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Abstract

The brain model is defined as a phenomenal computing consisting of explicit
computing subsystem and its environment carrying the execution of computation. By
introducing the modified infomorphism (Barwise & Seligman, 1997) as an operator
between sub-systems, a model of phenomenal computing is expressed as a weak
paradox. Such a model can explain genesis of module in a brain and duality of
conscious explicit cognition and subconscious implicit perception in an abstract sense.
Keywords: Infomorphism, Semantics, Abstract brain, Computing, Lattice

1 Introduction

We propose the notion of phenomenal computing as a dynamical pair consisting of
a computing system and the environments of executing computation (Gunji et al.,
2004a,b; Gunji 2003). In this framework, all phenomena including materialistic
systems and neural networks generating consciousness are expressed as a system
consisting of lower- and upper-level subsystems. Origin of emergent upper level (e.g.,
consciousness) can be constructed as the genesis of explicit difference between lower-
and upper-level from an initial condition in which upper-level is latent. We show that
the metaphorical toy model of phenomenal computing leads to the duality consisting of
a robust computing system and instable environments. The idea of phenomenal
computing is beyond the simple binary opposition between machinery recursion and
emergent property, and can explore the internal perspective for a system within
indefinite environments (Gunji, 2004).

Whenever one argues regarding autonomy, emergent property, and/or
consciousness, one adheres to examine them in terms of binary opposition such as the
computable vs non-computable. In that perspective the notion of computing is latently
based on machinery recursion. Imagine that a machine outputs an error because of
overheat derived by going on computing in a hot room. Because such a computed error
is out of the binary opposition, it is necessary for a machine with latent errors to
consider a machine and its environments in a lump, and that induces the idea of
phenomenal computing.
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To express phenomenal computing as a toy model, we introduce two important
ideas, (i) infomorphism (Barwise & Seligman, 1997) and (ii) a self-reference exposed
with the frame problem (Gunji et al., 2004a,b). Infomorphism is defined as a pair of
maps (inter-subsystems transformation) between two subsystems (including
intra-subsystem transformation), and is developed from situational semantics.
Therefore, two subsystems can correspond to a computing system and the definite
environments of executing computation. Although an infomorphism is a tool to express
computing machine and its environments in a lump, “computing within environments™
is destined to be a self-referential form entailing a paradox. The question arises how
one uses self-reference against a paradox. The answer is in Kripke’s skepticism
(Kripke, 1982). A Kripke’s skeptic makes a self-reference in invalidating the premise
of self-reference. That is why it can be used as a framework by which a self-reference
is positively expressed against a contradiction.

A self-reference under the framework of Kripke’s skepticism is expressed as the
mixture of intra- and inter-subsystems transformations in the infomorphism. It is a
model of phenomenal computation consisting of a system and not definite but
indefinite environments. We estimate the time development of subsystems in a term of
lattice, and show a robust pair of Boolean (system) and non-distributive lattice
(environments), it suggests an individualized computing system against instable
environments. Especially we focus on difference between non-autistic and autistic
children’s reaction for Sally-Ann task (Wimmer & Perner, 1983) and explain the
difference in terms of phenomenal computing.

| 2 Phenomenal Computing

In starting from the naive hypothesis that a brain is a machine and especially that
perception of red is computing the stimulus of red, there can be two different logical
objections for this hypothesis (e.g., Preston & Bishop, 2002; Chalmers, 1998). The one
objection is based on self-reference: If perception of red is replaced with computing
red, one obtains a statement such that (perception of) red is computing red. The
statement is directly expressed as a self-referential form such that

red = computing (red) . )
In substituting computing (red) for a variable red in the formula, computing(red), one
obtains an infinite form such that red = computing (computing ... (red)...), that is a
contradiction because of the indeterminacy of value of red. The other objection is
based on, what is called, the frame problem (McCarthy & Hayes, 1969; Dreyfus, 1992).
The notion of computing red is, in fact, ambiguous. What can one define computing in
a term of a working machine? If one defines a working machine by “computing by a
machine connected with a convenient outlet”, such a definition is demolished when the
power station is crushed. It leads to adding power station to the definition of a working
machine. It results in infinite regression of the definition such that
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computing(red) = computing with a machine, power station, oil transportation, ... (2)

As a result, one cannot define computing (red) in a definite finite form. That is a frame
problem.

