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Abstract
The methods of ordinary least-squares regression (OLSR), fuzzy regression (FR), and
adaptive network fuzzy inference system (ANFIS) are compared in inferring operating
rules for a reservoir operations problem. Dynamic programminS (DP) is used as an
optimization tool to provide the input-output data set to be used by OLSR, FR, and
ANFIS models. The OLSR. FR. and ANFIS based rules are then simulated and
compared. The methods are applied to a long-term planning problem as well as to a
medium-term implicit stochastic optimization model. The results indicate that FR is
useful to derive operating rules for a long-terrn planning model, where imperfect and
partial information is available. ANFIS is beneficial in medium term optimization as it
is able to extract important features ofthe system from the generated input-output set.
Keywords: Reservoir operation, operating rules, fuzzy regression, fuzzy inference.

I Introduction

Fuzzy regression (FR) and adaptive-network-based FIS (ANFIS) are used in
infening operating rules for reservoir operations. A summary of different methods used
for surface reservoir management can be found in Yeh [985] and Ponnambalam
ï20021. Inferring operating rules is to get general rules by which reservoir operations
can be controlled. Young |9671, Bhaskar and Whitlach [980] and Karamouz and
Houck [1982] used multiple linear regression to derive the operating rules. ûther
methods included using the Artificial Neural Networks (A}.IN) and fuzzy rule-based
technique. In this study fuzzy regression, first introduced by Tanaka et al. [1982], is
examined in deriving operating rules for reservoir operations. Two problems are
addressed here, a long-term optimization problem and an implicit stochastic
optimization model. The OLSR, FR, and ANFIS are used to derive operating rules and
they are then simulated and compared.

2 Methods of inferring operating rules

Let us assume that Dynamic Programming (DP) is used to derive optimal releases for
a sequence of inflows, as here. Once the optimal releases are available, the problem is to
derive an operating policy for any feasible storage and inflow from these releases.
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Given the various inflow scenarios and the corresponding optimal releases and storage
volumes, a multiple regression analysis can be used in the following manner.
r ,  =  a i ,  +  hs ,  +  c i r2  +  ds  12  ( l )

where r, is the release and r, is the inflow during period / and s, is the beginning
storage volume.

2.1 Fuzry Regression (FR)

Fuzzy regression (FR) wÉrs proposed to deal with fuzzy data and we will describe this
method first with a tutorial example. In FR, the estimation enors can be viewed as the
fuzziness of the model structure. Suppose a simple linear relation as:

! = a o + a t x  ( 2 )

where y is the model predicted value and x is a crisp observed value. The FR problem is
to find fuzzy coefficients ao[c(ao),w(ao)] and q[c(a,),w(d,)] so that the widths of the

observed fuzzy values y(s) is within the widths of the predicted fuzzy values i1r; *t u
confidence level h e[0,1] (see Figure 1). This implies that the interval DE in Figwe I
has to be within the interval BC. Note that c(a, ) and w(a, ) are the center point and half
width of fu24 number a, for a triangular syrnmetrical fuzzy number.

m(v)

Figure l: Interpretation of fuzzy regression

2.1.1 Minimum-fi.rzziness-based FRModels

Therefore, the total fuzziness of FR model relates to the width of frzy coefficients
used in the model as they are multiplied by the observed values. Hence, the problem of
finding the parameters of Equation (2) leads to the solution of an LP with an objective
function minimizing the total fuzziness of the model. This LP model is as follows:
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where I is the number of independent variables and n is the number of data pairs and
ft is called the credibility level. ln the constraints of the above Lp model, c,(a,).x, is
the center point of the predicted values (point A in Figure l), a prediction which would
be reached to if a non-fuzza regression equation was used. The second term

t '
x(l- h).1w,(a,).1xi I represents the fuzziness of the predicted values shown by points

