
SCORE: designing and implementing BDI Agents with the
use of interactive computer games as simulation environments

Leonardo Sewald Cunha, Lucia Maria Martins Giraffa
Pontificia Universidade Catôlica do Rio Grande do Sul - Programa de Pôs-Graduaçâo

em Ciência da Computaçâo (PPGCCÆUCRS)
Av. Ipiranga, 6681 - 90610-900 - Porto Alegre - RS - Brazil

Phone: +55 51 33203611 -FAX:+55 5133203621
sewald@portoweb.com.br, giraffa@inf,pucrs.br

Abstract
The use of games as testbeds for research projects in the Artificial Intelligence (AI) field
is a tradition. Some classic board and card games such as Go, Chess and Checkers were
and are extensively used. However, AI researchers are beginning to explore the use of
real-time interactive computer games in their research, making this an interesting field
1o experiment and explore. This paper presents the SCORE project (Êimulator for
COgnitive agent's behavioR.), where we use a Belief-Desire-Intention (BDI) agent
specification formalism called X-BDI, applied to a game environrnent called, Unreal
Toumament (UT). This paper also prcsents some aspects regarding AI and agent
technology applied to interactive computer games, with emphasis in the application of
cognitive agent modelling applied to game characters.
Keywords: Artificial lntelligence, BDI Agents, simulation, computer games.

I Introduction

Interactive computer games have been showing many innovations concerning about
performance, interfaces and project techniques. According to [l], the starting point was
back at the 70's with the game named Pong.lt was the first gaming market hit, where
two players would compete in a tennis simulation. Since Pong, interactive entertainment
applications have shown a constânt evolution, turning into repositories of technological
innovations in different fields, such as Computer Graphics (CG), and AI. Today's
modern computer games have state-of-the-art three-dimensional (3D) graphics, many
multiplayer features, allowing players to compete against each other or play
cooperatively over a network and fairly complex AI implementations. But more
importantly, modem computer games are being developed with the use of architectures
that allow third-party developers, users and researchers to expand, add or modi$ game
content.

One game that fits into this category is Unreal Tournament (UT). Released in 1999
by Epic Games, UT is a First-Person-Shooter (FPS)' action game, but with a stronger
multiplayer approach than Unreal (nttp:llunreat.eolcgame , its predecessor, both

' In the game community, a FPS is a game style r+ùere the player visualizes the environm€nt through the charôcter's p€rspective. As
examples we can mention martet hits such as Doom (hgpj/^A4wjegcl4&.cSr), Orafte (h!S/!|${'quê&p!|grlslç9!0), Uzreal
UIand others.

International Journal of Computing Anticipatory Systems, Volume 14,2A04
Edited by D. M. Dubois, CIIAOS, Liège, Belgium' ISSN 1373-5411 ISBN 2-930396-00-8

using the same game technology and architecture. UT showed many technological
advances over its FPS predecessors, not only in CG, but also in the application of AI
techniques. Rule-based AI approaches were used in order to improve the playability,
aside of the implementation of a "programming technique" called Extensible AI, which
allows the player to add or modiff the game's AI complexity, extending the game's
feahues (these techniques will be described in the next section).

According to [3], real-time interactive computer games offer robust environments for
researchers to test and develop AI techniques, aside ofthe fact that games are relatively
cheap and accessible, when compared to industrial or commercial applications. These
games have human and/or computer controlled characters populating the game's
environment. Since a direct addressing between interactive game characters and agents
can be done, as stated by Laird and others in [2], these games become a rich laboratory
for AI researctr, especially in what concerns agent development. These games constitute
real products that create real environments with which millions of humans can interact
vigorously. For these attributes, the use of real-time interactive computer game
environments in intelligent agent research is an interesting field to experiment and
explore.

Having this thought in min{ the GAMES AND AI (JEIA) research group at the
Computer Science Post-Graduation Program/Pontificia Universidade Catôlica do Rio
Grande do Sul (PPGCC/PUCRS) developed SCORE, a research project aiming to
integrate an agent specification formalism, programming language and tool called X-
BDI with the game UT, thus allowing the modelling and implementation of complex
BDI agent behaviors in a computer game environment.

This paper is divided in 6 sections. Section 2 presents a description of the main AI
and programming techniques used in current computer games, focusing in the agent
technology, presented in section 3. Section 4 presents a description of our research
work. Final considerations and results achieved with the use of agent technology are
presented in section 5. References are presented at the end ofthis paper.