If two objections, self-reference and frame problem are addressed independently,
two objections are seriously accepted and there can be no way to overcome the
objection. However, if two objections are addressed contemporaneously, one can
construct a self-reference so as to avoid a contradiction (Gunji et al., 2004a,b). The
premise of self-reference is demolished by frame problem, and vice versa. In the
objection based on self-reference, a contradiction results from ambiguous indication of
red that is a premise of the objection. The one is a part of a formula, computing (red),
and the other is a whole formula. By contrast, the objection based on the frame
problem, addresses indefiniteness in indicating a whole of formula, computing (red).
Therefore, if one constructs a self-referential form, red = computing (red), under the
condition exposed of frame problem, one can obtains a model of perception of red so
as to avoid a contradiction.

That is the first step of phenomenal computing. Phenomenal computing consists
of a part of explicit computing and its environments to execute computing. Both these
two parts are regarded as computing systems. The explicit computing is called
type-computing and environmental computing is called token-computing. If one
constructs a model of perception in this framework, one is faced with a self-referential
form. Even if a neural activity regarding a particular perception is divided into two
parts, type- and token-computing, environmental computing is embedded in an explicit
computing. As well as a problem of “red = computing (red)”, the model is destined to
be a self-reference resulting in contradiction. To avoid a contradiction, one has to
introduce the property of frame problem in this framework.

The next question arises, what is a formal expression of frame problem. In our
context, it is weak premise of self-reference. In the sense of category theory (e.g.,
Goldblatt, 1991), a self-referential form derived from a diagonal argument in which a
functor between two categories is mixed up with an arrow in a category. Because a
functor is defined so as to preserve composition of arrows, a self-reference results in a
contradiction. Therefore, weakening a functor not to preserve composition is a way to
weakening a premise of self-reference and is a formal expression of frame problem.
One of ways to weaken a functor is replacing a functor with an infomorphism. That is
the second step of phenomenal computing.

First we define a computing system as a triplet; a set of inputs and outputs defined
as two sets, and computing operation expressed as a binary relation between them. As
mentioned before, phenomenal computing consists of type- and token-computing, and
each of them is defined as a triplet. A triplet can coincide with a relation category (i.e.,
objects are defined as sets, and arrows are defined as relations). Two functors between
categories can be defined. If two computing systems are connected by a functor,
self-reference results in a contradiction. To avoid such a contradiction, a functor is
replaced with an infomorphism as mentioned in the next section.

Phenomenal computing is re-defined as follows: Two computing systems (each of
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them is expressed as a triplet, two sets and relation) and an infomorphism. In this
framework a self-reference is expressed as a mixture of relation and an infomorphism
that leads to time development of whole system (Figure 1).

Token- E——— Type-
computing computing

input B input

Ry R,

output
output

Frame probleml,

Vx€EX,
vyey, J['0)Rex <y Ry ()

Figure 1: Schematic diagram of phenomenal computing. First,
consider a system consisting of two computing subsystems, type- and
token-computing that are connected with two functors (thick white
arrows). If a self-reference that is defined by a mixture of an arrow
and a functor (bi-directional arrows) is constructed in this framework,
it results in a contradiction. To avoid a contradiction, a functor is
replaced with an infomorphism that is a pair of two maps, f* and f*
satisfying a particular condition.

It is clear to see that a brain is a typical example of phenomenal computing (Tye,
1996; Gunji, 2004). Consider a Brocca and/or Wernicke area concerning about
linguistic activities. Even if a linguistic module is regarded as a machine in the sense of
approximation, other regions of a brain are also employed to neural activities to
execute boundary conditions for a linguistic module (Ramachandran, 1998). Therefore,
duality of linguistic module and other regions can correspond to explicit type-
computing and its environments (token-computing). Note that a linguistic module
appears in the process of development, by self-organizing process. There is no explicit
foundation by which a module and its environments are distinguished from each other.
We have to explain genesis of duality of explicit computing (i.c., module) and its
implicit environments.

