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Abstract
Gôdel's theorems have been used for various ends since their establishment in 1931.
One of those ends is that of Robert Rosen in his defence of a new paradigm for biology,
assimilating closed causal loops as among others a way to understand anticipatory
systems. We will argue how this use of Gôdel's theorems arise from Gôdel's own
Platonist interpretation of the theorems. Next, we will argue against that interpretation
from the perspective of dialetheism, which is the statement that contradictions can
simply be true. In order to do so, we will emphasize the analogy between the G-
sentence in the Gôdel theorems and the famous liar-paradox. Finally, we will outline the
consequences of this reinterpretation for the argument of Rosen.
Keywords: Platonism, paraconsistency, mechanism, Gôdel, biology

l.Introduction: From Cantorrs to Hilbert's paradise

It is famous that David Hilbert, the leading frgure of formalism, has named Cantor's
theory of transfinite sets "Cantor's Paradise". Ironically enough, the ordinal aspect of
this theory already contained the global desfruction in 1931 of Hilbert's own paradise,
called "Gôdel's theorems".
Those theorems have in their turn been at the root of a very broad literature, a
remarkable part of which deals with the human mind. Thirty years later namely, in
1961, John R. Lucas has used the theorems to argue that the mind can't be simulated
entirely by a computer (or a (Turing-)machine). In 1984, Robert Rosen has mentioned,
again, the Gôdel theorems in his famous book 'Anticipatory Systems' to defend the
insufficiency of physicalist approaches to life in biology (Rosen, 1985: 57)r. Recently,
Oxford professor of Mathematics of mathematics Roger Penrose has declared himself a
follower of Lucas, in his use of the theorems to make a case against the defenders of
hard artificial intelligence. Again it is argued that the human mind can't be represented
algorithmically' (Penrose, I 990)
Globally, in Hilbert's imagery, one can speak of the Gôdel theorems as cracks in the
hedge around Hilbert's own paradise. Lucas, Rosen and Penrose have used these cracks
to show something beyond them. There is something that escapes Hilbert's computable
paradise according to these three authors, and that thing is related broadly to life
(Rosen).

1 His use of the theorems was only very limited at that time, and has clearly grown in later publications,
especially (Rosen, 1999). See turther.

2 Synonyms are: mçchanically, recursively, computably or effectively.
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Because of the limited scope of this paper, we will only treat Rosen's use of the Gôdel
theorems and argue how this use arises from Gôdel's own Platonist interpretation of the
theorems. Next, we will argue against that interpretation from the perspective of
dialetheism, which is the statement that contradictions can simply be true. In order to do
so, we will emphasize the analogy between the G-sentence in the Gôdel theorems and
the famous liar-paradox. Finally, we will outline the consequences of this
reinterpretation for Rosen's argument.

2. Gôdel: the Impossibility of Hilbert's Paradise.

2.1. Gôdel's Construction Coding Formal Signs in Numbers.

Gôdel found the crack in the formalist edifice after following Hilbert's mission. This
mission was to find an absolute proof3 for the consistency of arithmetic (Van
Heijenoort, 1973: 349). This would finally allow to realize Hilbert's paradise: to reduce
mathematics to syrtax, which is the manipulation of signs, following completely
deterministic rules. There should be no semantics involved in the sense that the
meanings of the signs are not considered.
The prince of logic had to accomplish this mission within Hilbert's formalist frame of
reference: the number-theoretical axiomsa are contained in the formal system, and
enriched by some rules of inference. So, for example, if we have trvo individuals
(constants or variables) A and B and we have the rule "if we have two individuals, then
we have their conjunction too", then we can infer from this premise and this rule of
inference that we have the conjunction of A and B. There are no considerations about
the meaning of these two entities involved here (we don't have to know what kind of
individuals are involved to infer the conclusion). According to Hilbert, and this was his
metaphorical paradise we mentioned above, the whole of mathematics could be reduced
to proofs built by means of suchlike inferences. Every mathematical statement would be
provable in it, or otherwise its negation would be'. Nothing would be left undetermined,
which also implies a complete correspondence to truth, as we will see later fi.rther on
(sections 2.e3.). In other words the set of statements, well formed according to
mathematical standards, would be complete. A crucial element in this ideal set of proofs
was the one establishing the consistency of the system. The reasons for the latter were
the paradoxes that had appeared in mathematics at the turn of the century. The most
famous one is the Russell paradox that appeared in the set theory of the father of

