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It is really important that the scientific community becomes
conscious that anticipatian hos aphysical background.

D. M. Dubois

Abstract
In their accompanyingpaper, the present authors have reached a more physical version
of the equations of stnrcture of a Kahua-Klein space that emerges from Finslerian
teleparallelism (TP). Those equations pertain to "the physical field' (actually its
potential), including the quantum sector- This is demiurgic IP. We sigmt, as Élie
Cartan di{ that the field equations imply that spacetime is teleparallel, and not just
simply compatible with TP. A "mother of the physics" results, for lack of a better name,
meaning that physical o'systems" -i.e. concepts, forrnulas and physical theories- emerge
from it. We take only a few timid steps in the study of the idiosyncratic manifestation of
anticipation in such a theory. our study of emergence will, we hope, help others deal
more authoritatively with anticipation for this new frontier of natural science theory.
Keywords: anticipation, emergence, reductionisrq unification, teleparallelism.

l. Introduction
ln an accompanying paper (Vargas-Torr, 2005e), we have obtained a closed system of

geometric equations for the structure of a very special space. We now show, to within
limitations of space and youth of the theory, that physics emerges from the equations of
appropiate classical (i.e. non-gauge) strucfures. We then take the first steps in the study
of anticipation in the theory of "demiurgic teleparallelism" (TP) (see section 2) .

Very little of what is to be found in this paper is well known. Points of contact with
the work of others are sporadic. On the mathematical side, we have used Finsler
bundles, here as in previous papers, but very few Finsler geometers deal with them. tffe
use the Kâhler (1962) calculus, and his namesake equation. But even practitioners of the
algebra (Clifford's) that underlies it are rarely familiar with that calculus, much less with
Kiihler equations that involve tensor-valued differential forms. The mathematical
novelty actually goes beyond what has been described in the accompanying paper. For
instance, the equations of structure of our Kaluza-Klein (KK) (type oD space transcend
those of spaces endowed with standard connections, which the theory of moving frames
provide. Our geometry is more than just a theory of those frames. This is a subject raised
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but unresolved by Cartan (l922a, "Sur les equations...", Oeuvres Complètes). We have
shown (Vargas-Torr, 2005c) that it relates to his description in the same paper of
distributions of energy-momenta as bivector-valued (rather than vector-valued)
differential 3-forms. Similarities prompts us to use the term KK for our new structure.
Our results in previous publications and a few new ones are put together here in the form
of the first exposition of demiurgic TP, though brief because of limitations of space.

Our methods are the little understood Cartan's methods, based on his view of
generalized geometry as an application of the theory of integrability of differential
systems. Let af be the soldering forms ("square root of the metric"). Let oBA be the
differential l-forms for the affine connection, which is not Levi-Civita's in this paper
(we use capital indices to indicate that the dimension need not be 3 or 4, associated with
Latin and Greek characters). Those differential forms are the invariants that define an
affinely connected manifold by constituting the input in the system of differential
equations dP:a/ee and des :anAee. This system, essential to the moving frame metho{
is not integrable in general, and yet it is not customary to write ilP:ctle,c and den. Let ,t
denote, as usual, exterior product. ddP designates the result of formally exterior
differentiating dkleA) to obtain (dc,f-c'f 'ta#)e,a, like in all of Cartan's work on afftne
and Euclidean differential geometry (See also, among others, Chem, 1948, formulas 66,
77 and those in befween 79 and 80). Authors, however, avoid writing down ddP and
ddee. Thus / is not zero, also in Kiihler, unless applied to scalar-valued differential
forms. From dP, one also gets the space-time metric, dP'dP, which is viewed from an
alternative perspective in our KK space (Vargas-Torr, 2005e).

Of great importance is that the scalar valued differential forms of Cartan and Kâhler
are functions of curves, surfaces, hypersurfaces, etc, rather than anti-symmetric
multilinear functions of vectors. Correspondingly, components in the Kâhler calculus
have, in addition to the superscripts, fwo series of subscripts, respectively for integrands,
which live on the manifold and do not dçend on cormection, and for multilinear
functions of vectors, which live on bundles of the manifold and are connection
dependent. Understanding Kâhler's work is the test of understanding Cartan. Modern
interpreters of the latter's work misinterpret dP, and thus a/. tne single series of
subscripts in their quantities is usually the wrong one.

The contents of the paper is organized as follows. ln section 2, we explain what
demiurgic IP is. Its virtually canonical field equations (Vargas-Torr,2005e) constiûrte a
closed differential system (i.e. without external input) for the differential invariants that
define this geometry. There is nothing physical in it; every physical concept must
emerge. Emergence here is like one face of a coin, the other face being ts6trçfionism.
These are not antithetical concepts. In section 3, we deal with the emergence of particles
and their equations of motion" and in section 4 with the emergance of traditional
physical theories from geometry, not yet from demiurgic physics. In section 5, we deal
with emergence from demiurgism itself. Notice our avoiding the term quantum. The
torsion sector of demiurgism is based on a quantum equation; its curvature
(gravitational) sector is not. That is the way in which the interactions emerge in
demiurgism. Our steps on anticipation (section 6) are very modest, given the subject's
complexity and that anticipation in physics was foreign to us until very recently.
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2. Demiurgic Teleparallelism
The concept of demiurgic TP (or demiurgic theory) is due to Cartan (See Debever,