Especially we focus on the difference between non-autistic children’s and autistic




children’s reaction for Sally-Ann task (Wimmer & Perner, 1983) (also see autism and
savant syndrome in Sacks, 1985; Rimland & Fein, 1988; Sullivan, 1992; Selfe, 1977;
Snyder & Mitchell, 1999; Happe, 1996; 1999). Sally-Ann task is expressed as a
character play for a subject. The play story proceeds by the following:

@A) Sally places a ball in a basket in a room, and then she goes out.

(ii)  Ann enters the room and finds a ball in a basket. She hides a ball in a
refrigerator.

(iii)  Sally comes back to the room.

After a subject listens to such a play story, he is asked, “Where will Sally search for a
ball?” Non-autistic children answer that Sally searches for a ball in a basket. By
contrast, many of autistic children answers that Sally searches for a ball in a
refrigerator.

Psychologists explain that autistic children cannot imagine others’ mind. It is clear
to see that our mind is based on finite knowledge. As well as all of us, what Sally
knows is just finite, and she never knows that Ann hides a ball in a refrigerator. As a
result, Sally searches for a ball in a basket. Therefore, psychologists conclude that
autistic children cannot imagine other’s mind.

We think that difference between non-autistic and autistic children’s reactions is
based on the difference in constructing the relationship between parts and a whole. If a
subject can distinguish parts from a whole story, he can distinguish the truth of an
individual character from the truth of a whole story. Then, he can distinguish Sally’s
own truth (a ball in a basket) from the truth in a whole story (a ball in a refrigerator).
Therefore, it is expected that he answers that Sally searches in a basket. By contrast, if
a subject cannot distinguish parts from a whole with respect to logic, he assimilates
Sally’s own truth with the truth in a whole story. Because the truth in a whole story is
unique (a ball in a refrigerator), it is expected that Sally searches for a ball in a
refrigerator.

In an abstract sense, it is possible to see that difference between non-autistic and
autistic children’s decision making is based on difference between logic distinguishing
parts from a whole and logic assimilating parts with a whole. In focusing on this topic,
we examine behavior of the model of phenomenal computing.

3 Dynamical Infomorphism as an abstract brain

Phenomenal computing consisting of the type/token-computation is formalized by
a dynamical infomorphism (Gunji et al., 2004a,b). First, each computation is defined
as a classification called by Barwise (Barwise & Seligman, 1997). Firstly,
mathematical tools we need are given by following.

Definition 1.  Classification (Barwise & Seligman, 1997)

Classification is defined by a triplet <typ(4), tok(4), R4>, where typ(4) and tok(A4)
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are sets and R, is a binary relation between typ(4) and tok(4).

Originally, Barwise regard a classification as a perspective consisting of an
objects-set called token and an expressions-set called type. The symbol typ(4) and
tok(A4) denote the abbreviation of type and token. But, our concepts, type-computation
and token-computation have nothing to do with a set of types and a set of tokens. As
mentioned beneath, type- (token-) computation is defined as a classification. The
relationship between two classifications is defined by an infomorphism. Even if two
perspectives are not isomorphic to one another, the communication between them can
be implemented by an infomorphism. The duality of the type- and token-computation
is expressed as a pair of classifications connected with an infomorphism.

Definition 2. Infomorphism (Barwise & Seligman, 1997).
Given two classifications <typ(A4), tok(4), R4> and <typ(B), tok(B), Rg>, a pair

of maps <f', f'> with f:tok(B)—tok(4) and f":typ(4)—tok(4) is called an .
infomorphism if and only if: for all aEtyp(4) and all bEtok(B),

f'(b)Rso < bRpf'(a). (3

| It is called the fundamental property. It is diagrammatically shown as

f
‘ typ(4) — typ(B)
R4 Rs )
f
tok(4) < tok(B)

We here call <typ(A4), tok(4), R4> and <typ(B), tok(B), Rg>, token-computation and
type-computation, respectively.

