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Abstract
We present D, a synbol that can be used in the universal alphabet that provides a
computational path to the nilpotent Dirac equation (Diaz & Rowlands, 2004) and which
results in a tractable computer representation of the infinite square roots of -1. We
outline how the representation is derived, the properties of the representation, and how
the form can be used. Think of D as an infinite table of I's in any representation e.g.
binary or hexadecimal. Any specified column Di of the table has the properfy that when
multiplied with a row Di, the result is a representation of -1. Di multiplied with Dj
anticommutes as - (Dj*Di ) and produces Dk in a way identical to Hamilton's
quatemion i, j, and k. With an infinite and uniquely identifiable set of such triad forms
D can be considered both a symbol and because ofthis behaviour, an alphabet.
Keywords: Quaternion, complex number, rewrite system, universal alphabet, nilpotent
Dirac equation.

I Introduction

For a rmiversal rewrite system of the type suggested by Rowlands and Diaz (2002)
thcre is the need to determine the nature and symbols of the alphabet çnerated at the
complexification stage in the iterative rewrite sequence (Diaz &, Rowlands, 2004).

Recall that we have a zero sum result at all times. Using the iterative explanation, we
use the operators "create' and "sonserve" to generate then check for new symbols in the
evolving alphabet. We start with the symbol and an alphabet consisting of just 0. In a
first step we "create" the symbol 1 and to retunx to the zero sum we generate its
conjugate (in the "conssnr'en'process), the symbol -1. From -1, we can generate the
infinite square roots which when considered with their conjugate forms, e.g. 4i, +L etc,
and with anti-commutativity (Rowlands, 2003) drives the identification of further new
alphabet symbols. The details and further algebra of this process need not concern us
(they may be found in Rowlands, 2003), however, there is a need to represent in a
computationally tractable form these infinite square roots such that they avoid the
requirement for an infinite symbol sequence: i, j, k, . . ..

In this paper we suggest that an acceptable solution that captures the notion of an
infinite sequence of the square roots to -l as required is D, where the symbol chosen is
aôitrary and represents all the infinite squaf,e roots.
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We begin (Section 2) by establishing that there does exist an infinite number of
square roots of -l (Ell & Sangwine, 2005). Although several routes to a proof exist,
most depend on the observation that the set of quaternions that square to -1 is the
infinite set of vectors of absolute value I (Kuipers, 2002). This leads to a discussion
(Section 3) of the computational methods of representing -l (Booth, 1951) and the
observation that this maps througù quatemion tesseral addressing to a specific tile, and
in tlre limit, to a point in space (Bell & Mason, 1990). The geometric interpretation of
this, for example that a multiplication of address labels using tesseral methods can be
generated and can be set to corresponds to rotation and scaling of the tile point set,
follows from this observation (Bell et. a1.,1983). To establish the representation (Section
4) we then borrow notions of infinite series of digib from other number representation
domains (e.g. p-adic representation as in Scott, 1985) and create a bracketed notation to
simpli! our handling of the infinite sequence. Using this and the computationêl and
tesseral representation explanations we construct a meaning for the D symbol chosen to
represent the infinite square roots. The paper concludes with details of some of the
properties of the representation (Section 5) and an explanation of how the notation
(Section 6) can be exploited in an explanation of the complexification stage used to
establish the rewrite route to the nilpotent Dirac equation (Rowlands, 2003)-

2 Infinite Solutions of f = -I

The demonstration of an infinite number of solutions is a corollary of the lemma that
the square of any unit vector is -1 (Ell & Sangwine,2005).If p is an arbitrary unit
vector defined in terms of a Cartesian representation, its square is given by p :( ix + jy
+ kz)/b where b is r/1rt * y' + z'1) and x, y, z are real and i, j, and k are mutually
perpendicular unit vectors that follow the rules defined by Hamilton in 1843 (Hamilton,
1899). The square is:

p' : (ix + jy +ky), / (x2 I y2 * z2)
:1i'x'+ j'y'+ k2z2 + tjx! + jtx"v + il6y + kixz + jkyz + kjyz) / (x'+ y'z+ z'?) (l)

and if we substitute Hamilton's rules.' j2 = j' : k'z : ijk : -1 we get:

: (-xt - yt - zr)/(x, + y2 + 22)
:  -1.

