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Abstract A practical anticipatory system with requirements of high reliability and
high security must be able to perform any anticipatory reasoning to get enough
effective conclusions anbicipatorily within an acceptable time in order to satisfy
the requirements from applications. This is a contradictory requirement since the
execution time of anticipatory reasoning gets longer in proportion to the amount
increasement of deduced conclusions. We are developing a forward deduction system
for general-purposè entailment calculus, named EnCal. Although EriCal is a forward
deduction engine for general-purpose entailment calculus, we expect that it can serve
as the forward deduction engine in an anticipatory system to perform anticipatory
reasoning based on temporal relevant logics. The key issue to achieve this goal is
the efficiency of EnCal. This paper presents results and their implicabions of our
experiences on inrproving the efficiency of EnCal by parallel processing techniques.
Keywords : Highly reliable systems, Highly secure systems, Anticipation, Antici-
patory reasoning, Forward deduction for entailment calcultls, Parallel processing.

1 Introduction

Reasoning is the process of drawing new concltsions from given premises, which
are already known facts or previously assurned hypotheses. Arl anticipatory reason-
ing is a reasoning to draw new, previously unknown and/or unrecognized conclusions
about some future event or events rvhose occurrence and truth are uncertain at the
point of tirne when the reasoning is being performed. Obviously, any anticipatory
reasoning must be forward rather than backward. Flom the philosophical viewpoint,
the notion of anticipation itself is intrinsically tirne dependent. The earlier an antic-
ipatory rca.souing draws conclusions, or the farther the future event is predicted by
an antiçipatory rea^soning, the higher is its degree of a,nticipation. To be a. comput'ing
systeur useful in valious a,pplica,tions in the real world, an anticipatory system must
have the abilitv of a,ntic.ipa,tory reasoning with some certairt clegree of auticipa,tion
to predict the ot,cunettc,e attd truth of sotue ftttttre event or events.
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Orr the other hand, from the viewpoints of software reliability engineering and
infornration security engineering, a practical anticipatory system must be able to
perforn any anbicipatory reasoning to get enough eflective conclusions anticipatorily
within an acceptable time in order to satisfy the requirements of high reliability
and high security from applications. Since the rnost intrinsic characteristic of an
a,nticipatory systen is its ability of taking anticipation, an anticipatory systern that
canuot satisfy the requiretnents of anticipation a.nd firneliness is useless at all in
practices in the rea,l world. Therefore, for an a,nticipatory system with requirernents
of high reliability arrd high security, its functioning is both anticipation-critical and
time-critical.

Thu.s, we face a dilenrma,. on the one hand, as a forward rea,soning, an antici-
patorv reasoning has to cleal with a lot of intermeclia,tes, which are usually involved
in any forward reasottiug, in order to get effective c,onclnsions a,nticipatorily. On the
other ltand, an a.nticipa,tory reasoning has to be performed as efficiently as possible
iu order to keep a high degree of a,nticipation.

We are cleveloping a. forwald deduction systenr for- genera,l-purpose enta,ilment
calculus, named EnCal. Although EnCal is a. forwarcl decluction engine for general-
purpose entailment calculus, we expect that it can serve a,s the forward deduction
eugine irr an anticipatory systent to perforrn antieipatory reasoning ba,sed on tempo-
ral relevattt iogics [7]. The key issue to a,chieve this goal is the efficieucy of EnCal.
This paper pleseuts results a,nd their iruplications of our experieuces orr improving
the efficiency of BnCal try parallel processing techniques.

The rest of this paper is organized as follows: Section 2 explains the position of
our research, Section 3 gives a,n a,na,lysis fol executiou time of a forward deduction
engine for anticipatory reasoning. Section 4 gives some explanations about EnCal
and preserrts a model of its parallelization version iu order to show a ca^se stldy of
itnproving tlte perforrnance of a, forward deduction engirre for arrticipatory rea,soning
bv parallel processing. Sectiorr 5 shows our implernentation of the para,lleliza,tion
version of EnCal and our experiments orr a sha.red-lnelnory pa,rallel computer and
clusters of PCs. Section 6 discusses our experiureltal results. Some concluding
remarks are given in Section 7.

