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Abstract
This paper deals with anticipatory systems and their use when describing the population
dynamics of single species discrete systems. In doing so, it starts from Rosen's original
definition of anticipatory system and its extending in the papers of Dubois. Then the
concepts of incursion and hlperincursion are briefly explained and their applications to
modeling discrete dynamic systems are outlined. A detailed analysis is given of the
population model described by the first order difference equation, where the relative
population size at future time is a cubic polynomial function of the population size at
the present. Consequently, the corresponding incursive and hyperincursive models are
formulated and the stability of their equilibrium solutions (trajectories) is studied.
Keywords: Anticipatory systems, Incursion, Hyperincursion, Population dynamics,
Difference equations.

1 Introduction

Anticipatory systems are considered as systems that contain a representation of the
system itself. The concept of anticipatory system was introduced by Robert Rosen
(1985) using the following definition. An Anticipatory System is a system containing a
predictive model of itself and/or its environment, which allows it to change state at an
instant in accord with the model's prediction to a latter instant. According to Rosen,
anticipation constitutes the principal difference between systems involving living
organisms (biological systems) and systems without the presence of living organisms
(e.g. manufacturing and transporl systems).

In this paper we shall confine ourselves to anticipatory systems of discrete type.
Rosen's concept appears from the fact that the state of anticipatory system at Time t = n
is determined by the state of its model at timel = nrl, while the state of the predictive
model is not affected by the system. Let x, be a vector of state variables of the system

and (, a vector of state variables of its predictive model. According to Dubois (1998b)

we can describe an anticipatory system using a system of two difference equations

x,*,  = F(x,,€,*,) ,

Ë,*, = G(6,).

(1 .1  a )

(1 . lb )

If we accept that the state of the predictive model is independent on the systemo we
come to a contradiction because such model cannot be true predictive model of the
system itself.
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This contradiction was removed by Dubois (1998b), whose interpretation of
anticipatory systems starts from the following system of difference equations

x , * r=  F(x , ,Er* r ) ,

q , * r=  F(x , ,4 , * t ) .

Equation (1.2a) is evidently identical to equation (1.1a). However, equation (1.2b) tells
that the future state of the system and its predictive model at time t =n+l is a function
of the state of the system at time t=n and the state of the model at time/=n+I.In
case the system and its model are identical, the equations (2ab) can be reduced to only
one difference equation

x,*,  = F(x,,  x,n, ) ,
which means that the future state of the system depends not only on its present state but
also on its frrture state.

In the following Section we shall briefly discuss the concepts of incursion and
hyperincursion introduced to the theory of dynamical systems by Dubois (1998a). The
remaining Sections will be devoted to a detailed analysis of a simple population

modelx,*,  =rf i ( l -x, \ .

2 Concepts of fncursion and Hyperincursion

For the sake of simplicity, let us consider a one-dimensional discrete dynamical
system, the evolution of which is described by a recursive difference equation

x,*t = f (" ', xr-1, xr,P), (2.r)
where x is the state variable of the system, p the vector of control parameters and time

variable takes the values n = 0,1, ... . It means that the firture state of the system at time

t=n*l (x"*,) is uniquely determined (through function/) by the values of the state

variable at past and present times.
The concept of incursion (implicit or inclusive recursion) was introduced by

Dubois (1998a, 1998b) for the description of the evolution of a discrete dynamical
system using a difference equation

x* r  =  . f  ( . . . rxn-1rxnrxn .1 ,  . . . rp ) ,

From this equation it follows that the future state of the system at time t = n+I (xo*1)

depends not only on its past and present states (..., xn--.,x,) but also on its future states

(r"*,, ...). Therefore, the concept of incursion represents evidently an extension of the

concept of current recursion.
A simple example of incursion is the description of system dynamics in the form

x ,u=  f  ( xo rx r *1 ,p ) , (2.2)

(1.2a)

(1.2b)
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where the value of the state variable at each instant t = n *I is a function of the values
of this variable at times t=n and t=n*|. Such system represents an anticipatory
system of itself because the function/(describing the system dynamics) is a carrier of
the system model. When replacing the argument .x,*, in (2.2) with the equation (2.2)

itself, we have
x,u = f  (x, ,  f  (4,r ,- , ,p),  p),

which means that the system explicitly contains a predictive model of itself. If an
anticipatory system includes a model of itself, then this model must carry also a model
of itself and so on until infrnity. Therefore, there is denumerable number of such models
nested (embedded) in each other. It is very important to remember that the evolution of
an anticipatory system is not explicitly controlled from outside the system but is
determined by the system itself.