This is to be distinguished from a relative consistency proof that had already been given before
Gôdel's theorems. A relative consistency proofis a proof that relies on the supposed consistency of
another system, obviously leading to a regressus ad infinitum of proofs. The only way to stop this
regressus is to find an absolute inconsistency proo{, that is one that does not result from the translation
into another system. We will see how part of the genius of Gôdel's proof lies in a way of expressing a
proof about arithmetic in the language of arithmetic itself, establishing in this lvay an absolute proof
(Van Heijenoort, 197 3t 3 49).
Those are the Peano-axioms (see: Van Heijenoort, 1973: 350).
This is basically what the law of excluded middle states. Formally, this is stated as A v -A.
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formalism, Gottlob Frege. Another one, and this is the one that showed Russell the way
to his paradox, is the one Cantor himself found in his own set theory. An absolute
consistency proof was to be found in arithmetic because the consistency of other parts
of mathematics had already been established relative to that of arithmetic. So we could
speak about Hilberts paradise as the sum of complete formalisability and consistency.
A whole survey of Gôdel's proofs would take us too far from our present pu{poses, so
we will focus only on two important characteristics of the proofs: the arithmetic coding
of formal proofs and the self-referential structure of the G-sentence.
One brilliint strategy of Gôdel is the coding of formal signs6, and the relations that hold
between them, in numbers'. Important for our fuither discussion, is that there is a
continuity between the axioms of arithmetic and the formal rules of inference. They
both have the crucial characteristic of being algorithmic. This means that their
application, with a suffrcient input, always deliver a sound result in a finite number of
stepsÙ. All the signs used in the formulas representing those rules can also be coded into
numbers. A whole formal system that allows to do inferences from the axioms of
arithmetic can be represented exclusively by numbers and relations between them in
that way. A proof is just a sequence of formulas that can be coded into numbers, so it
can in its turn be coded into a number, using the numbers of the formulas constituting it.
The coding is systematic and can be done in two directions: from the formulas to the
numbers, and the other way around. So if we have a number, we can determine from
which formula and/or proof it is the code. Let us name this coded formal system'S'.
With all of these elements, there is an algorithmic way of deciding if, given the Gôdel
number of a proof and the Gôdel number of a formula, the concerned formula follows
from the proof. V/e just have to code back the Gôdel number of the proof into the proof
itself, and do the same with the formula. If the last formula of the decoded proof is the
same as the decoded formula, then this formula clearly follows from the proof. So we
have an effectively decidablelO function P that, for every two numbers a and b, we can
determine if the relation of 'being a proof of holds befween them. If this is the case, the
formula a:P(b) holds, which means 'a is a proof of b'. Now, and this is a crucial point of
Gôdel's proof, this firnction P can be translated into Gôdel's coded system. There is, in
other words, a formula Q(0{'),go); in the system such that it is provable if a=P(b) and its
negation, -Q(0(4,0o)), is provable if alP(b). If we take 0(") as representing the Gôdel
number of (Vx)-Q(x,y), then we. can construct the following (numeralwisable
representable) sentence ( Vx )-Q(x,0G). This sentence is the G(ôdel)-sentence.
After this more technical part, we are going to step back and look at the construction
from the perspective of its result. First of all it must be stressed, as Gôdel himself

6 Formals sigrrs, such as the individuals we saw above.
7 In arithmetic, the only inviduals are natural numbers. They can all be represented by the use of one

constant, 0, and the successor function, ' (intuitively meaning,'the successor of or'plus 1'). So, for
example three, can be represented as 0"'.