2 Forward deduction engine for anticipatory reasoning

The concept of a,n anticipatory system fir,st proposed bv Roserr irr 1980s [16].
Rosen considered that "an anticipatory system is one in which present change of
state depencls upon future circumstance, rather thau merely on the present or past,"
and defined a'n anticipatory system 6s "s, systerlr containing a predictive nrodel
of itself and/or its environuent, which allows it to charrge state at an instant iu
accorcl with thc tnodel's prediction to a latter insta,nt." [16] Until now, philosophica,l
discussions orr anticipatory systems ald their cha,racteristics are still being continuecl
by scientists fronr various discipliles [8, 9, 10, 12, 13].
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On the other hand, from the viewpoints of software reliability engineering and
information security engineering, what we need is really useful systems with an-
ticipatorily predictive capability to take anticipation for forestalling disasters and
attacks rather than the philosophical definition and intension of an anticipatory
systern. In order to develop anticipatory systems useful in the real world, we has
proposed a new type of reactive systems, na,med "Anticipa,tory Reasoning-Reacting
Systems," as a certain class of anticipatory systems [5].

An anticipatory reasoning-reacting system (ARRS for short) is a computing sys-
tem corrtaining a controller C with capabilities to measure and monitor the behavior
of the whole system, a traditional reactive system RS, a predictive ntodel PM of RS
and its external computing environment, and an a,nticipatory rea-soning engine ARE
such that accordiug to predictions by ARE lrased on PlvI, C can order and control
R.S to carry out some operations with a high priority [5]. In this pa,per, we discrtss
about anticipa,tory reasoning engine ARE.

An ARE nrust be a forwa,rd deduction engine. Reasoning can be classified into
forward reasoning and backward reasoning. Forward reasoning is to infer new con-
clusions fi'om known facts or assurned hypotheses. Backward reasoning is to find
out the path which is from known fa,cts or hypotheses to given goal or sub-goal.
Anticipatory reasouing is forward rather than backwa.rd because whert we perfor-nt
an a,nticipatory reasoning we ca,nnot know some future event or cvents, whose occur-
rence ancl truth a,re uncerta,in at the tinre poirrt of the reasoniug is being perfornted,
a^s a goal or sub-goa.l. Reasoning can be classified into three forms, dedttction, induc-
tion and a,bduction. Deduction is the process of deducing or clrawing a,.conclusion
from sorne general priuciples aheady known or assrrrned. Inducti<ltt is the process
of inferring solle genel'al laws or principles fronr the observation of pa,rticulat' in-
stances. Abduction is the process whereby a surprising fact is made explit,a,ble by
the a.pplication to it of a suit,a,ble proposition. For an ARRS, the conclusions de-
cluced by bhe ARE must be definitely correct if the premises are correct. This ca'rr
be guaranteed by onlv deduction. Therefore, an ARE nrust be a forwa,rd dedrtctiou
engine.

3 Computational complexity of forward deduction for an-
ticipatory reasoning

A folward deductiorr engine for anticipatory lea^soning, as well a^s othet' forwa,rcl

rlecluction erngines; has a clifficult probleur that its exe<:ution tinte gets lottget' itr pro-

portion to the inclea,sentelt of cleduced conchrsious. Irr general, a fot'warcl clqlttctiorr

engine perfor-nrs the following fouf processes t'epea.tetlly for each irtfelettce ntle, in

order to get new couclusions, rrntil sonre ternrina,tiou cottditious a,re satisfied.

1. l,{atching process: it seeks au.rl picks up soure pL<rttises, rvltich are to be a,ltplied

to a,u irrfelerrce nrle, fronr a set of prenrises. Theu it ura,tdrers tlte prentise's to

a.u itrference rulc.
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2. Deduction process: it applies an inference rule to the prenrises which were
matched at the matching process.

3. Duplication checking process: it compares a conclusion which was deduced at
the deduction process with all previously dedrrced conclusions and plemises in
order to check whether it is a duplicate or not.

4. Adding process: it adds the conclusion which was judged to be new at the
duplication checking process to the set of prenrises.

We present some equations about the execution time and the amount of tlata
of a forward deduction engine if all inference rules apply to a,ll given premises. Let
n. be the number of previously given premises, .I be the number of inference.rules,
r be the number of premises required by an inference rule) in this assumption all
inference rules require r premises, and r,', be the execution time of judging whether a
inference rule can apply to some premises or not and matching the inference mle to
the premises at the matching process. The execution time at the matchiug process
is

n ' . 1 . T * .