In some cases, the incursive difference equation (2.2) can have more solutions, i.e.
provide at each instant t = n mote possible future states xn*, . For the indication of such

cases, Dubois (1998a) proposed the term hyperincursion. Therefore, hlperincursion is
an incursion with multiple solutions. The problems of hlperincursion will be analyzed
in the Section 3.3.

3 Analysis of Population Model

We shall consider populations with a fixed time interval between individual
generations or a fixed interval between individual their size measurements. In this case
we can simply describe population size by a sequence{x,} , with xo denoting the initial

population size (at time lo ), x, the population size at the first generation (at time l,), x,

the populationsize at the second generation , and so on. It is evident that the population
size at each stage t =1,2, ... is determined by the population sizes in the past. If we
suppose the population size changes only through births and deaths and, moreover, the
births and deaths rates are constant, we can describe the population evolution by a
simple linear difference equation

xnr, = l,xn t

where the parameter r is called the intrinsic growth rate. Its value represents the per
capita growth rate corresponding to the case, when the population size is small enough
to be negligibly affected by resource limitations. The linear model given above with a
constant growth rate independent of population size (Malthus' model) is not available
for real populations except possibly very small populations that are not limited by both
their territory size and quantity ofaccessible resources.

Much more realistic are nonlinear population models, the review of which is given in
the monograph of Brauer and Castillo-Châvez (2000). For example, the difference
equations
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x',=1 and r-,, = F;
x ^ + A  x ; + A

were proposed as descriptions of populations that die out completely in each generation
and have birth rates saturating for large population sizes. One of the most frequently
applied nonlinear models is the logistic model represented by the following difference
equation 

/ _ \
x n + t = r x n l  t - *  l ," \  K )

where the parameter K is called the carrying capacity of environment for a given
population. Its value denotes a limit population size, at which available resources make
still possible the population development. This model describes the population
evolution with a growth rate that decreases to zero as the population becomes large.

In this paper 'tre will consider a slightly modified model described by the first order
nonlinear difference equation

(3 .1)

According to Smital (1988), this model is closer to reality but its dynamics are very
complicated. Therefore, the remaining part of this Section will be devoted to a detailed
analysis of the population model (3.1) by using the theory of discrete dynamic systems
presented e.g. in (Brauer and Castillo-Ch|vez,2000; Smital, 1988).

Anticipatory modeling of population dyramics was recently studied in the papers of
Dubois (2003) and Akhmet et al. (2006).

3.1 Classical (recursive) model

Suppose we have the population model (3.1) in the form
xn*r=r t '  ( t - r , ) . (3.2)

This recursive model is an example of a threshold model described in the paper of
Marotto (1982). In our model the state variable x represents relative size of some
population living in an environment with limited resources ( K = 1). We will study the
population dynamics as a function of the value of parameter r e[O,Zl l+). It is evident

that the function f,(")=rx'(t-x) ïepresents a continuous mapping of interval [0,1]
into itself. Graphs of the function for selected values of r are given in the Fig. 1. Basic
information on the model (3.2) can be obtained by determining its equilibrium points
that are solutions of the algebraic equation

r x " ( l - x ) = x '

After rearrangement of the equation we have
x ( r x ' - r x + I ) = 0 .

x,*r=rf i ( t -*)

t24

(3.3)



Trivial solution of the equation (3.3) is -r=0 and, therefore, the model (3.2) has
equilibrium point a = 0 for all values of r. This equilibrium is evidently asymptotically

stable because f,' (a) = O.
'When 

analyzing other equilibrium points that are solutions of the equation

r x 2  - r x + l = 0 , (3.4)

we can distinguish three cases depending on the value of parameter r.
In case r <4,the discriminant of (3.4) is negative, which means that d =0 is only

equilibrium point of the model and each trajectory generated by any point xo e[O,t]

tends to zero. Biological interpretation of this situation is simple: each population
controlled by the model (3.2) is dying out.
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Figure 1: Graphs of f"(x) for r =l; 2; 3;4 and 1613.