2 Al and Al-related programming techniques used in games

In [2], we developed a study (survey) about the set of techniques, which represent the
state-of-the-art, in what concems the use of AI and Al-related programming techniques
applied to computer gitmes. The main techniques are:

. Finite State Machines (FSM's): rule-based approaches such as FSM's and Fuzzy
State Machines (FuSM's) are the most used AI techniques in computer games,
because they are easy to implement and for the fact that they are consolidated as
AI tools in the computer game industry. A FSM is made of a set of states, a set
of inputs, a set of outputs and a state transition function. This function computes
the entries and the current state and outputs a unique new state and a set of
outputs. FSM's are usually represented through state transition diagrams, and
can be easily implemented through nested switch-case commands. For more
complex modeling, the FSM's can be built under a graph hierarchy, so that each
node in a certain hierarchy level can be expanded to reveal it's dependent

244

hierarchy, and so on, until the last level, expanding a FSM. These are the
Hierarchical Finite State Machines (HFSM's), and they provide an efficient
way for FSM modular modeling.
The Fuzzy State Machines (FuSM's) are based on Markov chains. rù/eights are
associated to states while transition functions and rules are established to
compute the weights of the future states. An example of a game that uses
FuSM's is Call to Power (http://www.calltooower.com), a strategy game where
the player controls civilizations whose profile and characteristical traits were
modelled with the use of FuSM's. The use of FSMs allows the user to build
elements with a relatively complex behavior;

. Extensible AI: this is not exactly an AI technique; it's more likely to be
considered as a progamming technique. Through this programming style, the
player has thg possibility to create character behaviors or modiff pre-existent
character behavior. Extensible l1 usually appears in the form of scrrpr
languages, that the game player/progftrrnmer can use to extend the game's
features. The game developers must build a script compiler which is inserted in
the game's executable file, or as a separate progfirm shipped with the game). The
seripts are based on function calls to the game's intemal Al subsystem, which
cannot be modified by a regular Extensible r4f implernentation. Many games
shipped in the last few years implernent this technique, following a trend that
started with games such as Duke Nuke'em 3D (http://www.dukeworld.com) and
Quake;

. Search aleorithms - the l-Star (A*): According to fl7J, the A* is the most used
search algorithm in computer game design and implementation. The A* uses a
heuristic firnction which determines the quality of each of the possible states
(nodes). The firnction estimates the cost of the paths towards the destination,
pa$sing through the current node, and it chooses the best way to achieve it. The
quality of the node is measured by lowest cost among all candidate nodes. The
performance of its implementation dçends on the heuristics enclosed in the
heuristic function. A bad heuristic function can drastically reduce the
algorithm's speed, or produce incorrect routes. In order to achieve the best
results, the heuristic function must be admissible. It means that it must be an
underestimate of the actual cost of moving from the current node to the goal
node. Usually, game developers are very familiar with search algorithms. Thus,
now they are focusing on the association of search techniques with specific
situations, such as in pathfinding associated with tenain analysiso, a situation
usually found in strategy games such as Age of Enpires II: The Age of Kings
(httrp://www.ensemblestudios.com/aoeii/index.shnnl), a game where the player
must develop ancient civilizations;

. Neuronal Netrvorks and Genetic Algorithms: According to [18], Neuronal
Networks (NN's) use a massive interconnection of computational cells called

2
lhrc tnain amlysrs is a programming technique thst is used to point out locations on the game maps which can be difEcult for the

gane elements to move through, such as bridges or mountain passes. A good tenain analysis can output valuable infotmation for
the game's pathfinding system so that the latler can solve more complex search problems.

245

'h€urons" or "prOCeSsing Units". The linkS between these neUrons are Called
synapses. Each neuron has an associated value (weight), which is used to stole
acquired knowledge. The neuronal net's algorithm can leam and keep the
changes of these weights in order to improve the neuronal network. A neuronal
net's learning process is called supervised if the expected output is known.
Otherwise the learning process is called unsupervised. Genetic algorithms
(GA's) are computâtional models inspired on human evolution. They tlpically
re.present knowledge through binary or Boolean attributes. According to [19], a
regular GA implementation starts with a set population with some attributes
(chromossomes). These sfiuctures are evaluated by a fitness function and
reproduction opportunities are offered. The set ofattributes, which represents a
better solution to the problem, has a better chance to reproduce. This evolution
process can be associated to the learning process for GA's. There ale some
game-related projects that explored â combination of GA's and NN's, and one of
the most significant is the NeuralBol ftttp://lvrvw.botepidemic. , a
computer-controlled'opponent (âot) created to be used in the game Swke n
(http://wr*rv.quakgyorld.com). T\e bot uses a neuronal net to control its actions
and a GA to train its neuronal net. By this way the bot does not need any sort of
pre-progmmmed behavior: it can learn and adapt itself using the environment
inputs;
Artifrcial Life (A-Life): according to [17], the A-Life representation techniques
provide flexible ways to create realistic behavior in game characters. A-Life aims
to simulate the behavior of real world living organisms through different
methods, such as rule-based approaches, GA, among others- Instead of
implementing a variety of complex behaviors, the A-Life approach divides these
complex behaviors in small parts, in order to simulate simpler behaviors. A
decision-taking hierarchy, used by the game elements to decide what actions
must be taken interconnects these small parts. Combinations of lowlevel
behavior sequences can automatically generate higher-level, complex behaviors,
thus reducing implementation complexity. A-Lde techniques are usually used in
simulators. However, some action and strategy gzlmes, such as Unreal and Age
of Empires II, abeady use A-Life approaches to control group movement, such as

flocking algorithms, where the flocking techniques are used to control the
coordinated movement of groups of fishes and birds,