Lel 16 be the execution time of deducing a conclusion. The executiorr
deduction process is at most

n ' . 1 . r 4 .

( 1 )

time at the

{2)

Let r. be the execution time of comparing a deduced conclusion at the deduction
process with a previously deduced conclusion or a given premise at the duplicatiorr
checking process, The execution time at the duplication checking process is at nrost

n .  I  .  r " *  ( 1  .  r "  * 2 .  r . + . . .  +  ( I '  n '  -  1 ) . " " )
I .n i - l

:  ( n . I +  L  t t ) . t .
k=l,|

: i{tt(" ' - 1)' + I(n' + 2n - L)l .r". (3)
a

In this assumption, the total execution time of above three process is

n' .  I  .  (r* * ra) +l '{ t ' tn'- t) '  + I(n' * 2n - r) l  .  r"

È O(12 'n2 ' ) .  
4  '  

(4 )

On the other hand, the number of detlucecl conclusions in forward deduction is
huge. In this assumption, the number of deduced cqnclusions is at rnost

I ' n ' .
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In the adding process) deduced new conclusions are added into a set of premises.
Then processing of forward deduction is again repeated using the conclusions as
premises. Thus, even the number of premises is few, the number of deduced conclu-
sions become large easily. We therefore can regard the execution time of a forward
deduction engine as O(N2"), where N denotes the number of data which includes
both finally deduced conclusions and given premises, because the number of data is
rather large than the number of given inference rules.

A useful forward deduction engine must get enough effective conclusions in an
acceptable time. This is especially true to a forward deduction engine for anticipa-
tory reasoning. Thus this problem must be solved in order to irnplement an efficient
forward deduction engine as an anticipatory reasoning engine. The efficiency of a
forward deduction engine can be improved by two aspects. One is shortening the
execution time of each process in a forward deduction engine. Another is reducing
the processing load. The first aspect focuses on the execution time of each process,
i.e., shortening r,r, r; and r". It is expected that it can shorten the execution time
of a forward deduction engine at a constant rate without the increasement in the
rrumber of deduced conclusions and given premises. The second aspect is focuses on
the processing load: the order of the execution time become less than O(N2") where
N is the number of deduced conclusions and given premises and r is the nunrber
of prentises required by an inference rule. This aspect can be classified into two
a,pproaches. One is to narrow down the range of data being processed. As at a
certain time, all data is not necessarily performed on a certain process of a forward
deductiorr engine. It is also expected that this approach can shorten the execution
tirue at a constant rate withoub lhe increasement in the number of deduced conclu-
sions and giverr premises. Other is reducing the processing load on one processor
by parallel processing. It is expected that this approach can shorten the execution
time in proportion to the number of using processors.

In this paper! we focus on reducing the processing load on one processor by
parallel processing. This approach is flexible to the increasement in the number of
deduced conclusions and given premises since it can increase the number of proces-
sors. In following sections, we present a case study of improving the performance
of an autonrated forward deduction system for general-purpose entailment câlculus,
named EnCal, as an anticipatory reasoning engine with parallel processing.

4 The case study of EnCal

We are cleveloping an a,utorrra,ted lbrward deduction system for genera,l-purpose
entailment calculus, nanred EnCal [4]. Atthough EnCa,l is a forrvard deduction en-
girre for genera,l-purpose entailnrent calculus, we expect that it can serve as the
forward reasonirrg engiue to perforrn a,rrticipatory reasoning ba"sed on temporal rel-
eva,ut logics irr an aut,icipatorv svst.ern [7].
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4.1 Forward deduction for entailment calculus

An erû,ailm,ent calculi is a formalization of a logical system tr such that the
notion of conditional (enta,ilment) is represented in Lby a primitive connective and
all logical theorens of r are rep'esented in the form of entaihnent.

In logic, a sentence in the forru of "if . .. then . .." is usually callerl a couditiona,i
proposition or simply conditional. A conditioual must concern two parts which are
connected by the connective "if ... then ..." and called the a,ntecedent and the
consequent of that conditional. The truth of a conditioual depends not only on the
truth of its autececlent a,nd conseqnent but also, and more essentially, on a necessa,rily
relevant, and/or conditional relation betweeu its antecedent ancl consequenl.