8 An example of this is the conjunction mentioned above: any two individuals will certainly deliver
their conjunction.

9 The proof is, as we emphasised before, algorithmically constructed.
l0 Which is the same as'algorithmic'; see footnote 3.
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already indicated in the introduction to his proof, that the G-sentence has a selÊ
referential strucfure similar to the Liar-paradox: just like the liar-sentence states of itself
that it is false, the G-sentence states of itself that it is not provable. More specifically, it
states that there is no proof of the fact that there is a proof of the sentence. The proof
function Q is applied here to a pair of which one element refers to itself This is the selÊ
referentiality of the G-sentence. And this paradoxical structure leads to the contradiction
that follows from the sentence.
If we assume that G is provable, this means that there is.a proof of the fact that there is
no proof of the formula coded as gtct ((Vx)-Q(*,0rc)). Noq with the Gôdelian
construction, we car code this last sentence as 0("r (Van Heijenoort, 7973: 352) so we
can conclude that there is a proof of the formula with code 0("): (13x)q1x,0(");; or,
which is equivalent, ((-Vx)-Q(x,y)). This last sentence is precisely -G From this we
can conclude that ifG is provable, then S is inconsistent. From this, it can be deduced
that G is not provablerr. But then, if we assume that G is not provable, and code G into
0(") like we did in the first part of the proof then we obtain the unprovability ol gt")
((Vx)-Q(x,0r");;12. The last sentence is indeed G.
We will now show the analogy with the liar paradox.

2.2. Gôdel's Paradox.

'We 
start from Graham Priest's13 illuminating description:

'The paradox phenomenon starts with a set of bonafide,lsic) truths which are assertible.
[...] Those that are left over we will call "the Rest'. The essence of the liar paradox is a
particular twisted construction which forces a sentence, if it is in the bona fide truths, to
be in the Rest (too); conversely, if it is in the Rest, it is in the bona fide truths. The
pristine liar 'this sentence is false' is only a manifestation of this problem arrived at by
taking the Rest to be the false.'(Priest,2006:23)
So in Priest's terms all provable truths are bona fide truths. Then we define an object in
the extension ofthis property or this set (ofbona fide truths), that is defined as an object
in the rest or which does not satisfu this properfy. So this object is, when it is bona frde
(in Priest's terms) or provable (in Gtidel's terms), also an element of "the Rest" or
unprovable.
If we look at it in formal logical terms \ile see that the liar paradox, a typical paradox
departs from a defrnition. A sentence a is defined as its own untruth:
-T('a') a
This together with the T-scheme, which states that a sentence (a) is equivalent to its own
truth (T('a')) delivers the paradox in an analogous way as in Gôdel's argument. The
clarifuing value of this example is that it highlights a crucial step in the construction. In

11 This is the deductive rule 'reductio ad absurdum'that states: if you can deduce from a premisse its
negation, then you have proven the negation ofthis premisse.

12 Technically, this involves o-consistency because in establishing the inconsistency there is a number
indicating a particular proof (0\"' in Van Heijenoort, 1973:351) but not any proof (x). We have
refrained from this distinction for reasons ofcleamess.

I 3 He is one of the fathers of dialetheism.
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the formal translation of the liar-paradox, it is immediately clear how a sentence is
defined as the non-truth of its name. In the Gôdel-argument, this relation of naming
between a and 'a' is replaced by the relation of numerical coding of Vx-Q(x.y) and 0(").
So, analogous to the liar-paradox, we could rewrite Gôdel's paradox as'*:
Vx_e(x,0("))
or, which is the same:
Vx_e(x,O("))

g(c)

