called nested simulation or nesting sîmulation. As the internal model is a pan of

the existence (of the "life") of its carrier both the internal simulated time and the extern-

al one are meaningful inside the internal model. As an example the following phrase can

serve: during the time interval <TvTz> the internal model simulates what could happen
in the internal system during time interval <tr,tzli Tr and Tz speak on the extemal simu-
laæd time and tr and 12 speak on the intemal simulated time.

Theoretically an external system can have several (external) carriers, moreover, the

carriers can dynamically arise (enter the extemal system) and disappear (leave the exter-
nal system). In practice, we can expect that in the near future only one carrier will be in

any external system. Let this case be called simple nested simulotion and let us limit the

followrng consideration to it. The carrier can carry several intemal models. In time shar-

ing mode, they can exist at the same carrier contemporarily. Otherwise they can alter-

nate. It is evident that the usual situation is that there are phases when the carrier exists
without carrying an internal model. The internal models existing at the same carrier can
be rather similar (differing onty by some parameters) or rather different. In the first
case, we can speak abcrut homogeneous simulatioz and in the second case about

heterogeneous simalstion. But instead of using term homogeneous simulation, one
uses term refiective simulution. Examples of reflective simulation are in (Kindler,

2001) and (Kindler, 1994).
The border between the heterogeneous and reflective simulaîion is not clear; one of

the reason is that the external model must differ from that intemal - otherwise the inter-
nal model should reflect the situation that it simulates a system with a carrier of another
model (that of the third regard), that model simulates a system with a carrier of another
model (that ofthe fourth regard) etc. until infinity. That the clearcases ofheterogeneous
simulation will be those where the internal model simulates a Jïctitious system, i.e. a

system for which it is evident that it will never exist in a maeerial way. The models of
such fictitious systems can well replace some routines. Several examples are presented

in (Kindler, 1995).

278

Beside the reflective simulation and heterogeneous one, it is suitable to introduce a
rather interesting and strange sort that could be called simulation homogeneous-plus.
In it, the intemal system reflects in good details t}te external one but contains other com-
ponents that could belong to a fictitious system. An example (together with an applicat-
ion) is presented in (Novak, 2000).

4 Discrimination Between System Entities and lVorld Views

Let us introduce entity as a common concept covering systems and their components.
In every case of system analysis one needs to give names to the entities. That was
reflected in all programming languages that enabled to handle with data structures; such
data structures were viewed as primitive images of entities. Naturally, giving names was
preserved for more sophisticated programming languages, namely for those that offered
to represent entities as objects. The rather old languages had very poor tools for map-
ping entities. The famous programming language ALGOL 60 (Backus, 1960), admined
to give names only some parameters of procedures; its greatest contribution to the deve-
lopment of the computer programming - the blocks - could not get names, because they
were not considered as entities but as something that could be characterized as world
viewings. In fact, there is a certain "metaphysical" difference between the systems and
the views to them and therefore it is not possible to consider the world viewings exactly
as entities.

One of the most excellent Simula property is that it takes the mentioned difference
into account and that it makes two differences between the blocks and obiects: while the
objects can get names the block must be "anonymous"; and while the blocks can fully
handle with quasi-parallel systems that handling is so limited for the objects that they
cannot represent world views in which entities can contemporarily exist and fully inter-
act in the common Newtonian time, i.e. along a time axe proper to the object. Therefore,
in a non-degenefirted case of modeling, the view to a world in which entities exist and
interact in the Newtonian time cannot be considered as an entity occurring in another
bloch which represents also a view to a world governed by a Newtonian time flow.
Nevertheless a block can contain an entity representing a carrier of a model, i.e. an enti-
ty, among the life rules of which there is a block that represents another world viewing
than that representing by the block in that the carrier occurs. See Figure l, where the

Figure 1: Worldviews

88
279

blocks are represented by rectangles with rounded edges while the entities are represent-
ed by circles; in the wodd viewing A there are four entities Ei (i=1,...,4) and a carrier of
the world viewing B in which there are five entities represented by circles e: (i=1,...,5).
The consequence of that nesting of a block inside the object is that the world viewing
corresponding to the block is an intemal ("private") phase of the carrier corresponding
to the object; the world viewing cannot be accessed and manipulated from the environ-
ment of the canier but the same world viewing can "regard" to that environment and
behave according it.