'and
to control army

formations;
Software Develonment Kits (SDK's\: SDK's, or simply toolkits, implement
different sets of AI techniques, making them ready to be used by software
developers at a higher abstraction level. For this attribute SDK's also aren't AI
techniques, but are considered as Al-related programming tools. They can speed
up the application development process, since developers just have to use the
functions implemented in the toolkit, instead of implementing their firnctionality
(for example, when using a FSM approach. The developers can use a ready-
made toolkit implementation of general PSM functionality and tune it up for
their project). Some SDK's were created specifically for use in game projects,

246

while others have a wider usage scope. Some examples of SDK's are: Motivate
(http:/lwww.motion-factory.com), Spark! (http://www.louderthanabomb.com)
and DirectlA (http :/lwww.animaths.com).

3 Computer Games implemented with the use of Agent Technology

According to [4], an agent is a computer system that is capable of independent action
onbehalf of itsuserorowner. A Multiagent' system is one that consists of a
number of agents, which interact with one another. ln order to successfully interact,
agents must have the ability to cooperate, coordinate, and negotiate. According to
[20] and [4] the agents have different characteristic attributes (properties). However,
some properties are necessary to be observed when building an agent:

. Autonomy: refers to the fact that agents can operate in an independent way,
without human supervision. Agents usually implement this property in a certain
degree;

. Reactivity: refers to the agent's ability to react to environment inputs. A reactive
system is one that maintains an ongoing interaction with its environment, and
responds to changes that occur in it (in a reliable time of response);

. Social abilitv (intemction): refers to the interaction with other agents (and
possibly humans) via some kind of agent-communication language.

We adopted the definition used by [5J, which defines an agent as an entity, which has
goals, that has the capacity of perceiving certain properties in the environment. They
can sense the surrounds and can act in this environment, and some of these actions
andlor perceptions can be done through communicating with other agents.

According to many authors mentioned by [6], there is a taxonomya being widely
used in the Distributed Artificial lntelligence (DAI) community, which classifies agents
in fwo groups: reactive and cognitive agents. Cognitive agent architectures are tlpically
unable to act fast and adequately in unpredicted situations, while reactive agents are
unable to discover alternatives to their behavior when the environment status is too
different from their initial goals, making them less flexible. Table I presents some
comparisons between reactive and cognitive agents in what concerns their basic
features.

Table l: Reactive v e A

Reactive agents do not have an internal symbolic
environment representation

Action selection is directly associated with the
occurence ofa set ofevents in the environment

They have goals and an internal world
representation, which contains information about
application requirements and action consequences
that can be exolici
Action selection is done through an explicit
deliberation over different options. For example,

ing an internal world a Dlan or

" Multiagent systerns provide a new tool for simulating societies, which may help shed some light on the vadous kinds of social
processes. Thus, agelts can be considered as a tool for undersunding human societies, or other societies based on the human ones.
a

This raxonomy has more ofs didâctical application than æaUpmctical applicability.

247

Architechres have a fixed, rule-based action
contml mechanism

Demonskate excellent performance in real-time
environments, although there is the need of a
previous effort to determine specific solutions to
the possible situations

In general they don't have explicit goals which can
b€ arbitrated and altered during the execution of

which evaluates an
to lts use

They have an internal planning system based on
successive refinements, using the information
provided by the world representation to build a

which can reach the agent's
Lack of speed in real time environments. The
amonnt of time needed to analyze the situations, to
build and to reuse plans, typically can make the
agent very slow agent to act in a real time
environment
Given a cefiain goal and the knowledge that a
certain action will lead it to this particular goal,

action

the then the aeent selects this action

Built with the use of simple control mechanisms Originated from the classic planning systems,
which output a sequence of correct actions (plans)such as FSM's or nrle-based approaches
to reach a certain

An example of a game that uses reactive agents is Guimo, a game released in 1997
by Southlogic. The ag€nts were built using the HFSM approach. The HFSM has states
such as l(ander, FaUback and Attack, and each one of these "macro-states" has an
intemal FSM, which executes the specified actions. In contrast, an example of a
cognitiv€ agent approach in games is shown in Black and White, released by LionHead
in 2001. Agents were modeled based on a BDI architecture. The agent receives an
"inventory" of locations of certain points. Of those descriptions, the agent then creates
"opinions" over which types of objects are more appropriate to satis$ its goals.

tn order to solve the main restrictions of these two architectwes, the hybrid
architectures were adopted. Hybrid architectures combine reactive and cognitive
techniques. According to [5], hybfid agents use an ofÊline planning system (a planning
system which is not executed in real time), for the generation of plans in a higher
abstraction level, while decisions are made on the lower level. Refinement alternatives
for plan steps are handled by reactive systems.