Wheu we study and use logic, the notion of conditional may appear- i1 both
the object logic (i.e., the logic we are studying) and the nreta,-logic (i.e., the logic
we are using to strrdy the ob.fect logic). From the viewpoint of the object logic,
there are two classes of conditiona,ls. One class is ernpirical conditionals a,ud the
otlter class is logical conditionals. In the sense of logic, a,n emlrirical conditiona,l
is tha,t its truth-value is <lepend orr the contents of its antecedent and consequent.
Therefore the truth-value of an empirica,i conditional carrnot be determinerl only by
its abstract form. A logica,l conclitiona,l is that its truth-value is universa,lly true or
false and therefore can be deternriued by its abstrac:t {brm. A logical conclitional
that is considerecl lo be rrrriversally true, iu the sense of that logic, is also called
enta,ilment of that logic [1, 2, 6].

A formal logic system I consists of a formal language, called the object la,nguage
and denoted by F(l), which is the set of all well-formed forrnulas of i, ancl a logical
collsequellce relation, denoted by meta-linguistic symbol F;, such that P ç f(r)
and c € F(L), P Fl c rr]€â,ns tha,t within the fra.me work of l, c is valid conclusiorr
crf prernises P, i.e., c valiclly follows from P. For a, forrnal logic system (r(r), l-r),
a logical theorern f is a formul a, ol L srrch that Q l T t where q5 is empty set. We use
f h.Q) to denote the set of all logical theorems of .L.

Let (F(I), l-1) be a, formal logic system and P q F(f) be a non-empty seb
of sentertces (i.e., closecl well-fonnecl formulas). A fcrnnal theorv with premises P
based on tr, called a tr-theory with preruises P and denoted by T;(P), is defined as
Tr@) :q Th(L) U TlfL(P), and Th"r(P) :6y {erlP t-; er and et ( f h@)} where
Th(L) a:nd Th'r(P) are called the logica,l pa,rt and the empirical part of the forural
theory, respectively, and any eleurent of ThiQ) is called an empirica,l theorem of
the formal theory.

For a, formal logic system where the notion of condibional is represented by prinr-
itive connective entailment "+", a formula is called a, zero degree forurula if and
only if there is r1o occlrrrence of "=+" in it; a fornrulaof the forur "A+ B" is ca,lled
a first degree conditional if ancl orrly if both ,4 and B are zerio degree fornrula,; a.
formula, ,4 is ca.lled a first degree formula if and only if it sa,tisfies one of the following
ctxrditions:

1. A is a first degree c:onditiorra,l,
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2. A is in the form +B (+ is a one-place connective such as negation and so on)
where B is a first degree formula,

3. A is in the form B *C, (* is a non-implicational two-place connective such as
conjunction or disjunction and so on), where both of B and C is a first degree
formulas, or one of B and C are a first degree formula and the another is a
zero degree formula.

Let k be a natural number. A fonnula of the form "-4 + B" is called a ktà
degree conditional if and only if both A and B are (k - 1)tâ degree forrnulas, or either
formula, A or B is a (k - l)trt' clegree formula and the a,nother is a jth(j < k - 1)
degree formula; a formula is ca,lled kt" degree formrûa if and only if it satisfies one
of the following conditions:

1. ,4 is a Èt" degree conditiona,l,

2. A is in the forrn +B (+ is a one-place connective such as negation and so on)
where .B is a kth degree formula,

3. A is in the fonn B * C, (* is a, rron-implicational two-pla,ce connective such as
conjunction or disjunction and so on), where both of B a,nd C is a kt', degree
formulas, or one of B and C are a, kth degree fornrnla a,nd the another is a
jto(j <,b) degree formula,.

Let (F(I), F;) be a formal logic system and À; be a nattn-al nuntber. The kth
degree fragment of -L, denotedby Thk(L), is a set of logical theorerns.of tr that is
inductively defined as follows (in the tenns of Hilbert-style fornral systems):

I .  i f  Aisa j t t ' ( j  ( , ( ; )  degree fornrulaand an axiorn of t r ,  then A€TIrk(L),

2. if A is a jth(j < lc) degree fornurla that is the result of a,pplying an inference
rule of I to some urernbers of Tlzk(L), then,4 €.Th,k(L),

3. nothing else is a, rnember of Tlr.k(L), i.e., only those obtained from repeated
applications of 1. and 2. are urembers <tf Th,k(L\.

