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Abstract
The paper deals with examining of synchronized chaotic signals in canonical state
models of piecewiselinear (PS/L) systems []. The Pecora-Carroll drive-response
concept and the inverse approach are considered [2]. The theory ofthe Pecora-Canoll
drive-response concept is expanded in the way that the third-order canonical state
models make up synchronizing subsystems and the second-order canonical state
models make up synchronized subsystems.
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I Introduction

In this paper we focus on the analysis of the first form synchronizing - (*t,"r)

synchronized chaotic system of elementary canonical state models (ECSM) of Ptù/L
systems []. Have a look at the synchronizing subsystem (1.1) and the synchronized
subsystem (1.2) where hQ is a piecewiseJinear function. Let us compare state matrices
(l.l) and (1.2). Eigenvalues or equivalent eigenvalue parameters ofthe synchronizing
and synchronized subsystems depend on each other. The synchronized subsystem
cannot be designed itselfbecause it is always a part ofthe synchronizing one.

Although we are limited by the above condition we can design a new extended
synchronizing subsystem so that eigenvalues ofboth subsystems are independent. Let
us consider the synchronizing subsystem in tle form

[*,] lsi -r o,, ' l f ' ,- l  lpl-c;l
l*,1=loi 0 a,, l . l ' ,  l . l  pi-qt | , ' (* ' . .)
L*r.l Lo, etz o,,I Lxr l L àr J

and the synchronized subsystem in the form

( l . l )

f*rl_fer -t'lf il*
l * : )- lq:  olL", l (r.2)

If the vector w is given by wt = [t O ,,1, the synchronized subsystem will be

a part of the synchronizing subsystem.
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2 Synthesis of synchronized chaotic systems
Let pp pz, pt and ql , ez,qt be equivalent eigenvalue parameters of the

synchronizing subsystem ûd pi, pi , qi, gj be equivalent eigenvalue parameters of
the synchronized subsystem. Then evaluating characteristic polynomials of
determinants lsf -.Lrl and lsl-Al for the synchronizing part we can get equations for
circuit pammeters as follows

a n = 8 t - Q ' t ,

bs'wz =(P, - Pù-(s, - s' ,),
o*.at r  + a, .c \z  = Qi .atz  +( l l  -  n) ,

az l ,et t  + q ' r ,arr .ar3 -  Q' .a lz ,  an = e l .ay -  Q t ,
a, r .b,  +(n i  -  { , ) .ar , .w,  +(n i  -  û) .a, r .v ,  = (

+(n ; -n , )+(s , -q i ) ,

pl - qi).au + qi.b,.w, +

(2.1)

-(ol  -  qi) .a, , .ar,  =(p, -  q,)-(pl  -  qi) .ou -  Q'z.bt.ws,

whgre a,3, d23, ar, a32, as3, ô, andw, are unknown. To solve these equations we
may introduce simpliffing conditions

4 = Qiïz = qûFr = P1|P2 = Pz,

then cr, = 0, b,w, = 0 and we get equations reduced by

Qrt .A t r  14r r .Ar ,  =  0 ,

Qzt .A t r  +  q  t ,A32.An -  ( l  z .d tz ,A tg  =  -8  
t ,

br.ar, +(pr - qr).*r.or, +(r, - er).*t.atz = o,

(pr.q, - Pz.lr)-w3.arz -bt.dz, *(r, - qr).rr.or, *(0, - qr\.or,or, *

+(e, - nr).o23.d32 = pt - 8t.

If w, = 0, we can obtain a solution. Then parameters d 3, a 3, a3 , anda3 are
given by

o r t = 0

bt.Qt
C l t  = -

"  P t - 8 t

8 t - P s
an =-7-

b3

a n  = O

Gi.ql  -  pi .qi) .ou.r ,  -  arr .b,  -(pi  -q).or, . r ,  +(p,,  -  l l ) .arr .q,r  -

(2.2)

(2.3)

(2.4)
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Furthermore if b, = 0, we will obtain rather complicated solution. Parameters
at3, e23, a3r, and a3z are given by

ar3 =

Q23 =

(pr-q,X- p '*q,)
-5t 

(- pl - prprSr + pzQl + p?az +2pzqz - pflflz - ql)*,

^ _ (-  p,  *  q, \p,  -  q,)
4r. =-T---r2 

(n3 * nrorl, - pzq? - p?q, -2pzqz + pflgz + ql\r,

(2.s)

The method that is proposed in this paper is the very common method how to
design any synchronizing and sytrchronized subsystems. Studying the synchronized
chaotic PWL systems, rile can establish new elementary linear forms of syrchronized
second-order parts [8].
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Fig. 1: State portait ofthe synchronizing subsystem
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4-2n

(p, - qr\rpt, + ppzQr - pzql - p\q, -2prq, + p$fl2 + Çr1

(n, - u\- p3 - p,prq, + pza? + p?qz +2pzQz -

û - prprq, + pzel + p? Qz'2prq, - pflflz * ql[p, - qr)
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Fig.2: Synchronization of x, <+ ri

3 Attractors and synchronization state poftrait for the synchronized
chaotic system of the first form of ECSM

The system has been modeled by MATLAB. In the table (3.1) there are chosen
equivalent eigenvalue pararneters and their eigenvalues. In the table (3.2) there are
computed Lyapunov and conditional Lyapunov exponents as a condition for
synchronizing.

Table 3.1: Equivalent eigenvalue pararneters and their eigenvalues

Equivalent eigenvalue
parameters:

Eigenvalues of the
synchronizing subsystem:

Eigenvalues of the (.r1,x2)
synchronized subsystem:

h = 0.09 4r = -1.168

pz = 0.432961 qz = 0:846341
pt =0.653325 qt = -12948

tLl = 4'319 t08921

t4 = 0.728

%,r = 0.0611j

\ = -129

tli.z = 0.045 + 0.65fp.57 j

vi.z = -0584 t0.710834j



Table 3.2: computed Lyapunov exponents and conditional Lyapunov exponents

lnitial conditions: Lyapunov Exponents of the
synchronizing subsystem :

Conditional Lyapunov
Exponents of the (r,,.rr)
synchronized subsystem :

["tl r-o.sr'o=l o |  "6=l o I
L O J  

L  J

2r = 0.103803
1z=0
Xt = -0-942795

li = -0'40348+

1'z = -0.414631

4 Conclusion

In this paper the synthesis of synchronized chaotic systems of ECSM is proposed.
We have also shown the synchronization state portait. Our results are complèteâ witr
Lyapunov and conditional Lyapunov exponents. The next research points io design a
CNN structure having third-order cells of ECSM and synchronization behavior is gôlng
to be studied. This new CNN paradigm can also be exploited in many engineering
applications (signal, image and information processing, etc.) as well as in modeling
many biological systems.
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