For r = 4 the discriminant of (3.a) is zero and, therefore, the corresponding equation
has double rootx =7/2, which means that B =U2 is another equilibrium point of the
model. A more detailed analysis (Smital, 1988) indicates that this equilibrium point is
neither asymptotically stable nor unstable.

In caser > 4, the equilibrium point B =ll2 bifwcates into two equilibrium points

Since 0 < f, < Br<! andf,' (P,)r 1, the equilibrium point fl is unstable for all values

of r e(4lef3). Similarly, rve can find that p, represents an asymptotically stable
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equilibrium point of the model for r e (4,1613). For r > 1613 we have f,'(Br).-t

and, therefore, the equilibrium point B, becomes unstable.

As soon as the value r exceedsl6/3, periodic trajectories (trajectories with cycles)

appear: first trajectories with period 2,later in successive steps trajectories with period

2' , 2t , ... etc and, finally, starting from r : 5.89 , trajectories become chaotic.

Now, let us show how to find the trajectories with period 2. When searching for them, it
is enough to solve the equation

f,(f,(')) = r'xo (r- x)'lt- o' (r - x)] = ' '
After eliminating the equilibrium points alpha, beta_l and beta 2 we obtain just two

realpoints y,andy, ly ingwithin [O,t ]  andconst i tut ingthecyclewithperiod2.For

example, if r = 6, then yr:0.60287, y2 t 0.86603. The periodic trajectories with other

periods can be obtained in a similar way.
A more detailed analysis of the population model (3.2) given in (Smital, 1988)

showed the existence of two threshold values of the population size.
Since f.(t)=0, there is a point 6e(Fr,l) such that f,(6)=9r.Then, for any

trajectory {a} the following limit conditions are satisfied

,:_ -- _ fo, if-ro .lo,fr)u(a,t]
"li' 

= 
\ f,, ,t ,r:g,'o, ro:4 "

We can also find a critical vabte r":6.6 of parameter r such that

f , (r \ . (P,,6) for-r  e (P,,6) andr e(4,rr) .

From the conditions mentioned above, it follows that p, and â are the searched

threshold values. From the biological point of view, the theoretical results can be
interpreted as follows.

If a population doesn't reach at least the size pr, it is dying out. The same conclusion

holds for the case the population size exceeds the second threshold valueô. If a
population reaches the size from(fl,ô), then

o it tends to asymptotically stable equilibrium state p, (forr < 16/3 ) or

o it behaves in different ways but cannot die out (for76l3 < r < r") or

o it can actually die out (for r>rr).

It is clear that the dynamics of the model (3.2) is much more complicated, when
compared with the dynamics of the well-known logistic model.

3.2 Incursive model

An associated incursive model can be built from (3.2) in writing
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xou=rfi(\-r,*,), (3.5)
where the saturation factor is now a prediction function of the population size at time
t =nrt. This model was analyzed in the more general context by Dubois (2000). It is
evident that the model (3.5) represents the model of an anticipatory system.

When replacing xn*, in the saturation factor by equation (3.5) itself, we get an
incursive model

x nu = rx| (t - u: (r - r,., )).
ln continuing to replace J,*r by itself, we can obtain an infinite sequence of models
nested in each other

This difference equation can be simplified to

*,*r=r*li(-r',)'=& (3.6)
As we can see, the value of state variable x at future time I =n+l is expressed as an

infinite series that converges to a simple function of the value of the same variable at
present time t = z. The replacement procedure described above made possible to
transform the incursive model (3.5) to the recursive one (3.6).
Comment. The same result can be obtained much more simply by solving equation
(3.5) with respect to.tr +r .