A computation as a phenomenon is described as duality of
type/token-computation consisting of those two classifications and an infomorphism.
Although in Barwise’s view a classification is independent of each other, only a pair of
classifications makes sense as a computation as a phenomenon in our framework.

The following definition is also available to prove some statements.

Definition 3. Type-set / Token-set (Barwise & Seligman, 1997)

Given a classification <typ(4), tok(4), R4>, a type-set of a token, 4, and a token
set of a type, a, is defined by the following respectively:
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| typ(a) = {a€typ(4) | aR4a} ©)
tok(a) = {a€tok(4) | aR,a} 6)

| The fundamental property of an infomorphism can be replaced by the following.
From the proposition, given an infomorphism and a classification, the other
classification that can constitute the duality of type/token-computation can be
determined.

Proposition 1.  (Also see (Gunji et al., 2004b)

|

|

|

‘ The condition: b, b’Etok(B) with b=b’, f'(b)=f'(b") and f'(b)R4ct = bRg f*(c))
and b’Rp f*(a); added with the condition: for all a€typ(4) and bEtok(B), bRp f () =
f*(b) Raq; is equivalent to that <f*, f*> is an infomorphism.

|

|

|

|

|

|

|

Proof: (=>): Supposing the mentioned condition, the only thing to be proved is: f*(b)
R0 = bRgf"(o). It is assumed that f'(b)R40c = bRp f*(a). If there exists b’Etok(B)
with b=b’, f*(b)= f'(b’) and f'(b)R4a, from assumption, bRsf' (), then f'(b" )R, 0 <>
f'(b)R40. That is a contradiction.

(+=): In supposing f*(b)R4a => bRy f*(a) and b'Rp f'(a0), f'(b")R4c and f'(b)R40.
That is a contradiction.

Proposition 2.

If for all aEtyp(4), bR f* (o) = f*(b) R4t and f* is mono, .a pair of maps <f*, f*>
is an infomorphism.

Proof. In supposing that f* is mono, o, a Etyp(4) with a=a => ' (a)=f* (o ), and then
f(@)=f(a) =f" ()=f" (o ). Therefore, there is no pair b, b’Etok(B) with b=b’, f'(b)=
f'(b’). Then from proposition 1, <f*, f*> is an infomorphism.

Under those frameworks, the dynamical duality of type/token-computation is
defined by the following. Because it is expressed as a mixture of relations and an
infomorphism, that is one of formal expressions for weak paradox.

Definition 4. Dynamical Infomorphism

Given four classifications, token-computation (typ(4), tok(4), R4 "), (typ(4),
tok(4), R4’) and type-computation, (typ(B), tok(B), Rs' "), (typ(B), tok(B), Rs'), and
two infomorphisms, <f*“", ¢~V and <f'®,  *®5 the time transition of relations
are defined by the following:

aRA'“a . & f/~l(l~l)(a) RBt f*(’)(a) (7)
| bRy™'B : < f7(b) Ry £1OB). ®
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where f' is an arbitrary induced map from f-X—Y such that for all xEX, ) =f X,
where = is an equivalence relation such that x = x :< f(x)=f(x"). If there exists an
infomorphism <f*“*", f***Y> such that for all aEtyp(4) and all bEtok(B)

f‘V(H'l)(b) RAH'la P bRBt+1 f“(t+1)(a), (9)
it is said that the time proceeds.

It is diagrammatically shown as

f\(t—l) fv\(t) f\(t+1)
typd)—typ(B)  typ(d)— typ(B) typ(A) ------ typ(B)
RAt—l ) RBt~1 RAt I lRBt —’RAHI RBt+l (10)
tok(4)—— tok(B) tok(4)<— tdk(B) tok(A)------ tok(B)

fv(t—l) f/(t) fv(t+1)
where <f“, @15 s searched as an infomorphism.