1979) when discussing an attempt by Einstein (1930) at a unified theory of the physical
field based on TP (property of an affine connection of defining path-independent
equality of vectors at a distance). The field equations of a demiurge or builder of a
universe must show that his world is teleparallel. Physicists doing TP, on the other hand,
take it for granted; their field equations need not imply TP, just be consistent with it. Let
Af be the scalar-valued differential 2-forms that constitute the components of the 2-
tensor-valued differential 2-form known as affine curvature. One of the terms in the first
Bianchi identity is given by afaQf , the other terms combining to form the exterior
covariant derivative of the torsion Cartan used, af N)f : 0 as example of an equation
cmnpatible with both Riemannian and TP geometries (Debever, 1979). A differential
systern where said equation were the only one involving the afline curvature would not
be demiurgic. Since there was no mention of curvature, that attempt by Einstein was that
of a physicist, not of a demiurge. His limited knowledge of connections prevented him
from realizing that such course of action \iv:$ even incompatible with his thesis of logical
homogeneity of geometry and theoretical physics (Einstein, 1934): when one adds to the
propositions of geometry the proposition that the bodies of the physics behave like the
frames of the geometry. He used as example Euclidean geometry and the "physics" of
Greek times. Cartan successfully started demiurgic TP (Vargas-Ton, 1999).

There is only one physics and many geometries. We anticipate that Finslerian TP and
our related KK-type geometry (Vargas-Ton, 2005e) should be used for implementing
Einstein thesis. The latter arises canonically from the former. Both result in the process
of enforcing Clifford-algebraic structure, in addition to geometric equality, the group-
subgroup-subsubgroup complex of Lorentzian geometry and principal fiber bundle
structure. The first equation of structure of that KK space reads y'ff : âv t{, where d is,
say, uvd p (Vargas-Torr, 2005e). In principle, the symbol vin ôv ff stands for Clifford
product in both algebras, namely of differential forms and of the tangent tensors
constituting their valuedness factors. The second equation of structure is the statement in
terms of metric curvature and torsion of the vanishing of the affine curvature. We write
it down later. The differential system that both together constitute is meant to be
satisfied at any point in a fermion, boson, superconductor, vacuum, brain, etc. It does not
apply to systems, whether physical or biological. In demiurgism, systems must be
viewed as emergent. Reduction from demiurgism to physical systems might in principle
involve loosing contents that might remain in reduction to living systems.

Our demiurgism is strong, unlike the weak one of post-Levi-Civita general relativity
(GR), where one identifies metric and affrne curvatures under the term Riemannian
curvature, implicitly assuming null torsion. It is weak because the field equations speci$
only a contraction of the curvature. Through integration, one obtains the metric and thus
the curvature, not just the Einstein tensor (The extra information is in symmetries of the
metric or in initial conditions). With regards to this issue, Cartan (1922a) stated:
"It is very remarkable that Einstein's gravitational equations only evolve ten linear
combinations of Riemann's 20 syrnbols; another I0 linear combinations exist... It is
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quite disconcerting that only the last ten quantities hove been considered by plrysicists"
(emphasis in original).
ln retrospec! GR might have adopted a teleparallel metric compatible connection in the
1920's, rather than the Levi-Civita (LC) connection, born in 1917. If we view Einstein's
equations as pertaining only to the metric curvature and making no assumptions about
the affine connection (and thus about the affine curvature and the torsion), GR is not
demiurgic, but a physicist's work, since the Einstein equations by themselves do not
speciry the torsion. With the LC connection, the torsion becomes automatically zefo,
even if LC could not have known this at the time.

Key to the understanding of our reformulation of the equations of structure of our KK
space is the realization that the specification ofthe torsion is not as straightforward as
that of the curvature (Vargas-Torr, 2005e). This asymmetry benveen structure equations
(also betrveen Bianchi identities) is due to non-sytnmetry of the roles of af and a,! in
the connection equations (Vargas-Torr, 2005c, sec. 3). In TP, the first Bianchi identity
implies that the torsion's exterior covariant derivative is zero. Hence there is redundancy
in specifing the futl torsion through the first equation of structure. The new first
equation of structure is quantum mechanical.

3. Emergence of the Particle Picture

In this section, we deal with emergence of particles and their equations of motion.

3.1 The Energence of Particles

The solutions of the equations of structure of demiurgic TP have not yet been solved.
However, Muraskin (1995) has solved by computer his sophisticated system
r-6.1: f'ala7t.+ I"rrI\- Ior*fr^, (l)
of gecnnetric non-linear equations in four dimensions. His work speaks of the wide
collection of solutions that a complicated system may have (Our demiurgic system is
mme sophisticated *lan Mwaskin's). Consider a differentiable manifold endowed with
torsicrr and the flat space-time metric. In orthcrrormal frames dual to a Cartesian
coordinaæ systern, the Levi-Civita symbols are zero. The components of the connection
end of *re contorsion (f ,pd@ot\ are then equal. Equations (1) stâte thât
d(f ,cd&*) = 0 (2)

Grnrmsfin has his own view of this system). Notice the replacement of ar" with e* (dai

srÂ dc* æe respectively connection independent and connection dependent). Equation
(2) is not a Bianchi identity or an equation of sFucture. It is, however, "geometric
enough" to be ofinterest for our purposes.