C and B in Figure 1o when they are added to the center point A. The right hand sides of
the constraints are the maximum and minimum values of afuzzy observed y, (points E
and D in Figure 1), respectively. Bardossy et al. [1995] used another formulation. They
considered more general nonlinear, nonsymmetrical LR type fizzy coefficients (Figure
2) as follows:

(3)

L ( x ) =  R ( x ) = 7 1  -  x P  )

m".(x1= r l ( " (o ' ) -  * ) )
- . - a , r - r - " 1  

, , ( a )  |

m, (x)= * l (*  
-  

" (o '  Dl- - a i r ' - '  ^ l  
n , 1 o , 1  |

f o r  x 2 w , ( a , )  ( 4 )

f o r  x  3 w , ( a ,  )

whereptakes integer values and m(a,(x)) is the membership degree of a,. Also
w,(a,)and w,(a,) are the left and right widths of afrvzy number with center of c(a,).

Figure 2: An LR fuzzy number

w  t ( a , ) c ( a , ' ) w  , ( a , )

2 1 7



2.2 Fazzy inference system (FIS)

Operating rules can be represented by fvzzy *IF-THEN" rules in a Takagi-Sugeno
FIS as follows:

If s, is v,, and i, is v, then 4 = br.i, 1br.s, + b,

where, vo, is the value of the fr'â explanatory variable and 4 are the parameters of the

consequence part of rule "i".Each value of an explanatory variable is represented by a
fu2ry set. Therefore, ao, is a ftu4 set. The parameters ô, are estimated using available

data or operator experience. There is no systematic way to know what type of
membership functions of premise variables is the best in a defined FIS. An effrcient way
for doing this is using artificial neural nets trained by input-output data like ANFIS

[Jang, 1993]. ANFIS us€s an initial PIS and tunes it with aback-propagation algorithm.

3 Implementations

ln this study, Dez reservoir located in Iran has been selected to which the methods
are applied. For the implicit stochastic model used in this study, a time series model was
fitted to the historical inflows. Then it was used to generate a large number (1000) of
scenarios of monthly inflows. Using either the historical or the generated inflows in DP,
the optimal sets of reservoir storage and release volumes are obtained corresponding to
the long-term deterministic model in the first case and the medium term implicit
stochastic model. These optimal sets are then used in infening operating rules using
OLSR" FR, and ANFIS. The inferred operating rules are then simulated to see how they
perform.

3.1 Long-term planningoptimization

3.1.1 Implementation of the FR model

The optimal storages and releases along with historical inflows were used in the FR
model to infer the general operating rules. For each month an FR model was built
separately. The regression equation used is as follows:
t , = Q o + A J t + A 2 S l (s)
Taking forty years of optimal storage and release sets obtained by DP along with the
historical inflows, the FR was applied to the problem.

3.1.2 Implementation of ANFIS

ANFIS is used to extract the relation of storage, inflow, and release variables from
the data pairs obtained by DP and represent them as fiu.zy if-then rules. The premise
part of fivq if-then rules is reservoir inflow and storage volumes. The consequent part
is the release volume. For each month, an ANFIS model was developed separately.
To make simulation results independent of initial storage volume, reservoir operation
was first simulated by OLSR with different initial reservoir storages. These simulated
paths and the original DP optimal path were used for training ANFIS. Thus, when
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comparing different methods, ANFIS results are the results of this retrained ANFIS.
Figure 3 shows the mean square enor (MSE) of predicted values by the preliminary
FIS, ANFIS, OLSR, and FR for different months. In terms of fitness capability, ANFIS
is performed superior to other methods. However, the important thing is to anâlyse their
performance in simulation.

o

o

E

E

4 6 8 1 0 1 2
month

Figure 3: Comparison of mean square enor of different models to fit optimal data
(long term problem)

3.2 Medium-term implicit stochastic model

In the second problem, we derive operating rules from input-output data obtained
from a Monte-Carlo DP model. DP model was solved for 300 synthetic scenarios. Each
scenario has one year of horizon with 12 monthly time steps. The final storage at the
end of each year was forced to be more than half of the reservoir capacity.