As there are an infinite number of unit vectors there are an infinite number of unique
solutions to the equation. All of these will follow the anticommutative Hamilton rules in
a cyclical way as for example:

tj -- -ji and jk: -kj etc. (3)

The infinite solutions can also be shown to be a consequence of considering Euler's
formula: eui : cos a + isine a for points on a unit circle where each circle is in the plane

(2)
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of one of the infinite planes that constitute the unit sphere in quatemion space (Kuipers,
20a4.

3 Representation of -l

In the now standard Booth (195 l) representation of negative integers in computers,
wordlength is fixed and using a trvos complement binary form (Scott, 1985 Ch. 4) every
bit combination of wordlength is used, approximately half yielding positive and half
negative integers. In such computational notations -1 is a sequence, wordlength long, of

For general use, we can define an infinite series of I's to represent -1, which we
present as:

l l  I  l  I  I  l  I  l 1 )

where l, is repetition to the left infinitely and ) repetition of t infinitely to the right. One
is reminded of p-adic numbers (Koblitz, 19771' Scott, 1985 Ch. 7.7), nfrnite tesseral
addresses (Diaz & Bell, 1986), and the bra ket notation (Griffrths, 2004). For this paper
there is no need to invoke the convention that the repeating digit sequences are
identified with an overline as only one digit repeats here.

An alternative method of establishing the same representation based on the
description of tesseral quaternions (Bell & Mason, 1990) is to consider quatemion space
halved at each division by four orthogonal hyperplanes. This process gives rise to an
origin, orthogonal axes, and I 6 equal divisions of the 4D space. If we label each axis
division either side of the origin with a binary 0 and l, then each division of space will
have a 4 digit binary address 0000 to 1111. To distinguish these we can label them
using hexadecimal digits 0-F. If we take the hexadecimal I division (binary labelled
0001), and repeat the space sub-division process hierarchically we generate a tiling with
tesseracts, where one such space (point), in the limit, has the infinite hexadecimal I
address that can be labelled in a number of ways, including I I I I I ) as above or
simply just ll). Providing we retain exactly the same algorithm in dividing the space and
numbering sub-divisions, the hexadecimal label ll) will be adjacent to l0) and in the
limit will also be adjacent to l2), l3), ..., lF). An arithmetic based on the quaternions can
be generated for these addresses where addition corresponds to translation through the
4D space and multiplication to scaling and rotation.

It should be noted that if we restrict the representation to 3D, the labelling is exactly
that of the computer space storage structure known as an octtree (Bell & Mason, 1990)
which is much used in çomputer graphics and image processing as a spatial data storage
structure (e.g. Gargantini, 1982, Samet, 19M; Navazo et. al., 1986, etc).

4 Generating a Square Root for -1

Given the notation established above, and using * to indicate multiplication, what is
the representation of the square root? We -seek to find D where:
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D*D: - l

Or more specifically given the notation from Section 3:

D*D= l t )

If we assume that the square of -l is l, then an answer might be:

l - l )  *  l - l )  :  l l )

or in a more expanded representational form:

l - l - l - l - l - l )  *  l - l - l - l - l - l )  :  I  I  I  I  I  t )

where we take each -l in turn from one representation and multiply it with its
corresponding element in the second representation. Although similar to vector and
tensor representation, the infinite nature ofthe process renders it tangibly different

We can achieve a more intuitive explanation by noting that a simple resolution of a
representation for the form l-l) is one in which each -l in the row representafion shown
above is written as a ll) in columnar form, that is each -l in the row representation
above is replaced by a column | 1), resulting in an infinite table of I s:

(4)

(s)

(6)

(7)

t l
t l
t 1

l l
l l
l l

1 )
r )
l ) J" -', (8 )

which we read as an infinite series of column and row I's and define generically, simply
as D, the closest symbol to just the bounding brackets of the infinite tâble. In this
generic form we can more closely imitate row/column vector behaviour by considering
a column of -l's multiplied by a row of -l's each taken one at a time, to yield ll).