The initial conditions for these equations are values taken by the gamma functions at
a point. They give rise to what Muraskin names as solitons, instantons, closed string
particle systems, trivial solutions (like sine waves), etc. Limitations of space do not
allow us to depict here a solution ofparticular interest, his "packet solution", reproduced
in Vargas-Ton (1997,2002).It is a multiwave packet solution without uncontrollable
spreading, and living in a "vacuum" or region between the packets, where the gammas
perfonn very close small oscillations with a band structure that evolves spontaneously
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into a packel back into the vacuufii, etc. This solution, and the existence at the same
time of other solutions with completely different characteristics, shows the possibility of
emergence of complex organizational structure from the type of equations that
differential geometry provides. Muraskin's packets thus exemplify the emergence of the
concept of particle and ofbunches ofparticles as free stable solutions to field equations.
If solutions of this type living in "different regions" move towards each other, the
interaction of the packets (read particles) depends in the details of the interaction of the
backgrounds that precede the wave packets themselves. What may appear as an
insignificant difference in initial conditions may result in solutions of totally different
natures. In other words, events occurring somewhere may affect a solution elsewhere
through small changes in the background that "precedes" it, as if dealing with a non-
local interaction.

3.2 The Emergence of Equations of Motion
An affine connection in the bundle of frames of a space-time differentiable manifold

Vt41i.e. pre-Finsler) t)?e can be pushed to its Finsler bundle, where we shall assume that
our analysis takes place independently ofwhether our connection is properly Finslerian
or not. The base space of this bundle is spanned by the invariant forms ar0, oJ and aà0. Its
curves have significance in space-time only if they are natural liftings, i-e. if they satis$
the conditions ff-u^dt:O, equivalently ai:0. Three more equations relating those
seven differential forms are required to determine a curv€. The conditions atr0:6 **t6
out. By metric compatibility , ûù' : eh' , and, therefore , too' =0. But, in the Finsler bundle,
4u=4gr:(Dde6. Hence, du=O; the autoparallels thus emerge as distinguished curves in
the theory of Finsler bundles" In fact no other curves suggest themselves just from
observation of the set of differential invariants. We shall later see what differential l-
form is involved in the equation for the extremals. The specific form of the equations for
the teleparallels will depend on how we deal with the torsion of the space, giving rise
either to Euler-Lagrange equations where the contribution of the tomion is buried in a
fictitious metric, or to equations where that contribution is explicit and differentiated
(from) but unified to the contribution of the metric.

4. Emergence of Physical Theories from Geometry or Kâhler Theory
The emergence of physical concepts and theories will be considered in Finsler

bundles first, rather than from the structure equations of demiurgism in the KK-type
space canonically associated with Finslerian TP.

4.1 The Emergence of Mechanics

Suppose that, for some physical problem, the first component, d,of the space-time
torsion is a total differential, dA. The time-like component of the first equation of
structure then becomes:
dkf - ù-oJ natio:0.
Naming ato-A a" af ,wehave
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daf -oJ ar'f : g. (4)
In order to later apply the natural lifting conditions, we w.'J.rte afr as ldt+A^(dx'-u^dt),
where / and A. are determined by the metric of the space. Consider for example the
"square root' af:l(dt-u&) and aJ:ilar-ua\ of the metric d/-di, where 7 is as in
special relativity. We now wt'rte tdt-u&) in terms of dt and dt-u& to obtain ,o:VIdt -
uy(dx-udt), which is an example of atq:ldt+A.(d{-u^dt). The left hand side of eq. (4)
becomes l,^d{ t dt + l. *du- n dt + dA^ a f - A* du^ rt dt - af ,talf, where d denotes
dx'-u^d|, where /,, and l.^ represent partial derivatives of / with respect to { and u^,
and where we have used that a40 equals cû by metric compatibility. Since the al are
linear combinations,4p.{ of f , eq. (4) can be written as:
(dA^- I,,dt +ohoAo,) a d + (A.- I.,)dt adu^:0. (5)
This implies A^=L- and
dt.^- l,^dt +640,4r^:C^id, C^i:Ci-. (6)
We now proceed to obtain teleparallel natural liftings. Equation (6) becomes
dl.^- l ,^dt:0. (7)
On curves, all differential forms are multiples of just one. We can divide symbolically
by dt. T\e Euler-Lagrange equations thus emerge. Notice that our coordinates are totally
arbitrary and the r''s are, therefore, the q-'s. The Lagrangian thus emerges (up to
constants) as a geometric concept, namely the time component of the square root of the
"renormalized metric" modulo the natural lifting condition. The momentum, 1,., has
emerged simultaneously. Furttrermore, under this condition, ds and o" (:ldt) are equal
(to be replaced by the renormalized ds' and at" if we absorbed the torsion as indicated
above). Since the Euler-Lagrange equations constitute the solution of a well-known
extremal problem, equations (7) become the equations of the geodesics in the fictitious
torsionless space-time. These extremals are the autoparallels of the original space-time
with torsion from which the fictitious space-time was obtained.