Let us investigate a population, the evolution of which is controlled by equation
(3.6). The function g,(*)=rx'l(I+rx' ) represents evidently a continuous mapping of

[0, t] into itself. Graphs of the function for some values of r are given in Fig.2.

As we can see from Fig. 2, the model (3.6) has asymptotically stable equilibrium point
a = 0 for all values of r. It means that the trajectories generated by any point xo lying
in a certain neighborhood of this point tend to zero. Therefore, in this case a population
is dying out.

In the case r=4 another equilibrium point B=U2 with an interesting property

appears. The trajectories generated by any point xo elO, p) tend to c, while the

trajectories starting from any point .xo eff ,l] converge to B .

For r > 4 the equilibrium point B splits into two other equilibrium points

-  -ç ' [ r4+r  ^  &Jr -+* ,
A = -----Ç-, P2 = ----';- ,

the first of them being evidently unstable ("f'(8,)>t) and the second asymptotically

sbble (0.f'(Êr).l). ft is easy to show that the trajectories generated by any point

*o =fF,,I) tendto p, while those starting from xo e [0,4) go to û,.

x,*r = Æî(t - U(t -,t (, - *: (t -,;: (t - C(t - ))))))
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The attempts to find periodic trajectories with period 2 were not successful.
Therefore, according to the Sarkovskij theorem (1964), the incursive model (3.5) shows
neither periodic nor chaotic trajectories.

It is clear that the dynamics of the incursive model (3.5) is rather simple. Any
population controlled by the models either dies out or tends to the equilibrium stateBr.

There are neither periodic (asymptotically periodic) nor chaotic trajectories.
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Figure 2: Graphs of g, (x) for r = 3; 4; 5 and 6.

3.3 Hyperincursivemodel

A simple example of hyperincursive model is given by the
equation

rn*r = ftnx,*,t( l  -q-, 
) .

'When 
solving (3.7) with respect tot,*1, v/e get two solutions

t0
r , r  =1rx , - l

I rxn

It means that each iterate Jn generates at each time step two different values r,*, , the

first of them (zero solution) being uninteresting from biological point of view.
Therefore, we will continue in analyzing the second solution.

followine difference

(3.7)

(3.8a)

(3.8b)
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The function h,(x)=(rx-l)frx represents a continuous mapping of (0,t] into

(*,1]. The graphs of the function for r =3; 4;5 and 6 are given in Fig. 3.

For r < 4 the models controlled by equation (3.8b) have no equilibrium points at all.
In case r =4 there is only one equilibrium point F =42 that is asymptotically stable

for trajectories generated by any point ;ro .lB,t].
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Figure 3: Graphs of h,(x) for r = 3;4; 5 and 6.

As it is evident from Fig. 3, for r > 4 the model possesses two equilibrium points:

^ -Jfi;F l, +r - $.tr-a+r
A = ----ll-, pz = 

2, 
,

the former being unstable and the latter asymptotically stable for trajectories generated
by any point xo e(Fr,17.

With respect to the course of h,(x), the behavior of the model (3.8b) is rather

strange. For any r>0 the trajectories generated by the point xo =Ur terninate (after

two time steps) at x2 - -æ. In case r > 4 the trajectories generated by any xo e(O,pr)

also tend to p, but pass through points that have no biological interpretation. Therefore,

the hyperincursive model seems to be unrealistic.
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4 Conclusions

The analysis of our population model proved that the use of the concepts of incursion
and hyperincursion results in a substantial change in the model dynamics. While the
classical (recursive) model (3.2) shows a complicated behavior (equilibrium points,
periodic and even chaotic trajectories), the dynamics of the incursive model (3.5)
(model of an anticipatory system) is very simple (only equilibrium points). These
conclusions are similar to those made recently when studying the dynamics of the
logistic population model (Kiivy, 2006). The hyperincursive model (3.7) seems to be
unrealistic.
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