In general, aR/"'a : > f 71 (@)Ry () and BREMB 1 <> fEIBIRS AT
1¢=m)(B), where m and n are arbitrary natural numbers. The time development defined
by definition 4 allows the collapse of the duality of type/token-computation (i.e., there
is no infomorphism between the type- and token-computation). Therefore, it is difficult

| to simulate long-range time development. We propose the approximated model of the
time development by the following.

Definition 5. Approximated model of Dynamical Infomorphism

The system of definition 6, of which time can perpetually proceed, is
approximately expressed as the following.

(step1) £ 2 0 o) g, (11a)
fv(t+l) = fv(t—l) (11b)
(step2) bRy"'B <> fUBRS fTOB) (12)

(step3) aR*'a is defined such that for all aEtyp(4) and all bEtok(B),
bRBI+1 fﬁ(t+])(a) =>fv(t+1)(b) RAHla. (13)

As a result, time always proceeds. Both step2 and step3 can be replaced by the
following alternative procedures:
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(step2’) aR Mo« 71 V0a) R (o) (19)
(step3’) bRy"*'B is defined such that for all aEtyp(4) and all bEtok(B),

f‘v(t+1)(b) RAt+1a — bRBH»lfv\(H-l)(a). (15)

With respect to the approximation of dynamics defined by definition 6, the procedures,
step2-3 and step 2’-3’ are equivalent. Therefore, two procedures can be changed
arbitrarily.

Through mixing intra-computing (relation) with inter-computing (infomorphism),
both two relations and an infomorphism are perpetually changed. In the context of a
brain model, computing concerning about particular cognition (type-computing) and its
environmental neural activities (qualia-perception) can be perpetually changed.
However, a type- computing is generally robust with respect to logical structure.

We here estimate relation by constructing a lattice or a topological structure.
According to definition 2, typ(a) is a subset of tok(4), and then a relation is regarded as
a kind of filer by which subsets of tok(4) can be observed. Given a relation, one can
construct a lattice by colleting a set of typ(a) for all a in typ(4), and defining a partial
order by inclusion, however a lattice cannot be verified.

A B

R B

Lc‘fgical
_type-computing

|tine

S is mono

Input-object

Non-logical
Qualia-perceptios

Intuitive stick
to token(object)1?

Figure 2: Time development of dynamical infomorphism. A.
general time development. B. Specific time development under a
condition f* is always an injection. See text.

Figure 2 shows a time development of dynamical infomorphism from an initial
condition in which both relations of type- and token-computing are randomly chosen.
Most of time developments are shown in Figure 2A. Although token-computing is
changed in keeping random relation, a relation of type-computing is converged a
uniform structure; tok(B) consists of two kind of states 8 and B such that typ(8 ) =
typ(B) and typ(B ) = an empty. Therefore, a lattice representing a relation is defined by
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{typ(B), an empty}, and that is a Boolean lattice. Figure2B shows a time development
in which f* is always constructed as an injection (i.e., mono). In this case, relations of
both type- and token-computing are converged into particular relation such that for all
B typ(B ) is the same as each other. As a result, a lattice is a singleton set of which a
part is the same as a whole.

%},
b
¢

Figure 3: Time development of dynamical infomorphism,

accompanied with a Hasse diagram representing a lattice
corresponding to a type- and token-relations.

token-  type- .
comp comp  f 5

o
%&

Non-dlstrlbutive+ Boolean

o——'—'—’Ko/o

8

Recall the discussion regarding Sally-Ann tasks. We argue that non-autistic
children can grasp the story-universe accompanied with the outside and they
distinguish parts from a whole. By contrast, autistic children identify parts with a
whole, and then the truth of an individual character is assimilated with a truth of a
whole story. These tendencies can be explained by the time development of dynamical
infomorphism. It is clear to see that Figure 2A shows a dynamical brain for
non-autistic children in which a type-computing appeared in Brocca or Wernicke areas
representing Boolean algebra containing parts and a whole and that Figure 2B shows a
dynamical brain for autistic children in which both type- and token- computing are
similar with each other, representing a singleton set with no distinction of parts and a
whole.