We shall now obtain the intesrâl invariant that defines classical mechanics. coo can
now be rewritten successively as
ldt+1..(dq''-u'dt1 : 1., dq^ - dt\..(d q^/ dtÈ U.
The Hamiltonian, l.^(d q'/dt) -1, has now emerged. With
emergence, we have:
at* : p, dq^ - Hdt,
and, therefore,
daf : dp-&^ -dH/\dt,
which shows that the integral invariants of nechanics derive from the differential
invariants of geometry. If the full structure of Finslerian TP were involved, the
absorption of the torsion into the metric would not been appropriaæ.

4.2The Emergence of Electrodynamics: Part 1.
We now deal with the emergence of electrodynamics from geometry. The argument
starts as before with the equation of motion, except that we do not absorb the torsion
into dato. Intbe d equation,
d :dao-0) 'Ao)o ' ,

(8)
notation that reflects this

(e)

(10)
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we choose the symbols for the coeffrcients of the most general form of the
component of the torsion as
tt = - Fa(f , u^) d 't ê + 5,,1{, u'1 o" ,t du',

zeroth

(r2)

The same argument as before now yields
dl.i/dt - l,i + C(Ei+Bktl-Bif) : 0.

where we further narre Fçi as CEi and Fi*:-CBi (ij,k being any cyclic permutation of
1,2,3).T\e right hand side of eq. (ll) is now given by the left hand side of eq.(5),
except that / now pertains to the true au of the space-time. We drop the ,S terms of the
torsion (the equation of motion derived from the field equations might coincide with the
autoparallels only in as limited range of distances thus excluding the strong interaction).

(13)
The equæion of motion of the previous subsection no\il contains the Lorentz force term.
It is then clear that the R0 part of the Finslerian torsion with S terms set equal to zero has
to be identified, up to a constant, with the electromagnetic field- The factor C is to be
viewed as a particle dependent if the geometry is to fit the physics. This is so since
different charges see different effective torsions, as the particles are manifestations of
the torsion of space-time where they are located. Second, the .d's of the Finslerian
formulation do not enter the equations of motion. Hence, do not need special torsions to
obtain electmdynamics; any torsion will do provided that we represent it in sections of
the Finsler bundle.

Consider next the first Bianchi identity. For simplicig, we consider it in the Finsler
arena but without Sterms. One gets:
R9 ù,,1 * RP x,7; * * R9 r* I * RQ û.Rt n* * R9,+Rt * * R9,,R' s.4 : 0' ( l+ ;
If we drop the quadratic terms (weak field approximation) and set Rr*,:. equal to zero, we
obtain the homogeneous pair of Maxwell's equations for e =0, a universal
proportionality constant remaining undefined. Lorentz invariance is not a problem since
the inertial frames have simply been refibrated over the bundle of directions (as a
differentiable manifold rather than as a bundle itselfl. Since R's is to be associated with
the SO(3) symmetry implicit in the Finslerian refibration, it is tentatively identified with
the weak interaction. The emergence of the inhomogeneoui pair is a problem of a
different nature and will later be dealt with.

43 The Emergence of General Relativity: Part I.
Consider now the second equation ofstructure. Regardless ofwhether the connection

is Finslerian or not, the statement that the affine curvature is zero can be written as
dao" - a;!,t a2' : - Ê,lnf ," - (dBr' -atla F^" -Frln ,r"), ( 1 5 )
where p is the contorsion. Its components are linear combinations of the components of
the torsion. The "Einstein contraction" of the left hand side yields the Einstein tensor.
Since pis assumed to comprise all non-gravitational interactions, the energy-monxentum
tensor of electrodynamics has to be pulled from the same contraction of the right hand
side. This is a cumbersome process even if we restrict ourselves to the "00" component
(Vargas-Torr, 1999). It is thus preferable to consider the vanishing of the affine
curvature in the KK space, which we shall do later. The obtaining of a suitable
electromagnetic energy-momentum distribution will constitute further evidence for the
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emergence of electrodynamics, in addition to the emergence of gravitation.

4.4 The Emergence of Dirac's Theory

Like classical mechanics, $urntum mechanics (QM) is a phenomenological
metâtheory; it provides the essential framework to deal with different problems (more
often than not, in microphysics). But the emergence of QM from our highly specialized
Kiihler equation comes accompanied by the emergence of the non-gravitational
interactions themselves, directly from our new first equation of structure, to be
introduced in the next section. In contrast, the input a in Kiihler's original equation,
êV:avV (when a is scalar-valued, v simply means the Clifford product of scalar-
valued differential forms), may represent arbitrary quantum mechanical systems,
similarly to the representation of different classical systems by different Lagrangians.

As an intermediate ste,p in the eventual emergence of Dirac's theory from
demiurgism, we demonstrate the emergence of the Dirac theory from the Kâhler theory
using the example of the hydrogen atom (Kâhler, 1961, 1962). Highlights of the 196l
treatrnent will now be summarized.

Let the signature be (-,+,+,+;. We define the constant differentials

* l+ idxt v &2
T -  = - .