Let (F(tr), F;) be a, forrnal logic systeur, P c F(L), and /c a,ld 7 be two rratura.l
nurnbers. A forrnula A is said to be jtà-degree-deducible from P basecl onTtrk(L) if
andon lv i f there isanf in i tesequenceof fo rmulas- f r , . . . ,Âsuchtha t / , :Aandfor
alli(i < n) (l) Tn ç Thk(L), or Q) fi € P, or (3) /i whose degree is not higher thau j
i s theresu l to fapp ly ingan in fe rencern le tosornernerubers . f i , , . . . , f i , , , ( j r , . . . , j *1
i) of the sequence. If P + d', then the set of all fornrula,s which a,re jtt-tlegree-
deducible from P based on Tltk(L) is called the jt" degree fragrrrent of the forrua,l
theory with preurises P based ou T/rfr(L), deuot,etl bv Tf^*,r,(P) [6J.

Autonated forwa.rd dedtction is a, process of deducing nèw a,nd nnknown couclu-
sions automatically bv alrplying inference rules to preurises a,nri previously decluced
conclusions repeatedly unbil sonre previouslv sper:ified condition is sa,tisfied.

t62



4.2 EnCal

EnCal supports an automated forward decluction for entailment calculi based
on strong relevant logics as well as other logics [4]. It provides its users rvith the
following major facilities. For a formal lcrgic systeur I which may be a propositional
logic, a frrst-order predicate logic, or a second-order predicate logic, a non-empty set
P of formulas as premises, inference rules of logic system tr and natura,l number k
and j (usually, k,1. { 5) as limit of degree which is the degree of nested entailment
(denoted by "+" in this paper), all specified by the user, EnCa,l can

l. reason out all logical theorem schemata of the Tl*(L),

2. verify whether or not a formula is a logical theoreûr schema of the ?lzk(r), if
yes, then givethe proof,

3. reason out all èmpirical theorems of the jtà degree fragment of Ltheory with
premises P based on Thk(L),

4. verify whether or not a formula is an empirical theorenr of the jtâ degree
fragment of Ltheory with premises P based on ?hk1tr), if yes, then give the
proof [4].

In this paper, we focns on the function that rea^sons out all logical theoreur
schemata, LTSs for short, of the k'h degree fragment of a propositional logic since
it is most basic function of EnCal.

An automated forwa.rd deduction by EnCal consists of 3 parts as follows.

1. Initialization: it takes in premises, limits of degree k and j and inference rules.

2. Forwa.rd deduction: about each inference rule, it repeats following processes
until it deduces no new LTSs.

(a) Matching process: it seeks and picks up some [,TSs from a set of pre-
viously deduced LTSs or premises to apply an inference rule. Then it
matches the LTS to the inference rule.

(b) Deduction process; it applies the inference rule to the LTSs which were
matched at the matching process.

(c) Duplication checking process: it compares a conclusion which was de-
duced at the deduction process with all previously deduced LTSs in order
to check whether it is duplicate or not.

(d) Adding process: it adds the conclusion which was judged to be new at
the duplication checking process a,s nerv LTS to the set of premises if the
its degree of nest of entailment is lth degree (1 5 I < Â;).

3. Outputting: it outputs all deduced LTSs to a file.

At present, the inference rule of EnCal is Modus Ponens only. Modus Ponens is tha.t
B is deduced frorn A + B and .4.
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4.3 Computational complexity analysis

The each process in ihe forward deduction part is depends on the result of
previous process prior to it.

The forward deduction algorithm in EnCal is as follows. Let n be the number of
previously deduced LITSs and given premises, and {p} : {po, pr,. . . , pn_r} be the
set of premises and previously deduced LISs.

Algorithm 1 Forward deduction

L
2.
3 .
4.
5 .
6.
,7
l .