3.2.1 Infening operating rules

As was done in the long term planning model, ols& FR, and ANFIS parameters are
determined based on the input-output pairs obtained by Monte-Carlo DP. DifTerent
optimal paths of DP, for different initial storage were used in ANFIS training; this is to
overcome the diffrculty of storage falling out of the training ranges in simulation. Table
I presents the results for comparing the overall performance of OLSR, FR, FIS, and
ANFIS rules in terms of their fitting capability. Also the monthly distribution of MSE of
predicted values is illusfated in Figure 4. These results imply that ANFIS performs
quite superior to other methods in terms of fitting. However, the simulation will show
the real success of the methods.

able l: Comparison of inferre< rules in terms of fitted data
Method OLSR FR FIS ANFIS

MSE t0142 13081 3781 t703

Tr

.^ x 1Oo Comparism of MSE of FR. OLSR, FtS, and ANFTS
| z _

F-Fi--_llI  I  +  O L S R  l i
1 o l  l .  F ! s _ . ^ i i

' L-9- o^t't l''"----7 |
/ 1
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Figure 4: Monthly distribution of MSE of predicted values by different methods
(medium term problem)

4 Results ând comparisons

The OLSR, FR, and ANFIS are compared based on simulating the reservoir
operations using corresponding policies. The simulation performance indices are
computed The indices selected are: mean value of the simulated objective function
(LOSS), coef{icient of variation of LOSS (CV), and the percentage of the time in which
the release is greater than 0.9 of demand (REL).

4.1 Long term operations

For comparison pulposes, the results of the so-called SOP policy that simply sets
release volume equal to demand if possible and the original DP releases (for long term
planning only) are included. Table 2 presents the results. As is clear in Table 2, mean
values of the simulated objective function of the OLSR, FR, and ANFIS methods are
more or less close while FR has the smallest (best) LOSS value. In terms of reliability
of meeting the water demand, the SOP policy is the best. SOP produces severe
shortages or spills over the simulated horizon and hence the larger LOSS value. FR has
the smallest coeffrcient of variation (CV) of the objective function. Overall, the FR is
the best and its results are the closest to the DP results, although it is the worst in terms
of the MSE. Several cases are found when, for example, just 20 years of streamflow
record is available and it is hard or inaccurate to extend the record using hydrological
methods. On the other hand, planning and design of the projects need to be done for 40
or 50 years of their projected life. To examine whether FR is useful in such a situation,
the results were repeated with either half or one-third of the streamflow record for
estimating parameters, but carrying out the simulation for the whole forty years. ANFIS
was not able to tackle this case because of the lack of data for training. Therefore, only
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OLSR and FR are compared in this case. The results are in Table 3. Again, the FR
performs quite well especially in terms of the value of simulated objective function.

Table 2: comparison of simulation performance of OLSR, FR and ANFIS, long term
model

Method
Simulated objective function

MSE RELLOSS CV

OLSR 2.0908e5 3.91 2.7547e5 88.6
FR 1.9821e5 J . J J 3.8433e5 84.6

ANFIS 2.0121e5 3.80 8.5320e4 90.6
SOP 3.4946e5 3.52 98.1
DP 1.4393e5 2.42 0.0 94.8

Table 3: comparison of OLSR and FR where partial data areused, long term planning
model

Method Scenario with half parts of data Scenario with one-third parts
of data

LOSS CV REL LOSS CV REL
OLSR 2.6079e5 4.r2 90.8 2.8945 3.86 90.8

FR 2.1398e5 4.06 85.8 2.0543e5 3.53 83.8
SOP 3.4946e5 3.52 98.1 3.4946e5 3.52 98. I
DP 1.4393e5 2.42 94.8 1.4393e5 2.42 94.8