2
(17)

( le)

,  l+ idl

"- 
=--i-,

Suppose that the input differential form is scalar-valued, as is the case for the hydrogen
atom. One can then show that the wave function can be written as

+  +  +  +  +  -  -  +  -  +  +  - . -  -  -
v =  v l v T v Ê  +  v t v t v 8  

- r w v t v t - + v l v t v e , ( l  8)
where each of the four factors tù *" differential forms which depend on dp and dz,but
not on dt and d$ T\ey are uniquely defined by this expression, and are obtained through
a process outlined by Kâhler and valid for treating any V. One can show that each of the
four tenr, s in ( 1 8) is a solution of the same Kâhler equation as y itself. Suppose now that
a particular problem has cylindrical and time translation symmetries. Each of the
solutions of the KD equation for given eigenvalues (m, E) of the (-iâ /4, ihd /A)
oprators can be unitten in the fomr
einqith)E 

*p. vi ué,

where each of the four rp'is a function of the p and z coordinates and their differentials
onty. They satisft the equation that results from substituting (19) in the Kâhler equation
êfaqr. The four factors eimê(i/h)Et 'p* *" solutions of the Dirac equation for the same
problern For the hydrogen atom and up to universal constant factors, a is simply
p+(e/r), where p is mass. In other cases, one will have to choose the irçut differential
form for the Kâhler equation in a way that parallels the choice of input for the same
physical system when solved with the Dirac equation (standard techniques for solving
can again be used). It is important to be aware of the fact that, when there are no
symmetries, all five terms in eq. (18) are equivalent to each other and they live in a
larger space than the solutions of the Dirac equation (sixteen instead of four complex
components). With symmetries present, yr becomes the sum of four independent
solutions with four complex components each.

The Kâhler equation lends itself easily to showing the emergence of the energy and
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angular momentum operators as Lie operators transforming one solution into another. A
conservation law of probability is automatically build into KD equations for a
differential form bilinear in the solution of a KK equation and of its conjugate.
Antiparticles come automatically with positive energy, which makes a theory of holes
unnecessary (it was deemed to be necessary before the advent of quantum field theory).
Finally, the solution of the Kâhler equation for the hydrogen atom is just a relatively
simple extension of the obtaining of the strict harmonic differentials.

4.5 The Emergence of the Strong Interaction.
The presence of the strong interaction in the Kiihler formalism is related to the

aforementioned difference in number of components in the general case (meaning
without symmetries) of the solutions of the Dirac and Kâhler equations, the latær being
considered in this section only for scalar-valued input differential forrn This difference
has to be put in the context of Schmeikal's (2002) representation of the generators (À1,
...7'g) of SU(3) and the sirangeness operators as Clifford numbers. The commutators are
represented by antisymmetrized Clifford products of corresponding Clifford quantities
in that representation. Schmeikal has further found a set of primitive idempotents related
among themselves like the f ve"s are, and such that, when the Clifford representations
of À:. Às and strangeness act on them, one gets the eigenvalues for up, down and strange
quarks in the case ofthree out ofthose four idempotents, and zeroes for the fourth one.

lt is possible to change the representation of SU(3) so that the four primitive
idempotents are, for signature (-,+,+,+) precisely the primitive idempotents /ve".
Furthermore, it is possible to give an interpretation to why hadrons appear to be
constituted in the way they do in high energy scattering experiments of leptons (Vargas-
Torr, 2005a). From a demiurgic perspective, the reason is simply that the quantum
mechanical equation of nature is not the Dirac equation, but the Kâhler equation. The
quarks are simply extremely good imitations of Dirac particles arising in high energy
scattering experiments by particles which are solutions without symmetry of KËihler
eqrations. The symmetry appea$ as an approximation in the scattering process, but only
at very high energy. Confinement of quarks is an artifact resulting from trying to explain
those processes in terms of the Dirac equation, when the more sophisticated Kiihler
equation should be used. An artifact does not cease to be an artifact just because it has
stnrcture. There is rich structure in approximating a solution of a quasi-symmetric
Kâhler equation wilh solutions of Dirac equations. Of course, one can always stretch the
concept of reality to accommodate the wrongly interpreted experimental situation. It is
more sensible, though, to formulate scattering theory consistently with the Kiihler
equation, rather than Dirac theory. That is part of the program of demiurgic TP.

5. Emergence from Demiurgism
The Einstein and Dirac equations emerge rather directly from corresponding and

complementary curvature and torsion equations of demiurgism. Maxwell's equations
emerge more indirectly than quantum mechanics from the same torsion equations. As in
sections 4.1 and 4.2, we again have two different courses of action from the same
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starting point. But we have taken only minor steps in direct emergence from
demiurgism. A first step consists in showing that the true nature of Maxwell's equations
is not what is usually thought to be. This is so for two reasons, as we shall show in
subsection 5.1.

In demiurgism, electromagnetic energy emerges at the same time as the Einstein
equation, as reported in subsection 5.1. This should not be surprising. Maxwell's theory
does not account for a fact pointed out by Cartan (1924,2no paper in series on affine
connections, Oeuwes Complètes) and ignored when using the tensor calculus that,
whereas Maxwell's equations concem scalar-valued differential forms, energy-
momentum equations (electrodynamic in particular) concem vector-valued differential
forms. From a practical perspective, the theory of affrne connections is theory of vector-
valued quantities. Notice that the homogeneous pair of Maxwell equations was obtained
from the first Bianchi identity of demiurgism. This identity should be shown to emerge
from demiurgism. The treatment is as yet incomplete an{ in any case, is too involved
for consideration here.