An example of a hybrid agent application is tbe MultïCooperative Environment -

MCOE, a multimedia educational game, cr€ated as a prototype for Giraffa's PhD thesis

[7]. The thesis work proposed to model an lntelligent Tutoring System QTS) through
the use of agent technology using a Multiagent System architecture.

4 Integrating Computer Games and Intelligent Agent Research

This section presents the SCORE system, the research project developed in the JEIA
group. The subsections below present a description of the system, alongside with
implementation details.

248

4.1 Description

Some modem computer games have their enginess implemented as Dynamic Link
Libraries (DLL's). They are files that store the system's object/function libraries. These
DLL's are used to manipulate game data (textures, graphical elements) and interact with
certain parts of the system, which typically are external to the engine itself, such as
music/sound effects, AI and other subsystems.

Through the use of some tools (in most cases, shipped with the game) these
subsystems' source code can be viewed and manipulated, allowing the user to change
many game attributes without the necessity of acquiring the game engine's source code.
These subsystems can be considered as the engine's programmable interfaces (since the
game engine interprets the code for these subsystems), as they allow access to intemal
game functions. Most of these interfaces are accessible with the use of script languages,
whose commands and reserved words assigned to game AI tasks are usually associated
with low-level actions. The developer and/or researcher could directly program a
character's behavior by using these interfaces. The game UT fits in this category.

The SCORE project uses the game ur as a testbed. The game's architecture
approach consists of the use of a Virtual Machine, a Compiler and script and byte code,
similar to the Java language architecture, as shown in Figure 1. The 1zil sequence
compiles the script code into byte code and loads it on the Virtual Machine to be
executed. From this point, the game's execution loop begins. During the game's
execution, the system's state changes. The Virtual Machine executes functions and
service calls until an "EndGame" request is called.

-
In what concems computer game developmeîi, Ln engine consists of a set of methods/functions and data structuH cræted to ease

the manipulation of game daia, thus assisting progmmmere in creating computer gamæ. The engine is tipically considered æ a
game's core.

Prrgrû :

IniE :
Load script, corpile Èo Byteoode
Load virtual tdachine
Load script inÈo VI

Loop :
Expose state to vll
EnpoÊe callbacke/queries to Vll

Ru VII

Until Vil call-s iEnd0ile"

script :

un i t .pos *= 10 ,
Un i t .YPos += 10 ;
if (Ilni.t. IlnderÀttack)
begin

Target = IlniÈ.Àttacker O;
if (Target.ÀttackPoints >

Unit. Health)
Un i t .Dead O;

:ll

Figuie t: ù1arôùitèCture iahèmé

249

UT has a built-in, integrated script language, called UnrealScript (US). The script
langaage was created to provide a personalized game programming language, which
would provide native support for features such as states, time and network
communication. UT's development team first used US during the game's
implementation phase. Now many UT players who have programming knowledge use
the script language to extend the game's features.

The language is object-oriented, mixing C+ and Java features. The implemented
code is compiled by using the UCC tool, a compiler created by UT's development team
to be used with the language, and then be executed by the Unreal Virtual Machine,
which is basically represented by the game's engine. For more information on the US
language, the work of[8] can be consulted.

The script language is part of a powerful editing tool called UnrealEd, and can also
be accessed through it. UT's development team also first used the editor to build the
game, and now this editor is being shipped with the game itself accessible to all users
who wish to change/manipulate the game elements. Figure 2 shows a screenshot of
UnrealEd. All the game elements (music, sound effects, textures, characters, and
weapons, enemy AI) can be manipulated through the editor and/or UnrealScript. The
screenshot in Figure 2 shows two script-related windows: the one on the left shows a
part of the game's object hierarchy, while the one on the right shows the UnrealScript
code for the class pewn, which represents a game element which has AI capabilities.

lrtegrated Development Environment (IDE)

254

The user can change the code or inherit the properties of other superclasses and then
recompile the game's script code6, this way changing the game.

UT and UmealScript were chosen for use in this project because there is free on-line
available documentation, aside of our interaction with the development team members.
Also, the game allows free access to most part of the game's code through US and
UnrealEd tools.

Through the use of US (which can be considered as UT's programmable interface), it
would be possible to manipulate character behavior. However, it would be quite a hard
task to create complex (intelligent) cogrritive agent behavior by direct script language
manipulation. Fortunately, {JT's game interface can be controlled via external software.