Figure 3 shows an example of time developments of the dynamical infomorphism
that is more general case. A lattice represented as a Hasse diagram (Figure 3) is defined
by a subset of relation. Given a relation, R4 sub-relation is chosen by Sub(typ(4))NRy,
where Sub(X) is a subset of a set X. For a sub-relation, one can construct a lattice by
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colleting a set of typ(a) for all a in typ(4) , empty set and typ(4). In this case, one can
always construct a finite lattice. As shown in Figure 3, in general, type-computing is
converged into Boolean lattice on one hand, and token-computing is converged into
non-distributed lattice.

Type-computing

Number of complements
=N W A U

7T

f;:'; 5| Token-computing
£
2 4
: 3|
g i ﬂmH HMYA i
£ AR
0 50 100 150
time

Figure 4: Time development of the mean value of the number of
complements for a lattice representing type- and token-relations.
NDL and DL represent regions of non-distributive and distributive
lattice. Through time development, dynamical infomorphism leads
to a dynamical duality consisting of robust Boolean and
non-distributive lattices.

To estimate time development of dynamical infomorphism in terms of lattice
structures, we calculate the mean number of complements for all elements of a lattice.
Because a lattice is defined as (P(4), €), any elements of a lattice is a subset of 4, SCA.
A complement of S is defined as an element of P(4), S, such that SNS°=J and
SUS°=A. For an element of a lattice, there can be no complement or plural
complements. Therefore, the mean value of the number of complements for a lattice is
expressed as a positive real value. For a distributive lattice, the mean value of
complements is smaller than 1. Especially for a Boolean lattice, the value exactly
coincides with a value 1.

Figure 4 shows time development of the mean value of the number of
complements for a pair lattices representing type- and token-relations. It is clear to see
that in type-computing Boolean lattice is robustly maintained although relations are
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perpetually changed and that in token-computing non-distributed lattice robustly
appear. As a result dynamical duality between Boolean and non-distributive lattices are
kept in time development.

The result shown in Figure 4 is very interesting in the context of brain model. In a
distributive lattice, any parallel processing as lattice operations can be summed up with
one operation by using a distributive law. On the other hand, in a non-distributive
lattice, there are many cases plural parallel processing cannot be summed up. In
assuming that summing up parallel processing as one processing based on a module is
conscious operation, computing in distributive lattice can be regarded as conscious
computing by manipulating symbols. It can be computing in linguistic area like Brocca
and Wernicke area. By contrast, computing in non-distributive lattice can represent
subconscious computing that cannot be explicitly appear in conscious mind.
Dynamical duality between Boolean and non-distributive lattice can be regarded as
genesis and maintenance of the duality of conscious cognition and subconscious
perception, in an abstract sense.

4 Conclusion

We propose a toy model of phenomenal computing consisting an explicit
computing system and its environments to execute computing. In general, a
self-reference in the form of the mixture between computing and its environments is
destined to be a contradiction. By contrast, self-referential form as a phenomenal
computing can avoid a contradiction because of indefiniteness of environments. In our
framework, the notion of indefinite environments is constructed as an infomorphism
and self-reference is constructed as a mixture of relations and an infomorphism.
Instead of resulting in a contradiction, the system perpetually changes the relationship
between explicit computing and its environments.

Brain is a typical material that has to be regarded as a phenomenal computing,
Especially focusing on difference between non-autistic and autistic children’s reactions
for Sally-Ann task, we propose an abstract model for a dynamical brain. Brain model
consists of two sub-computing systems connecting by an infomorphism, and both
sub-systems and an infomorphism are perpetually changed. A whole system in general
results in a duality consisting of a computing system represented by Boolean lattice
and one represented by non-distributive lattice. It is possible to see that the model
mimics duality of conscious explicit cognition and subconscious implicit perception.
Our model also explains difference between non-autistic and autistic children with
respect to cognition of the relationship between parts and a whole.
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