5.1 Part II of Emergence of Electrodynamics and Gravitetion

Cartan (1924, ibid) argued, and the present authors fully concur with him, that the
integral and point form of Maxwell's equations are not equivalent, and that the first one
is the right one. Kiihler equations, and the Kâhler equation of demiurgism in particular,
are point equations. That makes for an unexpected difference. Let us now deal with an
unexpected similarity. The torsion equation in demiurgism involves only the torsion
field, i.e. the one that supersedes the electromagnetic field. Maxwell's equations involve,
in addition to 4 the current 3-form, j. Carefirl analysis shows, however, that current, or
charge for that matter, is a practical rather than fundamental concept in Maxwell's
electrodynamics. Better said, it may well be a very fundamental concept in a more
developed physical paradigm, but that status is not justified by the presenl state of
development of the same. For further clarification, let us rernark that we deal with
electrodynamics without knowing how the concept of charge applies at extremely short
distances. We conjecture that the practical rather than firndamental nature of Maxwell's
electrodynamics is the reason for the need for renormalization.

When we consider all sources explicitly, the Maxwell system is written as

Ig = lj*, (20)
where the asterisk stands for Hodge dual. We use the lCâhler operator /(Vargas-Torr,
2005e)- For our purposes, we need only consider static electric fields. Maxwell's
homogeneous pair is contained in the exterior part of eq. (20), which then becornes

/zp: -Ip. Qr)
Let us integfate this equation for a charge that we do not know whether it is a point
charge (equivalently, a divergent field) or whether it is simply localized over a very
small volume (still finite fields). The Laplace equation is satisfied between two
concentric spheres centered at the charge and enclosing it. We use Green's second

identity with functions p and I/r. One of the fwo volume integrals becomes zero because

A(I/r):0. The other one become" {@tr)dn over the volume between the spheres. The
two surface integrals become four, two for each sphere. When the external sphere is sent
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to infinity, the two surface integrals over it go to zero under appropriate conditions. One
of the surface integrals over the small sphere (of radius e) becomes 4re times the
average value over the surface of the negative of the normal derivative of p. If and only
if p is assumed to be finite, the latter integral goes to zero in the limit of e going to zero.
The other surface integral over the small sphere becomes 4ntimes the average value g
of p over it, hence 4ntimes the value of g at the center of the charge in the limit. If the
charge is a point charge (the potential then being divergent), we let eapproach zero. The
volume integral is zero, but the first surface integral is not- The second identity becomes
an equation not involving the charge density, just the potential and its (normal)
derivative. In this regard, it is actually like Kiihler equations.

The fact that the theory of distributions deals rigorously with divergant charges does
not chauge the fact that we do not know what happens at each and every poinç but only
at a distance from the elerrentry charges. That theory sirnply legitimizes the integration
of the equation with point charges, regardless of whether elementary charges are of that
type or not. In spite of this lack of knowledge, we still solve the equations as if it did not
matter what are elementary charges like. Maxwell's equations are about averages.
Equations dealing with integral ,re more sensible to deal with averages. The integrand
can be wrong about the details, and the integral could still be right.

In the KK space, where the short mnge interactions are excluded ab initio, the
Finslerian tonion for the electromagnetic interactio n (2".: {t e r-C Fe 6:- çV u becomes
tJ"^:CFu- In this space, one also obtains (Vargas-Ton, 2005b) the equation of motion
with Lorentz force when one computes the autoparallels in the KK space with this
torsion (There are additional terms of a different nature, apparently related to radiation
reaction, a problem which may thus admit a more elegant treatment than present ones)"

Working with the reformulated first equation of structure
Qtl= uudp(vu)tt (22)
for the torsion ff in the KK space canonically associated with demiurgic TP is very
complicated. For instance, there are more terms in flFu) than those resulting from
application of the Leibnitz rule. We shall use a simplified expression for our illustration.
Suppose that appropriate reductions made the equation (22)become, up to constants,
ôF = AuF, (23)
where I is the electromagnetic potential. In order to recover the homogeneous pair of
Maxwell's equations, the 3-form part of the ArrF product would then have to be zero.
The requirement is trivially satisfied since, in electrostatics,l is proportional to dr, and,
Fis proportional to dr.dLIf a KD equation becomes the Maxwell system, an additional
conservation law emerges fiom it. In the rest frame of each individual charge, the
Maxwell system expresses that the Laplace equation is satisfied all over, except inside
the balls bounded by the tiny spheres referred to above. Denote the differential 3-form
ArF as;-. We use aw:j' instead of AvF to emphasize from this point on that the
argument does not depend on the specifics of the factors. We then have
i = lawt) '=(A) '= zv(Aù, (24)
zbeing the unit pseudo-scalar in the algebra of differential forms. Since z is a constant
differential. we have:
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d: d(zv(fut)) : zv(@'). (2s)
The operator âô is the d'Alambertian l-l (the Laplacian A in 3-space) if the affine
curvature is zero, as we have assumed. Outside the tiny balls, n (respectively Au) is zero.
We thus have

d :  zvth :0. (26)
The conservation of charge is thus tied to the existence of solutions of equation (22)
such that udp(uu)d(dp) is zerq or very close to being zero, outside some very
loosely defined tiny balls centered at each charge.