8,

L
10.

n, +- the number of premises.
p < - 0
k r-- the limit of degree.
do

,rtr' *-,rL
f o r ( i + - 0 , i < n , i + - i + l )

f o r ( j + - p , j < n , j + J + 1 )
Matching(P1,Pi):
If it can apply Modus Ponens to between P; and Pi, return SUCCESS.
If no, return FAILURE.

if Matching (Po, Pi) returns SUCCESS
then Deduction(Pi,Pi):
it applies Modus Ponens to Pr and Pr.

11. Duplication-check(C):
If a conclusion C which was deduced at Deduction(ft,P1) is
duplicate, return DUPLICATE. If no, return NEW.

12. if Duplication-check(d) returns NEW
13. then Adding(C):

it adds an a conclusion C into {P} if the degree of C is smaller
than &. After that n! +- n' tr 1.

1 4 .  f o r  ( i  * -  p , i  . - - f l , i e - i * L \
1 5 .  f o r  ( j < - 0 ,  j  <  p ,  j  1 -  r + 1 )
16. Matchiug(fl,Pi)
17. if Matching (Pr,Pi) returns SUCCESS
18. then Deduc|ion(fl,P)
19. Duplication-check(C)
20. if Duplica,tion-check(C) returns NEW
21. then A<lding(C)
22. p <- n,
23. n * n.'
24. while (uew LTSs are dedrrced).
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The algorithm of Duplication-chec)<(C) is as follows. Let Comp(A,B) be a func-
tion which cornpales A with B to judge whether B is duplicate of A. If B is
duplicate, then Comp(A,B) returns DUPLICATE.

Algorithm 2 Duplication-check(C)

1 .  fo r  ( i  < -  0 ,  i  <  n ,  i< -  i *  1 )
2. Cornp(P;,C):

C is a conclusion which was deduced at Deduction process.
3. if Cornp(fl,C) returns DUPLICATE
4. then return DUPLICATE
5. return NEW.

The rrra.ior portiou of the execution tirne of EnCa,l is spent at the duplication
checking process. Let N be the number of given prernises and new LTSs whic'h
are deduced finally. The number of premises required by l\4orius Ponens is two.
Tlre nurrrber of tirnes of processing \4atching( A,B) is N2. The number of times of
processing Duplir:ation-check(,4) is at most N2 and at least N, since the nunrber of
deduced corrclusions and iuterrnediates is at most .1y'2 and a,t least N. The number
of tines of processing Comp(A,B) is at, rnost

N 2  - l

I  r :
fr:1

and at lea"st

{r/r(t/, - 1)}
2 '

(6)

( ,  /!'* : {lv(/{;- 1)}
/c: I

Thus the calculatecl arnonnt of EnCal approaches at most O(Nn) and at least O(N2).
EnCal also lta^s a problern tha,t its execution time gets longer in proportion to the
atnount increasenrent of deducecl conclusions.

4.4 Parallel version of EnCal

We surnmarize the processing features of EnCal.

1. The each process in the forward deduction part depencl on the results of pre-
vious process prior to it.

2. Previously deduced LTSs are accessed frequently at the matching process and
the duplication clecking process.

3. The uumber of times of processing Matching(,4,,B) is at most /y'2, where N is
the number of fruallv deduced LISs a,nd given premises.

4. The nunber of tirrres of processiug Cornp(.A,B) is a,t rnost {l/2(.1/t - l)}12
and at least {.r/(1/ - r)}12
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Fig. 1: The model of pa,r'allelization versiorr of EnCal

We design the parallelizatiotr version of EnCal based on ma,ster-slave model.
Master-slave rnodel ba^sed on agenda parallelism paradignr [3] is a suitable model
for parallelization version of EnCal beca,use of above features 1.3 arrd 4. Figure 1
shows the nrodel of parallelization version of EnCal. The model consists of following
parts where the initialization part, the nratching process, the deduction process, the
duplication checking process, the a,dding process and the outputting part are same
one of the sequential version <lf EnCal.

1. [nitia,lization.

2. Forward de<iuction: about each inference rule, it repeats following processes
uutil iù deduces no new LTSs.

(a) Master: it changes a slave part after dividing prernises to other slaves.
(b) Slave: the following processes are repeated independently of other slaves.

i. Matching process.
ii. Deduction pr-ocess.

iii. Duplicatiou checking process.
(c) Duplication checking arnong slaves ploccss: it detects and redut:es the

duplicate which is not detected a,t the duplicatiorr checking plocess irr
Slave part.