At this point, there is the necessity to use tools in order to reduce agent modelling
and implementation complexity. Our research group has two available tools to attend
this issue:

. X-BDI: X-BDI is an agent development and testing tool based on the now
coûrmon concept of beliefs, desires and intentions [9]. Derived from a formal
model of BDI agents [10], X-BDI implernents the algorithms that deal with the
interaction of mental states, namely: how to keep beliefs consistent, how to keep
intentions consistent (internally, and with beliefs), how to derive intentions from
desires and plans from intentions. Therefore, X-BDI provides a tool that, when
fed with the description of an agent in terms of its beliefs and desires and given
input from the environment, is capable to manage these mental states and
produce sequences ofactions which satisfy the agent's desires, and passes them
to the environment. X-BDI is not seen as a complete agent but as a cognitive
kernel that is to be part ofan agent;

. E-BDI: the E-BDI system is a BDI agent programming editor based on the X-
BDI environment, making it more operational and usable. The editor allows the
developer to define the set of BDI mental states and their interrelations by using
both a text and graphic-oriented interface U ll. In this way, the E-BDI editor
addrcsses one of the main issues in BDI agent programming the complexity to
visualize and debug large BDI mental state descriptions. The developer can
analyse the defined mental states, making it easier to detect the presence
contradictions or deadlocks fl ll.

We are using some previous results reached by [0], [7], [6], [1] and [2] to control
character behavior in interactive computer games. We are using the mental state
approach in a similar way (although with a different tool, the X-BDI environment) as in
I-aird's Human-AI project [3], where the Soar' architechne is used to control characters
in dynamic environments.

6 ft i, irnpo.tuof to state (hnr by using the edito(, the us€r camot change the game's engine. In fact, ûe editor uses the engine's
r€sources to allow tlte us€r to rnânipulale lhe game elements.
'

According to [Irird 200U, Soar is an unified architecture for the development ofsysærns which stlow intetligent behâvior. Bùilt
based on theories about the human problern-solving abilities, the Soar architectre pmvides fixed cornputational sùuctures, ov€r
which knowledge can be codod and used in order to produce actions in search for goals (a deliba"ative belravior).
Anong the projects where the Soar archit€cture was us€d, let us highlight the research project vùich served as a motivation for our
work the hudan-level AI rctrarch pfoject, coord€nated by hird [2001], where the Soar architectur€ was integrated with the game
Q@ken.

251

The X-BDI system has a higher abstraction level than the game's bruilt-in script
language, making it an essential tool for cognitive agent modelling. Thus, it is necessary
to build an intermediate layer to establish the communication between the game's
programmable interface and the agent's cogrritive kernel, as depicted in Figure 3.

smc€nqhe 1"ffi

Figure 3: Controlling garne characters of a computer game via X-BDI

In order to establish such a communication level, a two-way translaûor was defined.
ln the game -> X-BDI way, the translator maps game ouQuts, coded in US, as inputs
representing the agent's environment sensoring, coded in the BDI format used by X-
BDI. This information is then processed by X-BDI. The vice-vena process, franslating
X-BDl-generated plans into action sequences, coded in US, to be executed by the game
characters, is also made using this translator.

from US and X-BDIable 2: Code
US code X-BDI code

Else if (Orders : 'Patroling')

GotoState('Patroling');
else if (Orders == 'Attacking')

GotoState('Attacking');'
else if (Orders =='Ambushing')

GotoState('Ambushing','FindAmbushSp
ot');

else if ((LikelyState r= ") &&
(FRand0< 0.35))

GotoState(LikelyState,
LikelyLabel);

Else StartRoamingO;...
state Attacking{
ignores SeePlayer, HearNoise, Bump, HitWall;

fllnctionChooseAttackModeQ {
local eAttitude AttitudeToEnemy; local

float Aggression; local pawn changeEn; local
TeamGamePlus TG; local bool bWillHunt;
bWillHunt = bMustHunt; bMustHunt = false;

if ((Enemy =: None)llGnemv.Health

Identity(sewald).
des(sewald,MeleeAttack(Enemy)) if

bel(sewald"BumplnEnemy(OK)),
be l(sewald,ReadyToAttack(OK),
bel(sewald, EnemyDistance(OK)),
bel(sewald, KeepOnMelee(OK)).

act(sewald,DetectPawn(Enemy)) causes
bel(sewald,BumplnEnemy(OK)) if

bel(sewald,TherelsEnemy(OK),t !).
act(sewald,IsReadyToAttack(ENEMY)) causes

bel(sewald,ReadyToAttack(OK)).
act(sewald,GoinTostate(lAKEHlT)) causes

bel(sewald,KeepOnMelee(OK)).
act(sewald,DistanceTest(OK)) causes

bel(sewald, EnemyDistance(OK)).

252

<= 0)) {
WhatToDoNext(",");
return:

Table 2 shows code samples from uÏs script code (taken from the scriptedpawn
character class), and X-BDI agent code. The X-BDI language is similar to pRoLoG,
having low complexity in what concems it's syntax. The u,S language has a native
implementation of states, used mainly for AI purposes, reducing the complexity to
progam character behavior. The state concept implemented in US defrnes sequences of
actions, which can be associated to the actions performed by a X-BDI agent. The
conditions that determine if an agent will or will not enter a given state are associated
with beliefs of a X-BDI agent.