The discriminating between the worldviews and the entities could seem to be a restri-
ction of the language that could cause problems of its application. But it is not true, and
the good influence of the discriminating operates in the system analysis. Penetrating in-
to a world viewing from outside is illogical and the discriminating - combined with the
rules of the object-oriented programming - protects against it. In other words, the
absence of the discriminating would allow expressing such obscure phenomena as e.g. a
"telepathy" between two minds or between two computers (or between a mind and a
computer) - although such phenomena would be interesting in the parapsychological
sciences they are excluded from system analysis: there they cause inconsistencies
(Kindler, 1998).

5 The Activities of Objects as Objects

Let us present a simple overview ofthe ideas derived in the preceding parts:
Consistently with the remarks made in 2.1, the conventional object-oriented para-

digm does not reflect nesting models. As it reflects the human thinking on the systems it
supports the opinion that the system analysis works with the following categories:

5.1. Abstract categories ofc/asses that are ordered by means of specializalion which
is a relation among a pair of classes: one of them has greater contents that the other and
is called its subcloss. The class contains afirtbûes and methods.

5.2. Categories directly present for the particular systems are objects, which are
instances of classes. Every instance of a class has its own dose of the attributes and is
able to execute activilies introduced as methods for the class.

The relation between methods and activities is similar as that between classes and
objects; to a class more instances can exist contemporary, and - similarly - to a method
more activities can be called contemporarily.

Overpassing the boundaries of the conventional object-orientèd paradigm in the
direction to the anticipatory systems in weak sense, one must add thatof life rrfes to the
mentioned categories, i.e. a category inspired by simulation languages that also reflect
the thinking on the systems and that were predecessors of the first object-oriented
programming language SIMULA.

The nesting models cany another category - world viewing.
It could seem that the categoriesjust mentioned are basic ones for the analysis of the

anticipatory systems in the weak sense, because each of the categories is founded at the
algorithmic behavior of the digital computers, and the ranging of every system of that

280

sort can be founded at the concepts introduced in chapter 3. Nevertheless there is a
certain complication. Let us introduce it.

Consider a general process / of transformation of any conventional system S to an
anticipatory one s* in a weak sense. suppose S is analyzed under a world viewing w. In
reality such a transformation takes S, gives it one or more carriers and facilitates them
by world views w analogous to W and by abilities d to construct internal models p
according to the instantaneous state of S. The carriers can form a class r which forms a
component of a world viewing I4l* that is an enlargement of lV.

The process t is a mental process and can be considered as a higher level of system
analysis, because it does not concem an analysis on one particular system but (hat of an
infinite set of systems. The mental process t can be modeled as a machine translation r
of a formal description of any conventional (i. e. not anticipatory) system s and world
viewing W corresponding to it into a formal description of a conesponding anticipatory
system s* and to the world viewing lYx corresponding to it. we started to implement r
by means of SIMULA (Kindler, Kiivlf, Tanguy, 2002a,b), i. e, r is wriuen in SIMULA
so that it reads texts in Simula and converts them to other texts in SIMULA.

A habitual view to the activities is that they are anonymous and therefore do not get
names, contrary to the fact that the naming of methods is considered as a necessary
aspect of the object-oriented programming. In other words, analysis of conventional
systems does not accept the naming of activities, they are to be anonymous. That
principle has been built into SIMULA. The consequence is that the local data of the
activities are not accessible from the outside of the activity. The work at r discovered
obstacles that the mentioned anonymity of the activities causes. They can be explained
in the following example:

Suppose that the life rules of an object A force it to send a message to an object B,
telling it to execute a method rz. B executes m, i.e. causes an activity C to arise; but the
method rn is formulated so that it sends a message to an object D, demanding it to exe-
cute a method z. Therefore in a certain moment an "operating chain of the object A", i.
e. the set of A, c and G, where G is the activity generated by the method n exists in the
system model (see Figure 2). All the three members of the operating chain may have
their own local data (schematically represenred as L(c) and L(G) in Figure 2). Suppose
all that to have come shortly before it is decided that an intemal model should be con-

Figure 2: Operating chain of object A and two activities C and G

281

structed and applied. Then the initial state of the intemal model, which should "copy"
the instantaneous state of the extemal model, should also form a copy of the operation
chain of A, in order that the image of A in the intemal model could continue in the inter-
nal model exactly in the same manner as A would have continue.