42 Medium term operations

For this problem, simulation was carried out using 300 synthetically generated
scenarios not used in training stage. The results are presented in Table +. Âcàrding to
Tab_19  ' unlike the planning model, ANFIS is superiôr to other methods and it perfoirns
well both in fitting and simulation modes. It is obvious that SOp is the best in terms of
the reliability, but its simulated loss as the most important index is much higher than
other policies. The results of the implicit stochastic model show that the perfoàance of
the FR is better than OLSR model but not as good as ANFIS. As in long-1srm planning,
we are interested to the effect of a reduced number of the scenarios used in thl
optimization model and the parameter estimation of the infening methods. The results
are in Table 5 for 50 and 30 scenarios, respectively. As we ."", tÀer" is not a significant
difference between the cases with 300 and 50 or even 30 scenarios.
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Table 4: Comparison of simulation performance of OLSR" FR and ANFIS, implicit
stochastic model

Method
Simulated objective function

REL
LOSS CV

OLSR 59152 3.24 84.4
FR 52704 3.55 82.4

ANFIS 47136 2.45 84.8
SOP 103280 2.89 93.6

Table 5: Comparison of OLSR and FR where partial data are used in parameter
estimation stochastic model

Method With 50 senerated scenarios With 30 senerated scenanos
Loss CV REL Loss CV REL

OLSR 57024 3.53 85.7 59650 3.54 85.9
FR 53446 3.48 87.2 s3660 3.47 87.8

ANFIS 47783 3.38 83.5 47252 3.42 84.5
SOP r03280 2.89 93.6 103280 2.89 93.6

4.3 SensitivityAnalysis

The most important factor in an FR is the degree of fuzziness considered for
observed values of dependent variable. Take the FR defined in Equation (3); if we
simply æt h=0 , the fuzziness of y, will be defined by Ly,*y =w,(y,). The

variation of simulated objective function (LOSS), with the variation of Ly showed that
for Ly =10%o, the LOSS is the lowest but the other LOSS values arc not too far off. As
the degree of fuzziness increases, the degree of fuzziness of the dependent variable y
considered in the FR model should be increased too. Earlier we considered the case in
which the uncertainty of the model is increased due to lack of data. tn this case, the
combined effect of randornness of inflows and imprecision of discretization and initial
storage effect will provides the possibility for simulated releases being far from the
releases to be suggested by regression models. Therefore, it is rational to use an FR
model assuming a higher degree of fuzziness of dependent variable y reflected in Ây.
Examinations showed that where half parts of data are used in the parameter estimation
mode, the best degree of fuzziness for y is around 40 percent and where only one third
of data is used; it is around 70 percent using LOSS as the criterion.

We close this section by raising this question: when can a complicated method like
ANFIS be useful? We realized that the capability of ANFIS in terms of fitness to data is
much better than OLSR and FR. However, ANFIS did not perform well in the long-
term planning problem while it performed quite well in the implicit stochastic problem.
ANFIS is powerful in terms of fitting and extracting nonlinear and ill-defined relations
that may exist in the data. Therefore, if the knowledge and information required are
reflected in the input-output data, ANFIS will be able to extract and convert them to its
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knowledge-based core-fuzzy rule base. Thus, if the input-output data include the
information on uncertainfy and imprecision of the real *orid ryrtà to be controlled by
ANFIS' ANFIS is expected to be successful. However, if those aspects of the systeÂ
behaviour did not exist in the input-output data or even they existed ùut are puretyïrrite
noise, then linear des are enough to represent them.

5 Conclusion

The problem of inferring op€rating rules using an ordinary regression, a fiizzy
regression, and an adaptive neuro'fuzzy model explored. These methods tested in two
types of models, a long-term planning and a medium-term implicit stochastic
optimization. For the long-term planning model, tbe fuzzy regression showed promising
results, especially in the situations where the length of stream-=flow record is limited. Foi
the implicit stochastic optimization model sinci rhe main information by which the
reservoir should be operated is within the data set, ANFIS performed ,upào, to other
methods. Results indicate that the fitness error of the models used in deriving operating
rules does not necessarily show how well they will perform while simulating tt eilpolicies.
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