Vx-Q(x,y)
So a formula is being defined as its own unprovability, similar to the liar paradox. The
merit of Gôdel's proof has of course been to construct the sentence largely by
arithmetical means, so in a way independently of semantics, unlike the liar paradox.
This independency lies precisely in the fact that a predicate (being provable) that
corresponds completely to a semantical one (being true)" is being translated into a
(syntactical) function.
Any person familiar with Gôdel's theorems will have remarked by now that we have
brought the argument in a diferent form from the original one. We have done this,
partly for reasons of clearness, partly for the sake of our argument. The original proof
namely turns the conclusions of the two last paragraphs around'o: if S is consistent, then
G is not provable in S, and if S is consistent, then -G is not provable in S. Those two
sentences are equivalent to the ones we have derived. And they had the advantage of
already preparing Gôdel's conclusions and those of most of the logical community, that
neither G nor -G are provable in S, because the premise that S is consistent can't off
course be dropped. Instead of S being inconsistent, G is undecidable or, which is
equivalent, S is incomplete. So Hilbert's paradise seems irrevocably cracked. It is not
possible to completely formalise the truths that follow from a system.
It doesn't stop here. Let us look at Gôdel's conclusion of the first part of his reasoning,
that G is not provable if S is consistent. We can perfectly represent this in the language
of S: C17-- (Vx )-Q(x,0(");. This is easy to see, as G expresses its own uprovability. So
it is a consequence of S that if C is provable then G is also. We remind the reader that if
G is provable, then S is inconsistent. From the last two sentences we can deduce that if
S is consistent, then its consistency is not provable in it. The importance of this second
theorem, is that G gets explicitly connected to the non-provability of a central
supposition (consistency) of arithmetic within arithmetic. With the second theorem,
another blow has struck Hilbert's paradise: not only is every system necessarily
incomplete. It also cannot prove its own consistency, and we remind the reader that this
was Hilbert's other main concem.

14 Priest has already rewritten Gôdel's proof in a similar way, but in non-predicate logic (Priest, 2006:
239).

15 As we have remarked before, this is an implication of completeness (cf. supra). As we will see further,
Platonism will deny this correspondence (see section 3.).

l6 This done by the rule contraposition that states that if A+B then -B+-A.

17 According to Van Heijenoort, C could be expressed in a variety of ways such as "there is no well-
formed formula A such that both A and -A are provable; or "there is at least one well-formed formula
A that is not provable". We will show that the latter is not a proper expression of consistency. (Van
Heijenoort, | 97 3 : 3 52.)
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3. Trading-off (in)consistency and (in)completeness

The move of changing an inconsistency into an undecidability, as we showed at the end
of the previous section, is a particular case of a more general sfrategy that has been
discerned by Priest'o. In his global defence of paraconsistency'In Contradiction'he
identifies some crucial elements in Gôdel's argument and connects them in a clarifying
way-
'(...) as the theory can prove its own soundness, it must be capable of giving its own
semantics. In particular the T-scheme for the language of the theory is provable in the
theory. Hence (...) the semantic paradoxes will all be provable in the theory. Gôdel's
"paradox" is just a special case of this.' (Priest, 2006:- 47). ,^
In Gôdel's case, the semantics is the provability predicate". This allows us to construct
a selÊreferential sentence which is as such analogous to the paradoxes, as we have seen.
As we have also seen, Gôdel has tumed the conclusion around into an equivalent
sentence. This is a general strategy that one can apply to logical paradoxes. Ifone can
deduce a logical paradox, then one can assume the truth of consistency, which is a
premise of every (classical) reasoning, and deduce the undecidability of both conjuncts
of a contradiction on the basis of consistency. Every contradiction deduced from a
semantic paradox can be turned into an undecidability in that way. In syntactical terms
this comes down to the exchangeability of the law of excluded middle (see note 6) and
the law of non-contradiction'".