The consequence of the anonymity of the activities is that the local data of C and G
cannot be copied into the intemal model, because the names C and G can be used in the
present paper but cannot be assigned in SIMULA description.

But one does not need to blame SIMULA. On the contrary, that language leads us to
a new decision on the system analysis. This decision is that in place of the methods
related to any class I/ of I/ classes local to 11 are considered and therefore instead of the
activities, corresponding instances of the local classes should be considered. Then the
objects can get name and their copies (including their local data) can be formed in the
inærnal model.

Therefore the analysis of the anticipatory systems in the weak sense can be made by
the categories presented in 5- l and 5.2, excepting the pair methods-activities that should
be replaced by classes-instances (see Fïgure 3).

(ability)

informal view system analysis SIMULA texts computer model

Figure 3: Simple arrow represents relation of locality, doubled one represents replacing

282

Conclusion

The analysis made by the technique described in this paper leads directly to simulat-
ion models, which can be generated directly from the description of the analyzed system
in the programming language SMULA, and - moreover - the exact formulation of the
world viewings on the anticipatory system can be automatically generated from the
world viewings oriented to the corresponding conventional (non-anticipatory) systems.
Then the resulting description of the world viewing can be used for a simple description
of anticipatory systems and for automatic implementation of their simulation models.

References

Backus John
'W.

et al. (1960) Report on the Algorithmic Language ALGOL 60'
Numerische Mathematik, 2, pp. 106-136.

Blumel Eberhard. et al. (1997) Managing and Controlling Growing Harbour Terminals.
The Society for Computer Simulation International, San Diego, Erlangen, Ghent,
Budapesu

Bliimel Peter and Kindler Eugene (1997) Simulation of Antagonist Mutually Simulating
Systems. Edited by Oliver Deussen and Peter Lorenz. Published by The Society for
Computer Simulation International, Erlangen, Ghent, Budapest, San Diego, pp.
56-65.

Brassel Kai H. (2001) Advanced Object-Oriented Technologies in Modeling and
Simulation: the VSEit Framework: ESM200I - Modelling and Simulation 2001,
Proc. 15ù European Simulation Multiconference. Prague, June 2001. Edited by
Eugene Kerkhoffs and Miroslav Snorek. Published by The Society for Computer
Simulation International, San Diego, USA, pp. 154-160.

Dahl Ole-Johan (1970) Programming l,anguages as Tools for the Formulations of
Concepts: Proceedings ofthe 15th Scandinavian Congress lOslo 1968]. Published by
Springer, Bedin, pp. 18-28.

Dahl Ole-Johan, Myhrhaug BjOm and Nygaard Kristen (1968). Common Base Lan-
guage. Norsk Regnesentralen, Oslo. 2nd edition 1972,3rd edition 1982, 4th edition
1984.

Dahl Ote-Johan and Nygaard Kristen (1968) Class and Subclass Declarations: Simulat-
ion Programming Languages. Edited by John N. Buxton. Published by North
Holland, Amsterdam, pp. 158-174.

Geoffrey Gordon (1961) A General Purpose Systems Program: Proc. 1961 EICC.
Published by MacMillan, New York, pp. 8l-98.

Geoffrey Gordôn (1969) System Simulation. Prentice Hall, Englewood Clifs.
Kindler Eugene (1994) Reflective Simulation in SIMULA. ASU NewsletteL Yol. 22,

No. I, pp. 1-14.
Kindler Eugene (1995) Simulation of Systems Containing Simulating Elements:

Modelling and Simulation 1995, Proceedings of the 1995 European Simulation
Multiconference. Edited by Miroslav Snorek, Milan Sujansky and Alexander

283

Verbraeck (eds.). Published by The Society for Computer Simulation International,
San Diego, pp.609-613.