(d) Addiug process.

3. Outputtirrg.

r66



It is necessary for efficient duplication check to be able to access all previously
deduced LTSs. However, the set of deduced conclusions at a slave is not referred
by other slaves. The parallelization of EnCal needs the duplication checking among
slaves part.

on this parallelization of Encal, let p be the number of processors, and N be
the number of given premises and uew LTSs which are deduced finally. If deduced
conclusions or intermediates are evenly deduced on each slave, the number of times
of processing Comp(,A,B) at the duplication check process on one slave is at most

{Nr (N,  -  1 ) }

and at least

Dil=, 'k_{ry(ry-1)}

The number of times of processing Comp(.A.B) at the duplication checking among
slaves process is at most

\ -N' - t  I
/-k=l ù

p (8)

(e)

27t

2p

N 2 / p _ t  r ^ { 2 ( N 2 _ p ) }
P '  f  k :  t '

/c=1 2P '

and at least

r:{!EùN/p-r

p.D
ft=1

Thus the theoretical speed up ratio is approximated as follows,

(10)

(  1 1 )

(12)
{N'z(N2- i ) }  + {N2( iv2-P)}

Speeduprat io N 
@

In the parallelization version of En0al based on master-slave model, its theoret-
ical value shows that the processing load on one processor decreases in propoltion
to the increasement in used processors.

(at mosty

(at least)
2

AJ
p
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Table 1: The execution time on Sun Enterprise 6000 (sec)

Logic systems I processo, 2 p.o"o.o* 4 processor" 8 pro"o"o., 16 ptones*tt

Te(a) 3499 1641 922 562 381
E"(4) r2347 6100 3370 202r 1290
Re(a) 85962 4TT46 2r825 12668 8236

-.t+- Te 4th dog@ t6g[Mt
. + Êe /tth dqr@ tragmfit
'* Ro4thd.gcclGgmgrit

. .*- ' - '
. . .x '  .  . .1

t "  . . + '

- E ' .

Thê number of processors

FiS. 2: Speed-up ratio on Sun Enterprise 6000

5 Implementation and Results

We have iurplemenbed the parallelization version of EnCal based on master-
slave model on a sha,red-memory parallel computer and a cluster of pCs, and got the
execution time of deducing 4th degree fragment from axioms of some logic systems,
in order to investigate the effectiveness of its model.

We have implemented the para,llelization vetsion of EnCal with C and OpenMP
[14, 15] on the sun Enterprise 6000 (ultra spARC l6gMHz x 16,4Gbyte main
memory)' Table 1 shows the execution time on Sun Enterprise 6000. Te(4) denotes
the 4tt' degree fragrnent of relevant logic system T with àntailment. The number
of conclusions in Te(4) is 10,649. Ee(4) denotes the 4tà degree fragment of relevant
logic system E with entailment. The number of conclusions in Ee(4) is 1b,b19. Re(4)
clenotes tlte 4th degree fragment of relevant logic system R witir entailment. The
number of conclusiorn in Re(4) is 35,022. Table 1 shows that the execution time
gets sltorter irr proportion to the increasement in the rrumber of processors without
<lepcnding on the nttrrtber of declucecl conclusions. Figure 2 shows the relation be-
tween tlte ntrmber of processors and the speed-up ratio against ttre execution time
otr 1 protresstrr. Figure 2 sltows the same tendency a.s the theoretical vaIue.2fp,Ttis
the rurrnberl of proc,essors, a,cclrrirecl in sectiou 3 was shown.