4. Robert Rosen: The Two Options

Rosen departs from the observation that physicalist biology hasn't been able to account
for some deadlocks in its theories. One of these deadlocks is the incapacity to
reconstruct living systems on the basis of our scientific models of them (Rosen, 1999:
125). He sees as a reason for this the insuffrciency of our mechanical models to describe
living organisms @osen, 1999: 268). Globally, Rosen observes two options for
mechanist science, when confronted with anomalies in theories, a conceptual and a
technical one (Rosen, 1999:74,83) .
Either the global suppositions that lie behind physicalist biology such as algorithmicity
have to be dropped and replaced by concepts that extend beyond them. Or the technical
option, maintaining that the suppositions are sound, they have to be applied more

18 As we can read in Mortensen (1995: ll) and in aocordance with this, it has been the aim of
paraconsistent logicians in Brazil (a.o. the pioneer of paraconsistent logic, Newton Da Costa) of
dualising intuitionism, that assumes incompleteness in logic. There is also an analogy with topological
duality between open and closed sets (Mortensen, I 995: I 0).

19 As we have already emphasisedo and this is a crucial characteristic of Gôdel's argument, the
provability predicate that corresponds completely to the semantical truth predicate is translated into a
sy'ntactical function, a characteristic function more precisely an4 in this way, coded into a Gôdel
number. (Van Heijenoort,7973:351) Priest goes as far as stating that the predicate in Gôdel's proof rs

a truth predicate, since fx Q$; y)= y (Priest, 2t06:237).

20 This law states that a statement and its negation can't be jointly provable (- (A & - A).
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thoroughly. More variables have to be supplied to the scientific theory so that it can
resolve the anomalies.
Rosen defends the first option in biology, and his books contain extensive arguments
against the second one, that is actually being applied in scientific practice. He also
defends the first option in mathematics, though in a very specific way. The paradoxes
axe seen as such anomalies, and Rosen suggests that they show that global
formalisation, of which completeness is an aspect, has to be abandoned (Rosen, 1999:
e3-e4).
First, let us argue against the first option in mathematics: there are no indications that
the paradoxes are to be resolved by more refinement. This is clear in the globally
accepted formal set theoretic system Zermelo-Fraenkel. The Gôdel-sentence is
undecidable in any model of ZF too (Penrose, 1994: 106). So Zermelo Fraenkel can
indeed be seen as a 'refinement' in Penrose's and Rosen's sense, but as Penrose argues
(Penrose, 1994, 106), an insufficient one. The problem of truth remains: a formalism
that can't accotrnt for its own Gôdel-sentence can't assure that it is sound (because it has
to rely on external means for deciding the truth of the Gôdel-sentence that follows from
a central assumption, i.e. consistency, of the system).
Several logicians have tried to prove the consistency of arithmetic in several ways after
Gôdel, trying to get around Gôdel's restrictions (Van Heijenoort, 354, 355). One way of
doing this, has been by making use of informal arguments (Van Heijenoort, 1973:
354)21. Rosen knows about this option too, and uses it in his argument against
reductionism in biologyz2. In his terms, formalists try to replace impredicatives by
predicatives, but the result gets very poor in entailment. Rosen sees causality and
inference as two modes of entailment and as such as analogous (Rosen, 1999: 88).
According to him, life is characterised by closed causal loops that represent final causes.
Likewise, formally, the G-sentence involves a self-referential construction. The attempt
to deal with them in the constructive hierarchy can't succeed because self-referentiality
isn't allowed.
As Rosen notes, the issue concerning paradoxes in set theory is still wide open (Rosen,
1999: 305). More specifically the paradoxes that are banished from the constructive

21 A specific form of 'being informal' is being non-constructible'. This refers to the constructive
hierarchy that was also established by Gôdel, The constructive hierarchy is a set-theoretic construction
that is in a sense quite analogous to a metalinguistic theory in semantics: it is built up in levels,
indicated by an ordinal number. As such, it does not allow self-referential constructions, called
'impredicatives'by Rosen, following Russell (Rosen, 1999, 90). It has been proposed by Gôdel as a
model for set theory (Rosen, 1999: 91), and has been successful as such: the constructive hierarchy is
the standard interpretation of ZF (Priest, 1995:. 17 4). It is constructed not to allow selfreferentiality.
This is done by the notion of constructibilify, which states that every entity at a constructible level is
contructed by applying one ofthe rules established at a previous level of the hierarchy. (Rosen, I 999:
9l) This prevents the construction of the G-sentence. The solution is to add an informal, non-
constructible theory to the constructive hierarchy (Van Heijenoort, 154-155).