Kindler Eugene (1998) Transplantation - S/hat Causes it in MS-DOS SIMULA?:
Object Oriented Modelling and. Simulation of Environmental, Humen and Technical
Systems - Proceedings of the 24th Conference of the ASU, Salzau (Schleswig
Holstein, Germany). Edited by Broder Breckling and Henry Islo. Published by
Ecology Center, Kiel, pp. 155-164

Kindler Eugene (2000) Nesting Simulation of a Container Terminal Operating With its
own Simulation Model. JORBEL (Belgian Journal of Operations Research, Statistics
and Computer Sciences), Vol. 40, No. 34, pp. 169-181

Kindler Eugene (2001) Computer Models of Systems Containing Simulatng Elements:
CASYS 2000 - Fourth International Conference. Edited by Daniel M. Dubois.
Published by The American Institute of Physics, Melville, New York, AIP
Conference Proceedings 573, pp. 390-399

Kindler Eugene, Krivy Ivan and Tanguy Alain (2001a) Tentative de Simulation
Réflective des Systèmes de Production et l,ogistiques: MOSM'OI - Actes de la
troisième conférence francophone de MOdélisation et SMulation. Ediæd by Alexan-
der Dolgui and François Vemadat. Published by The Society for Computer Simulat-
ion lnternational, San Diego - Erlangen - Ghent - Delft" Vol. l, pp. 427434

Kindler Eugene, Krivy lvan and Tanguy Alain (2001b) Reflective Simulation of
Discrete Logistic and Production Systems: Modelling and Simulation 2001, 15th
European Simulation Multiconference ESM200I. Edited by Eugene Kerkhoffs and
Miroslav Snorek. Published by The Society for Computer Intemational, Delft, pp.
86r-865.

Kindler Eugene, Krivy Ivan and Tanguy Alain (2002a) Towards Automatic Generating
of Reflective Simulation Models: MOSIS '02 - Proceedings of 36th Spring
lnternational Conference Modelling and Simulation of Systems. Edited by Jan
Stefan. Published by MARQ, Ostrav4 Czech Republic, pp. 13-19

Kindler Eugene, Krivy lvan and Tanguy Alain (2002b) Reflective Simulation of
Logistic and Production Systems: HMS/lvtAS 2OO2 - Intemational Workshop on
Harbour, Maritime and Multimodal Logistics Modelling & Simulation, Modelling &
Applied Simulation. Edited by Agostino G. Bruzzone, Yuri Merkuryev and Roberto
Mosca. Rrblished by DIP - Genoa University, Liophant Simulation Club, and
Mcleod Insdrute of Simulation Scicnce - Genoa Center, pp.9l-102

Krivy Ivan, Kindler Eugene and Tanguy Alain (2002) Software for Simulation of
Anticipatory Production Systems. Intemational Journal of Computing Anticipatory
Systems, Vol. 1 1, 2AO2, pp. 320-335

Madsen OIe L., Mgller-Pedersen Birger, and Nygaard Kristen (1993) Object-Oriented
Programming in the Beta Programming Language. Addison Wesley, Harlow -
Reading - Menlo Park

Novak Petr (2000) Reflective Simulation with Simula and Java: Simulation und
Visualisation 2000. Published by The Society for Computer Simulation Intemational,
European Publishing House, Ghent, pp. 183-196

284

Rescigno Aldo and Segre Giorgio (1961) La Cinetica dei Farmaci e dei Traccianti
Radioattivi (Kinetics of Drugs and of Radioactive Tracers - in ltalian), Boringheri,
Torino

Sheppard Charles W. (1962) Basic Principles of the Trace Method - Introduction of
Mathematical Tracer Kinetics. Wiley, New York, London

SIMULA Standard (1989) Simula a.s., Oslo
Vrba Pavel (1999) Progamming Language Beta - a Tool for System Analysis?:

MOSIS'99 - Proceedings of 33rd Spring International Conference - Modelling and
Simulation of Systems. Edited by Jan Stefan. Published by MARQ, Ostrava, Czech
Republ ic , pp. l4 l -156

Vrba Pavel (2000) Systémové aspekty objektove orientovaného piistupu (System
Aspects of Object-Oriented Approach - in Czech). Doctoral Thesis, University of
lilest Bohemia, Pilsen, Czech Republique

285

	Casus_v14_pp271-285_Kindler