The strict limitations of using the Finslerian formalism (or perhaps just the rules to
work with it given the entanglement of the different interactions) are not yet clear. It is
thus interesting to consider the emergence of GR also in the KK space. One again
obtains a geometrized version of Einstein's equations
G + T = d X , (27)
when one uses ff--ffrt . Interestingly, the Einstein tensor 6 and the standard electro-
magnetic energy-momentum tensors emerge as bivector-valued differential forms
(Vargas-Torr, 2005b), like in the publications by Cartan (1923 and 1924, papers on the
theory of affine connections, Oeuwes Complètes) when he deals with a KK space in
disguise There is an interesting discrepancy by a factor of % in one of the two terms that
constitute I in terms of the Fr* This is not a source of concern at all. Thanks to the fact
that the standard dynamics of particles has been reproduced, one could reach in
principle the standard expression of energy-momsntum (i.e. without this discrepant
factor) in an inductive way, like in many presentations of electrodynamics. Hence, rather
than a problem, we might have here the poæntial key to the relation of interaction
ensrgy and self-energy. Furthermore, d), is a complementary energy momentum tensor,
also electrodynamic, which has the property that its integral over all of space is 0, since
it is an exact differential. Like any such tems, it has gavitational consequences, but
which tre systematically ignored by books ryhich resort to them to modi$ energy-
momentmr tensors. Finally, G appears to emerge as ttre gravitational energy-momentum
tsnsor, probably up to some constant. To corclude, it can hardly be said that we have
p'roved reductionism of Maxwell's electrodynamics from the KD equation of
demiurgism (the reduction from classical geometry is better documented). It is fair to
say, however, that we have started a sophisicaæd program with incalculable potential.

5: The Emergence of the Stenderd Quenfum Formalism
The final goal is emergence of physics from derniurgism- Emergence of physics from

geomeby or from the Kâhler equation is an intermediate step, to be followed by
emergence of geometry from demiurgism where one cannot yet achieve that final goal
directly. .

We proceed with first steps in relating equation (22) with 1,1"r:-Fu to the first
Bianchi identity, which now constitutes par of the new vision of the first equation of
structure. We frrst dispose of an issue pertaining to non-scalar-valued input differential
forms. The Kiihler derivative of a differential form (ff) does not change its valuedness,
but its product with a non-scalar-valued differential form (uudp) does. This causes
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inhomogeneous valuedness of the wave function, unlike that of the torsion. This
problem disappears in eq. (28) with ff.: -Flr since the trivector part of the right hand
side vanishes due to the double factor u.

Our reductionist problem is now reduced to showing how the first equation of
structure of the KK space, ëN: âv ff, with d equal to uudp, reduces to specific
Kâhler equations in different cases, Iike for the hydrogen atom. The solving of problems
such as this has not yet been undertaken. The feasibility of solving them, however, can
be foretold from the form of the input differential formuudp in the first equation of
structure of the KK space. Recall tJnt d p is the potential of the torsion ft' and that, in
the electromagnetic case, we have tlr :CFu. The mass tenn p in p+gtr would be
associated with the term udr. in d p. It is worth pointing out that the position of the unit
imaginary in Kâhler is not the same ils in the Dirac, which provides perspective on the
fact that there is no unit imaginary in the Kâhler equation that constituies the first
equation of structure in the KK space. Stationary cases would correspond to absence of
radiation, associated in this formalism with constant z. Since the square of a is -1, this
vector will apparently play the role of the unit imaginary.

At present, the emergence of the weak interaction is the most tenuous of all. As
shown in subsections 4.1 and 4.2, the effect of a Finslerian torsion on the equatons of
the autoparallels is given exclusively by its temporal component. It is not clear at this
point whether, in the reformulation of the electromagnetic torsion pertaining to the KK
formalism, the group O(3) acting among the spatial components of that torsion is absent
(and has to emerge or be introduced somehow) or remains in the spatial components of
space-time. The first option would appear as the more likely one, since the KK space is
defined bV kf ,axi) only. Since the ol are the (left) invariant forms of the rotation group,
the original set (af,cui,al) of invariants may be expected to give rise to a product
sfructure of the KK space by the group O(3) or SO(3). On the other hand, the
justification for the second option would be that the rotational degree of freedom
remains in the spatial part of the torsion; it is only the latter's temporal part that has
migrated to the fifth dimension in changing from the Finslerian to the KK versions of
the theory. Regardless of what version is the appropriate one, an SU(2) symmetry will be
associated with the original al. The group SU(2) acts on the wave function when ̂ SO(3/
acts oR the other factors in equations such as Dirac's and Kâhler's. This has to do with
the form of rotations in Clifford algebra and the position of the wave function as the
extreme right hand side factor on both sides of those equations. In due time, we hope to
get our cues from the physics as to how to incorporate the weak interaction if we fail to
see how mathematical structure speaks of this issue.