Wc have a'lso itttpletrtentecl the pa,ralleliza,tion version of EuCal on an 8-rrode clual

o
o
.E
.9
E
a
l
é
oru
o
v,

I

7

1 2
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Table 2: The execution time on a clusters of PCs (sec)

Logic systerns 1- pro"o"o, 2 pro."ssot'" 4 processor" 8 processors 16 pro"o"or"

Te(4) l p r o c e s s o r / l n o d e 905 497 272 157
2 p r o c m r s / l n o c l e 497 273 r57 T07

Ee(a) l p r o c e s s o r / l n o d e 4706 2413 1285 666
2 p r o c e s s o r s / l n o d e 24t8 1287 666 406

Re(a) l p r o c e s s o r / l n o d e 31317 i5840 8530 4620
2 p r o c e s s o r s / l u o d e 15860 8570 4642 2709

^ 1 0
o
E
: 8
F
g

O a
f -

o
o
o a
a

{a- T€ 4th deg@ lragmnt

. + Ee 4th degreo lragmenl

-* R€4lhdogræl€gmênt . : : : ' .1 ' '

' t'-"'Yt't*

..::*t"-/

i'7.,.,x

. tLl''

6 8 t 0 1 2

Number of processors

Fig. 3: Speecl-up ra,tio olr a, crlusters of PCs (2 CPU / 1 node)

Pentium III lGHz PC SIvIP cluster (i840 chipset, 1GB RDRAIVI nra,in rnenory per
node, Liunx 2.2.16\. The nodes ou the PC SMP cluster are irterconnected tluough
a 100Base-TX Ethernet, switch. MPICH-SCoIe [11] was used a^s a, comlnunication
library. We used an irltlanode MPI libra,ry for the PC SNIP cluster. Ail routines were
written in C. Table 2 shows the execution time on the cluster of PCs. The colunrn of
"1 processor / 1 nocle" is a case of deducing by 1 processor per 1 node. The column
of "2 processors / 1 rode'l is a câse of deducirrg by 2 processor per I node. In Table
2, the execution tirne gets shorber in proportion to the iucreasentent in the number
of processors without depending on the number of dedrrced couclusions. Figure 3
shows the relation between the number of processors ald the speecl-up ratio against
the execution time on 1 processor. using 2 processors per node. Figure 3 shows the
sa,me tendency as the theoretical valte2fqt, p is the nurllber of processors, acqrdrecl
in Section 3 was shown.

Thus onr experiments shows the rnodel of the paralleliza,tion version of BnCa,l is
effective for iurproving the pelformaltce of EuCa,l, indeJrendent of the differen(:e ill
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the architecture and the nurnber of deduced conclusions.

6 Discussion

Improving the performance by parallel processing is effective for not only EnCal
but also other forward deduction engines which perform four processes repeatedly;
the processes are matching between inference rules and premises, applying inference
rules to premises, detecting and reduôing the duplicate and adding new conclusions
to the set of premises. The model of the parallelization version of EnCal is only
designed to reduce the number of times of performing its four processes. It is not
considerecl wha,t an inference rule or data structure ErrCal Llses, i.e., the model is
designed paying altention to the nurnber of tinres of perforrning their processes,
but not the kinds and rra,tures of their processes. Thus if the iuference rule of
EnCal chartge from Modus Ponerrs into othel infelerrce nrle, the execution time of
parallelizatiort version of EnCal gets shorter in proportion to the increa^semelt in the
uumber of processors. In a forward deduction systern for a,rrticipa,torv reasouirrg a"s
well as <lther forward deduction engines whose inference rules and/or data structure
are difl'erent from EnCa,l, the executiorr tirue of the parallelization version of it
therefore gets shorter in proportion to the increa^sernent in t,he mrmber of processors.
too.

7 Concluding remarks

A practical anlicipat<-rty systenr with retluiremeubs of high reliability and high
security trtust be able to perfortrt auy arrticipa,tory reasoning to get enough effective
cottclttsions a,nticipa,torily dtrring a,rr a,t:ceptable t,irne iu orrier to sa,tisfy the require-
ntc:nts from applica,tions. We have preseuted a urodel of a, llarallelization versiol of
EnCal based on ttraster-slave model and irnplernerrted it on a, sha,red-mernory paral-
lel computer and a clustels of PCs, a,s a, case study to investigate the effectiveness
of para,llel processing for irttproving the perf<rrnla,Dce of a fbrwa,r'd deduction errgine
for auticipatory lea^soning. Our experinrents have shown the the execution tinre o1
both architectules gets sholter in proportion to the increasenreul in the nurnber
of processors without depending on the number of deducetl r:onclusions and giveu
Premises. Hence, inrprovirrg the lrelfornra,nce by parallel processing is effective for
all folwa.rd dedrrction engiues for a,nticipatory reasoniug.
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