The uS language supports state machine programming at the language level, through
the use of the state command. with the use of this command, the programmer can
directly define the character's states (e.g. attacking, dying, wandering, patrolling,
meleeattack), where the character performs certain actions. The state transition is done
with the use of the GotoState(next-state) command, where next_stcle represents the
character's next state.

ln order to test the translator's functionality, a protoqpe was built. A new character
class was created, extending the Brutes character class. From the new class, called
Sewald, there was selected the set of behaviors which implement tbe MeleeAttack state,
where the enemy character engages in close combat. The new class was created because
there was the need to implement a way to force the UT system to write game execution
information to its output log files.

4.2 Implementation

The translator has two basic functions:
' Convert the character's conditions to enter a given state into BDI agent beliefs;
. Convert BDI agent's desires into game's state transitions.

In the first case, the translator follows an association table, listed in Table 3. For the
second translator feature, the translation process is straightforward: the BDI agent's
desires are directly associated with the game's internal state transition command,
GotoState}, with the need of syntax modifications.

Tabte 3: US to XBDI code translation table for the MeleeAuack state

" Class that implements a specific conrpuær-controlled memy, with it's own AI functionâlities, graphical textures and associated
sound events.

Situation X-BDI code US code
Character touches another
game object, and the touched
object is another enemy, or the
olaver

BumplnEnemy(OK) Enemy!=None;
Other-Enemy;

Pawn(Other)!=None;
SetEnemv(Pawn(Other)):

Character is readv to attâck ReadvToAttack(OK) bReadYToAttack==True:
Character is at an acceptable
range from the victim, in order
to engage in close-combat

EnemyDistance(OK) VSize(Enemy.Location -
Location) <= MeleeRange +

Enemy.CollisionRadius -
CollisionRadius:

253

character is going to I KeepOnMelee(OK) | NextState == TakeHit;
the TakeHit state; character is
at the MeleeAffaclc state itself,
in the AnimEnd method

The translator was implemented as a black box module, where the results processed
by the X-BDI environment are the module's input parameters, while the module outputs
the corresponding US commands. The same module also does the vice-versa process,
but with the use of a different function.

The execution of the system as a whole begins when the translator starts searching in
the UnrealToumament.log (UT's log file) file for the string "SCORE FOUND#. This
string is a flag, which indicates that the game character is about to enter in a given state
(meaning that the game character's AI script execution has evaluated all the conditions
(*rÉ") to enter the state). For example, the set of conditions which represent the
BumplnEnemy(OK) BDI agent belief (listed in Table 3), is written in UT's log file as
*SCORE FOIJND#BumpInEnemy''.

The translator then processes the flag, converting it to a X-BDI command. The
translated command is passed to X-BDI through its input agent coreography file, named
COREO.A. Following the above example, the flag is converted to the
DetectPawn(Enemy) X-BDI command, indicating that the game character has satisfied
all the necessary conditions, so that the X-BDI agent assumes BumplnEnemy(OK) as a
belief. Figure 4 shows the code excerpt that handles the above situation. YaiablesfpUT
andfpout represent, respectively, the UnrealTournament.log and COREO.A files.

while(fsets(cBuf, I 00, &IJT))
if(cPtr=strstr(cBuf, "SCORE FOUND#"))
//moves the pointer
cBuf[strlen(cBuf)- I 1='19''
spç+=(çhar)strlen("SCORE FOUND#");
//BumplnEnemy
if(!strcmp(cPtr, "BumpInEnemy"))

fu uts("DetectPawn(ENEMY)\n", $Out);
//ReadyToAttack
i(!strcmp(cPtr, "ReadyToAttack"))

Suts("IsReadyToAttack(OK)\n", DOut);
//EnemyDistance
if(!strcmp(cPtr, "EnemyDistance"))

fouts("DistanceTest(OK)\n", fuOut);
//KeepOnMelee
i(! strcmp(cPtr, "KeepOnMelee"))

$uts("GoinToState(TAKEHIT)\n", fr Out);
Figure 4: Code excerpt for UT's log file reading and conversion

The BDI agent then interprets, through it's source code (shown in Table 2), the
command received through COREO.A. After interpretation, the agent sends out a string
containing a desire (the interpretation results). This string is also a translator flag, this
time indicated by the 'SCORE SAYS#' string. The desire is read by the translator,
which converts it to a GotoStateQ command. Figure 5 shows the code excerpt that
implements this situation.