6. Anticipation: Integrability and Initial Conditions
Anticipatory systems are defined as systems for which the present behavior is based

on past and./or present events but also on future events built from these past, present and
future events (Dubois, 2000). In demiurgism all systems are emergent, and the theory
itself is nothing but the program in the making of showing emergence to ever greater
degree of sophistication. The issue emerges of whether one can formulate a concept of
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anticipation that will apply, even in loose form, to the basic equations themselves of
demiurgism. We shall only make observations about integration of our differential
system, which may help those who could speak more authoritatively on this issue.

Differential systems raise issues of integrability and of initial conditions. Let us start
with the second of these two issues. Anticipation does not have the same character as in
the physics, since the latter is emergent and its equations have parameters. These
implicitly define final states and, together with initial conditions, define the solution to
specific problems (Dubois, 2000). There are no parameters in demiurgism. Initial
conditions is all one has.

However, the state of the future is still present in the evolution of some physical
system, i.e. a subsystem of the world. Indeed, suppose we launch initial conditions at
one point. Somebody else launches initial conditions somewhere else. As the solutions
launched from each of the two points affect further and further points, they eventually
either meet or clash. How do we make them compatible unless we already know the
solution itself that we wish to obtain using those initial conditions? One might argue that
nature guarantees their compatibility, if we read properly the initial conditions at each of
the two points. But this presumes that naùure behaves in a way that is not guaranteed and
that we proceed to explain.

Consider GR. The initial conditions for the Einstein system (baning simplifications
when there are symmetries, which amounts to anticipating in part the solution) consist in
specifting the metric at all points of a space-like hypersurface. After we obtain the
metric by integration, we know the full metric curvature and not just the Einstein tensor.
The extra information is contained in the boundary conditions. If the system to be
integrated were to specifu the full curvafirre, initial conditions at a point would suffice-

The system of equations of the torsion sector in demiurgism is more like the system
of equations of electrodynamics (with added complexities, one of them being that one
has to solve for the metric at the same time as for the connection). That system specifies
the exterior and interior derivatives of the lorsion field, not like the Einstein system
which specifies (a contraction of) the curvature field itself. Furthermore, because we are
not dealing with a contraction, the initial condition concerns a space-time point in
demiurgism. But every point is a source of solutions and different solutions will not
match, virtually anywhere. Such is the case with Maxwell's electrodynamics, where one
broadcasts from different points (sources). Since solutions in electrodynamics can be
superimposed (and, correspondingly, syntonized), no compatibility issue arises. In
demiurgism, however, there is not linearity, and every point may have to be considered
in principle as source for launching initial conditions. This is an infinitely more dense
set of sources than in electrodynarnics, where the sources are systems not points. It is
impossible to solve the problem until one knows the solution everywhere at one point in
time, like in GR. It then appears that we have clashing rather than meeting of solutions.

The validity of what has been said above will certainly be impacted (and in different
ways for different statements) by the first issue of whether the system is integrable or
not. Non integrability does not totally mean that the system cannot be integtated. Let us
explain. Consider a differential l-form which is not exact. This is to say that it is not the
exterior derivative of a function, i.e. it does not admit a potential function. This does not
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mean that we cannot integrate it between any two points, like the differential forms for
work and heat. We can, but the result will depend on curve chosen for the integration.
There is the same type of basic idea in our foregoing considerations about the non
matching of the solutions obtained by launching initial conditions from fwo different
points. We suspect that the general theory of integrability of exterior systems (every
differential system can be given the exterior form) is not sufficiently advanced for one to
be able to pronounce itself clearly on this particular problem at this point. It is not
unreasonable to infer that, like in electrodynamics, there will be a stochastic
background, but more chaotic. A minor change in the background of solutions that
Muraskin named packet solution may rcsult in chaotic looking behavior (Muraskin,
1995, pp. 125-6) due to the influence of some other comparable structure. This adds
complexity to an already unfathomable space of solutions.

7. Concluding Remarks.

In the span of just two papers, we have presented a comprehensive picture of
demiurgic TP. At the very least, it shows that pure thought allows one to make physics
emerge from something more fundamental, unless we redefine physics to include it. The
main useflrlness of the more fundamental equations does not lie in that one cill solve its
equations. One cannot in general, except perhaps for "robust structures", say leptons,
protons and photons; and also for short lived particles at the level ofcharacterizing them
by a set of eigenvalues of certain operators that emerge from the theory. Concerning
physics, the usefulness of demiurgic TP additional to solving equations lies in the
possibility of theoretical emergence of physical theories and concomitant physical
concepts. What was shown in previous sections constitutes the first baby steps. In the
wide sense of the term physics, this is not the end of physics. It is the beginning.

It has been claimed ab initio by some that, because of the anticipation issue, we
cannot be just physics and (as usually put) chemistry. Dubois work' is an antidote
against that view. But even if physics were not capable ab initio of "explaining" the
behavior of thinking organisms, this might be a failure of present day physics to be the
starting point in the reductionist chain. As physical systems and physical laws emerge
from demiurgism, so may do in principle systems endowed with $eater levels of
complexity. If physics is taken as the first step in the ladder of natural sciences, one risks
the possibility of excluding the type of reductionism that may require the coexistence for
the living system of indirect reductionist elements, through physics and chemistry, with
direct reduction elements. directlv from demiurgism.
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