Although similar in arrangement to an infinite matrix, or tensor, none of the
mathematical properties of these forms should be assumed. This representation is
simply tabular, with the table interpreted in terms of the rows and columns. Each row
and column can be numbered to identifl, specific rows and/or columns uniquely in an
enumerated form of the representation.

5 Infinite Roots

We can define a property of each enumerated row form Di that it multiplies with a
row form Di tn a column vector with row vector way to generate ll) as the result. In
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practice each Di, may be simplified for computational purposes to just one
(wordlength) column of I's and one (wordlength) row of I's, giving rise to the
enumerated mathematical form e.g. :

l l l l l l )  =  l l )

Although it does not matter which row and column is used, in this enumerated but
fixed form there are an infinite set of such identical ways of generating I I ). All of these
are drawn from the generative formulation D but labeled Dro Dz, Dz, ... D". An
alternative labeling might be the i, j, fr, ... (as used by Hamilton); a symbolism we were
seeking to avoid, but which we can use to describe the behaviour.

6 An Arithmetic for D and Dn

We have seen that D, in its generic form when squared yields -l which is ll), and
that this is exactly the same as the use of complex i to represent {-1.

A conjugate -D also exists and would be a symbol in the uoiversal alphabet
gcnerated by the conserve step. It's square is defined within existing rules, thus we get
that:

_D* _D = (_1 * _I) * (D * D) = *l (10)

All other arithrnetic associated uritr D in this generic form follow the rules associated
withco'rrylex i.

We tum to consider the product of separate enumerated forms i.e. the result of Di *
q? h general these cannot be resolved rmtil we know which row and column
formulation and wordlengths are used to define Di and Q. \ilhen these are known, the
prod$ct collapses to the antioonrmutative form and a closely related enumerated form,
Dr. Thus:

Di *4 :  -Q*D) :  D r .

where also:

( 1 1 )

(e)

i
I
l *
I

:

4* Dr : -@** D)
Dr*Di  :  - (Di*Dù

= D i
: D j

(r2)
(13)
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These are Hamilton's rules as outlined above and illustrate the anticommutativity
required at the outset. Their effect can also be demonstrated using a matrix
representation of each form.

Finding conjugates of the enumerated forms in this way identifies one of an infinite
number of three-fold groupings (triads) that are closely related. Each of these triads
allows us to "create" distinguishable new symbols in the universal alphabet matched by
conjugates which are then reserved and have this defined behaviour.

Other arithmetic properties of the enumerated forms follow Hamilton's quatemion
rules with any triad's behaviour reserved in the same way. With this restriction we can
also view the arithmetic as the arithmetic of 'tiles" where in the limit each tile is a point
in 4D space in exactly the way argued for tesseral qr,raternions in Bell & Mason (1990).

7 Discussion and Further \ilork

We have proposed a single symbol based method of extending the alphabet needed
for the complexification stage of the universal rewrite mechanism described in Diaz and
Rowlands (2004) and extended in principle in Rowlands (2005). This complexification
stage alphabet now consists of the symbols (0, l, -1, D, and -D) with a method for
extending the symbol set indefinitely by considering and resolving the nature of the
enumerated form triads as and when required by the iterativs procedtre. Thus D and-D
each constitute alphabet generators as well as symbols in fhe existing alphabet.

Rowlands (2005) shows how this process can be used to generate the nilpotent Dirac
equation using the anticommutativity property as the method that determines if a
symbol (or indeed an entire sub-alphabet) is "new". It is, in fact, part of our fundamental
argument that the rewrite system generates unique mtities through the property of
anticommutativiry being available only within the original quatemion set at each stage
of the alphabet's extension. This is how we generate numbers, including I and -1. To
program such a process without an infinite number of symbols we need an enumerable
method for identifuing the infinite Square Root for -1. This has been achieved here by
extending the common Booth method of representing negative numbers but done in two
directions to yield a table of I's, which we call D. As any indexed row/column of D
when squared gives the repeated I representation of -1, that is ll), this provides a
method for constructing an appropriate rewrite system. (Physically, we may suggest a
connection between this representation and the fact that the nilpotent creation operator
acting on vacuum leads to a filled vacuum for negative energy states as outlined in
Rowlands, 2005.) An implementation of this approach will need to examine the
braiding pattern implied by this symbol creation and use it to uniquely identiff each
created symbol.
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