22 Another metaphor that Rosen uses, is one of size (see for example Rosen, 1999: 79, 123). This
metaphor is largely due to Abraham Fraenkel (Hallett, 1984: xii). According to Hallett (idem: xiii),
there is no intrinsic connection between size and the paradoxes. There could be a connection though
with inaccessible cardinals (see Tiles, 1989: 180- 18l and Drake, 1974: 67 -68). To work this out would
deviate us too much from our present purpose.
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hierarchy can be represented in paraconsistent models of naive Cantorian set theory (for
example the one presented in Priest, 2006: 256-257). Rosen doesn't take this into
account. He makes the usually made (Priest, 2006: 33) mistake of confusing set theory
with Zermelo Fraenkel, and leaving Cantorian set theory out of scope. We will come
back to this later on.
The connection between Rosen's argument for non-reductionist biology on the basis of
Gôdel and Gôdel's own interpretation of his theorem is the following: Rosen follows
Gôdel's turning around of the paradoxical conclusion: the G-sentence is unprovable, but
he deduces an unbridgeable gap between formalisation and number theory from it
(Rosen, 1999: 92)- The reason therefore, as we saw before, is taken to be the
impossibilify of self-reference. So Rosen doesn't follow Gôdel in his postulating
transcendent truth beyond the formal system. Instead, he does the same with self-
reference.
The problem with this, is that formalisability is used as equivalent to constructability.
But this leaves the sense of formal system as used by Gôdel in his argument out of
scope. As we have mentioned in our outline of the argument, Gôdel has shown that it is
possible to put a formal system on a par with number theory through their shared
algorithmicity. The formal system and number theory aren't simply separable as such.
Everything that follows from both of them is simply algorithmic and everything that is
algorithmic is formalisable. Non-formal statements of number theory are out of the
question from this perspective (Rosen, 1999:92)-

5. Another Option: Paraconsistency and Self-reference

As we have already announced above, there is an alternative to Gôdel's own
interpretation of the theorems. In accordance with our exposition of the argument, it can
be interpreted as a paradoxical reasoning, leading to a contradiction. In this
interpretation, the G-sentence simply is provable and non-provable.
What is the problem with this conclusion? It is here that we encounter a dogma not only
of formalism, but also of almost all of western scientific theories: ECQ or, in full, ex
contradictione quodlibet which means a contradiction implies everything or
contradictoriness implies triviality23. It is the merit of (Hilbert's) formalism to make this
a central matter of its theory. As we have hinted at above, not only (total) formalisation
was the central aim of formalism but also consistencyza. Syntactically, the step from
contradiction to triviality is made, among others, by the use of the rule disjunctive
syllogism. If we have A, we can add any B to it as a disjunct (by the logical rule
'addition'). This gives A v B. B could be anything. Now if we also have -A, then we can
drop A, and conclude (any) B. Because B can be anything, anything can be deduced in
this way.

23 Triviality is often replaced by unsoundness in the litterature. An argument is sound if a correct
conclusion follows from it. This implies true premisses and valid rules of inference. Triviality implies
unsoundness.