254

while(fgets(cBuf, 100, &OuO)
if(cPtr=strstr(cBuf, 'SCORE SAYS#"))
llmove o ponteiro
cBuf[strlen(cBuf)- I 1='ttg''
cPtr+=(char)strlen("SCORE SAYS#");
llMeleeAttack
if(!strcmp(cPtr, "MeleeAttack"))
Quts("GotoState('MeleeAttack")\n", $UT);

Figure 5: Code excerpt which converts XBDI output to US code

The black box module receives two command'line parameters: the conversion tlpe
(uT to X-BDI or X-BDI to UT) and the input and output filenames. The conversion
type identifiers are:

. -lp(: converts from uT to X-BDI;

. -xu: converts from X-BDI to UT.
Two se,parate conversion functions were implemented:
. int UT_XBDI(char *input_ut, char *ouçut_xbdi);
. int XBDI_UT(char *input_xbdi, char *ouçut_ut).

The UT-XBDI function (used when the -ux parameter is passed) searches for the
flags written inside UT's log file (passed as the input file) and outputs the converted X-
BDI code in the infonned output file, following the associations listed in Table 3.

The XBDI_UT function (used when the -xu parameter is passed) reads the X-BDI
generated output file, passed as the translator's input file, converting the desires into US
state transitions.

Table 4 sumrnarizes the use of both functions.

5 Conclusion

The AI researchers have been developing many works using classic games such as
chess, checkers or puzzles, and so on. However, modern computer games are, in their
majority, played in real time, in virtual environments, which involve a high level of
dynamism and interactivity. Thus, real time computer g{rmes are an interesting topic for
study and implementation of AI techniques. There is also the fact that there are very few

able 4: of the functions
Fnnction name Deecription

UT_XBDI - reads from UT's log file;
- for each line containing the *SCORE

FOUND#" flag, read the rest of the line and
convert to the correspondent X-BDI command
(X-BDI agent's environment sensing);
- writes to oumut file. to be read bv X-BDI:

XBDI-I.N - reads liom X-BDI generated output file;
- for each line containing the "SCORE SAYS#"
string, read the rest ofthe line and convert to US
commands, representing a state transition;
- wriæs to the outDut file. to be read bv UT:

255

research projects involving modem computer games in the academic community. There
is some kind of misunderstanding or resistance over the use of interactive computer
games as powerful testbeds for AI techniques. The worl$ [3] and p3] have developed
with the use of real-time computer games are good examples about the potential of such
applications.

According to [3], the main reason that makes the academic community ignore real-
time interactive computer games is associated to the fact that, usually, the objective of
these game's AI systems is not to create intelligent characters, but to improve the
game's playability level through the illusion of intelligent behavior. Another reason to
justiff the shortage of scientific material on the subject would be the fact that many
game developers like to "reinvent the wheel", creating their own game development
methodologies instead of using ready-made ones.

The JEIA research group from PUCRS (website at:
htto://www.inf.pucrs.br/-girafla/jeia/indç:r2.htrn) is trying to contribute to modifu this
unfavorable scenario. Research with the use of interactive computer games opens a neu/
door in real-time simulation. Since some modern games have expandable and open-
source architectures, the list of application fields can be wide. For instance, in the case
of our project, the SCORE system, upon its completion, can be used (alongside with
UT's development tools) as a higherJevel BDI agent development and testing tool,
encapsulating the X-BDI formalism as its development tool, the translator as its
conversion grarnmar and UT as its game environment testbe{ associated with a multi-
purpose environment generator, here represented by UT's UnrealEd.

As examples of the research being developed by the grcup, we can mention: MCOE

[7]; RL-MCOE, proposed by [4], is an application of reinforcement learning
techniques using the work implemented by [7]; TCHE by [t5J, and QUERO-QUERO
by [6] are educational games created to assist children to develop basic Math concepts.
These game's environments were developed by multidisciplinar teams and tested in real
classroom environments. REVOLUTION by [21] involves the use of Role-Playing
Games (RPG's) in the teaching process. The JEIA group has been developing research
involving agent technology applied to educational game modelling and implementation.
The group is now starting to develop applications involving real-time interactive
computer games. More detailed information is available at
http : //www. inf. pucrs.brl-siraffa.

Our work described in this paper also intends to demonstrate the potentiality of BDI
agent techniques for game projects. Moreover, considering anticipation as a form of
planning, XBDI is capable of constructing anticipatory agents that, by using the SCORE
system, can then be used as in-game agents. As important contributions from this worlç
w€ can mention:

. Contribute to spread out interactive computer game research in the academic
research community;

. Provide tools to develop an application which will allow behavior modelling and
programming through E-BDI's associated programming technique;

. Contribute with BDI agent research.
As suggestions of future work, we can mention:

256

' Provide a standard for X-BDI output manipulation: by having a standard way ûo
manipulate X-BDI output, we can expand the communication layer in order to
enclose different languages, enlarging it's usage scope;

' Implement a more dynamic communication interface: in the project's current
state, it is possible to model and program high-level behavior for BDI agents,
and visualize the results in an interactive game environment. However, the
interaction between the game and the X-BDI environment is not fully dynamic
(real-time), due to project time restrictions. Further analysis of the game's script
code is needed to implement a more dynamic solution, in order to make the
system more usable.

Acknowledgements
The group would like to thank Dell Computers and Microsoft for supporting this

research project.

References

[] BATTAIOLA, A. L. Jogos por Computador - Histôrico, Relevância Tecnolôgica e
Mercadolôgica, Tendências e Técnicas de Implementaçâo. XIX Jornada de
Atualizaçâo em Informâtica, 2000, ed. Universitâria Champagn at, pp. 83 -122.

[2] CUNHA, L. S and GIRAFFA, L. M. M. Um estudo sobre o uso de Agentes em
Jogos Computadorizados Interativos. PPGCC/PUCRS, Porto Alegre, 2001.
Technical Report (available at http://www.inf.pucrs.brlppgccl\.

[3] LAIRD, J. E. Using a Computer Game to Develop Advanced AI. Computeg 34, (7\,
2001.

[4] WOOLDRIDGE, M. An lntroduction to Multiagent Systems. England: John Willey
& Sons,2002.

[5] NAREYEK, A. Intelligent Agents for Computer Games. Captured on April 2001.
Online. Available on the Internet at: htto:ltwww.ai-center.com/references/nareyek-00-
gameasents.html

[6] VICARI, R. M and GIRAFFA, L. M. M. The Use of Multi Agent Systems to Build
Intelligent Tutoring Systems In: Inæmational Journal of Computing Anticipatory
Systems. The American Institute of Physics (AIP), 2002.

[7] GIRAFFA, L. M. M. and VICCARI, R. M. Estratégias de Ensino em Sistemas
Tutores Inteligentes modelados através da tecnologia de agentes. Revista de IEISBC.
(6\,2,1999. (Brazilian Journal of Computer Science applied to Education)

[8] CUNHA, L. S. and GIRAFFA, L. M. M. UnrealScript Language Syntax.
PPGCCiPUCRS, Porto Alegre, 2001. Technical Report (available at
http://wwrv. inf.pucrs.brlooecc/).

[9] WOOLDRIDGE, M. Reasoning about Rational Agents. Massachusetts: The MIT
Press. 2000.

t10l MÔRA, M.C., LOPES, J.G., COELHO, J.G. and VICARI, R. BDI models and
systems: Reducing the gap. In: Agents Theory, Architecture and Languages
Workshop. Lecture Notes on Artificial lntelligence, Springer-Verlag 1998.

)51

[11] ZAMBERLAM, A. O. et al. E-BDI: um editor para prognmaçâo orientada a
agentes BDI. In: III ENIA Encontro Nacional de Inteligência ArtificiaL 2401,
Fortaleza. XXI Congresso da Sociedade Brasileira de Computaçâo. Fortaleza.
Proceedings: SBC,2001

[l2] GOULART, R. R. V. et al. Auxiliando o tutor na gerência das informaçôes do
AMbiCNtC E dOS AIUNOS. XI SIMPÔSTO ERASILEIRO DE INFORMATICA NA
EDUCAÇÂO,2000, Maceiô, Alagoas. Proceedings: SBC, 2000.

[3] ADOBBATI, R. et al. GameBots: A 3D Virtual World Test-bed for Multi-Agent-
Àesearch. Proceedings of the 2nd. rrl/orkshop on Infrastructure for Agents, MAS and
Scalable MAS, ACM Press, New York, 2001, pp.47'52.

[4] CALLEGARI, D. A. Aplicando aprendizagem por reforço a uma arquitetura
multiagente pam suporte ao ensino de educaçâo ambiental. PPGCC/PUCRS, Porto
Alegre, 2000. Masters Thesis.

ttil MAZZORANI, A. C. et al. Tchê: Uma Viagem pelo Rio Grande do Sul.
FACIN/PUCRS, Porto Alegre,2001. Trabalho de Conclusâo II.

[6] COMUNELLA, G. et al. Quero-Quero Aprender Matemâtica. PPGCC/PUCRS,
Porto Alegre, 2001. Trabalho de Conclusâo.

U7l WOODCOCK S. Game AI: The State of the Industry. Captured on April 2001.
Online. Available on the
http://www.eamasutra.con/featurey2000l I 0l /woodcock 0 l .htm

lnternet at:

ISl HAYKING, S. Redes Neurais: Principios e Prâtica Bookman, 2001-

il91 WHITLEY, Darrel. A Genetic Algorithm Tutorial. statistics & computing. (4),

.1994.
t20l RUSSEL, S.; NORVIG, P. Artificial Intelligence: A modern Approach. Prentice-

Hall, 1996.
[21] Bittencoufi, J. R.; Giraffa, L. M. M., A Utilizâçâo dos Role-Playing Games

Digitais no Processo de Ensino-Aprendizagem. PPGCC/PUCRS, Porto Alegre, 2003.
Technical Report (available ât http://www.inf.pucrs.br/opecci).

258

	Casus_v14_pp243-258_Cunha