24 ln fact, a general difference between fregean-russellian logicism en hilbertian formalism, is that in the
latteq consistency is identi{ied with existence.
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What is left out of consideration because of the dogma of ECQ, are the formal systems
to which this dogma doesn't apply.^So they are systems in which inconsistency doesn't
imply triviality nor unsoundnêssts. There are several ones of them26. The most
apprôpriate onè in this context is a many-valued paraconsistent logic, such as LP27. This
because semantics is extended here with a third value, next to'true'(or {1}) and'false'
(or {0}) , which is'true and false' (or {1,0}). The G-sentence, in such a system, simply
gets assigned the value 'true and false'. In this way, a paraconsistent approach to
arithmetic can overcome the incompleteness Gôdel deduced from his argument. The G-
sentence is indeed decidable: it is true and false. Accordingly, this logic can serve to
model naive, Cantorian set theory and which allows, as we have mentioned before, self-
referential paradoxes (Priest, 2006: 256-257).
\Me do agree with Rosen's first option in mathematics, the paradoxes show that a
supposition of mathematics has to be dropped, but it is not the global edifice of
formalisation, it is only the supposition of non-contradicticity that has to be dropped.
Before looking at the consequences Rosen of this new premise, it is important to remark
that this new option of paraconsistent logic has clarified the hidden dilemma in Hilbert's
project, which is in the end one between (complete) formalisability and consistency. If
one çhooses the first, one has to drop the second and inversely. Robert Meyer, who uses
another paraconsistent logic than the one described above, relevant logic, has used this
to call for a revived Hilbert program based on paraconsistent logic (see: Mortensen,
1995: l9). The question is, offcourse, to which degree one can still speak of Hilbert's
program when consistency is dropped.

6. Lessons: Back to Hilbert's (Cracked) Paradise.

After showing the other interpretation of Gôdel's theorems, \rye can tum back to Rosen.
The first one of his two options, the global change of suppositions, is shown to be
divided in two possible choices in its tum. These are the same as the two possibilities of
the dilemma in Hilbert's project. There is the one that Rosen defends, of leaving global
formalisation and there is the one of leaving global consistency. This has been shown.
We don't want to argue for that extensively but Rosen's own design for biology pleads
for leaving global consistency. After all, he has pleaded on several places for an
objective approach to complexify. Complexity, that is according to Rosen, "systems
which can accommodate impredicatives, or closed loops of entailment" (Rosen, 1999:
94). Paraconsistent systems could allow to model closed causal loops and to accept the
contradictions that follow from their impredicative structure, without being unsound or
trivial. So this could be another possible piste for researchers that want to put Rosen's
intuitions into practice. For dialetheism itself, life could be another argument for
dialetheism in relation to the external world28. In this way, the paraconsistent systems

25 That is why Van Heijenoort's equating of consistency with untriviality (see note 18) is wrong.
26 For a short and clear overvieq see: Priest,2004.
27 ln fuLl, this is 'logic of paradox'. This system was first proposed by the Argentinian logician F. G

Asenjo in 1966 and later popularized by Priest and others. (see for example Priest,2006 221-228).
28 As such, it could be added to the three areas that are discussed by Priest (2006:159-244): change,

motion and lesal context.
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allowing complete formalisation can be an enrichment of the tools to describe the
external world. This, contrary to the blame of Rosen on contradiction that formalism is
an attempt to reduce the external world to the formal system (Rosen, 1999:78).
Connected to this is Rosen's rejection of the incorporation of semantics into slmtax,
which we have described as central to Gôdel's argument (Rosen, 1999: 268). It is
necessary to stress a remarkable fact about the meaning ascribed to semantics in the
treated literature. This is solely considered as referential. Rosen subscribes such a
concept of semantics. He supposes that the paradoxes arise from an incapacity to fully
express semantics into syntactical symbols. In other words, semantics is too rich to be
incorporated into syntax (similar to the richness of living organism for reductionist
approaches). The logical paradoxes show a different picture though. The liar paradox
doesn't involve the translation of semantics into syntax like in Gôdel's construction. So
the ground of the paradoxality that is shown by the similar Gôdel theorems is to be
found elsewhere than in the relation between semantics and syntax. This different
conclusion results from a different approach to semantics than the one being handled by
Rosen though. Semantics isn't exclusively considered as referential, but also and mainly
rule-governed. Once we have this more systematic and explicit look at semantics, we
see that the paradoxes can't just be located in the insufficiency of syntax in relation to
semantics.
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