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Abstract
The structure "Finslerian teleparallelism" might have been anticipated through a deeper
implementation of the ideas that led to great progress in differential geometry in the 20th
century. That structure's significance is manifested through the Kâhler calculus of
difierential forms. Based on Clifford algebr4 this calculus supersedes Élie Canan's. It
revolves around Kâhler's equation, a generalization of Dirac's. The juncture of geometry
and the calculus is to be understood in the sense that, through the aforementioned
implementation, one can create a Kaluza-Klein type structuxe where the torsion part of
the structural equations is given by a fully geometric Kâtrler equation. Its input is the
differential form whose exterior covariant derivative is precisely the torsion in its role as
output differential fornr, thus yielding a closed geometric system of structural equations-
Keywords: anticipation, unification, Finsler, Kiihler, Kaluza-Klein.

1. Introduction

This paper connects a particular geometry and a version of the calculus of Kâhler
(1960-1962) developed by the present authors. Our goal here is to show that one can
obtain in an anticipatory way the key equation for the tasks of identiffing geometry and
physics and joining the gravitational and non-gravitational sectors of the physics. In
view of modern mathematical knowledge, the existence of such junction, which takes
the form of an equation, can be anticipated from the physics itself. Indeed Einstein's
gravitation is related to the second equation of structure, i.e. the specification of the
cuwature(s). Metric-compatible teleparallelism (TP) specifies the metric curvature in
terms of torsion and derivatives thereof. The torsion still remains to be specified. An
anticipated geometric unification of gravitation and quantum physics then leads one to
anticipate that the specification of the torsion will have to take place through a quantum
mechanical equation, namely the K?ihler equation since this is the "Dirac equation in the
calculus of differential forms, which is the calculus of geometry. In this paper, we deal
with the development of the aforementioned KK space, and of the Kâhler equation
which will replace its first equation of stmcture.

In the accompanying paper, we proceed with the emergence of physics from the
resulting junction of geometry and calculus. In the same way as there are the
anticipations of Rosen (1985) and of Dubois (2000), respectively for the theories of
physical and living systems, the "natural science" that emerges as a step between
mathematics and physics appears to be a mother of the physics, namely one more step in
the ladder of natural sciences. We leave it for history to decide whether it is "the
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mother", while remarking that, in order to be useful in connection with the issues of
emergence and anticipation, this theory need not be the holy grail sought by physicists.
We refer to it as demiurgism, for reasons that will become clear in the second paper. Its
roots are in the attempt at physical unification with TP by Einstein (1930). [n simple
words, TP means that the afline connection or rule to compare vectors from tangent
spaces at different points (of spacetime in our case) yields results that are independent of
the path used for their comparison. More precisely, TP is the requirement of true
equalify of tangent vectors at different points of a differentiable manifold. Equality,
being an equivalence relation, requires the transitive property and is thus incompatible
with making an affrne connection with the Christoffel symbols. Some progress in that
incipient effort was madeo however, by Cartan in trying to help Einstein, who did neither
make any progress himself nor appreciate Cartan's (Debever, 1979).

The highly reductionist term "mother of the physics" emerges in our case from
simply adopting another Einstein thesis: the logical homogeneity of physics and
geometry (Einstein, 1934). Reductionism complements here emergence, as they are to
each other like the two sides of a coin. Every physical concept, law, structure or even
physical theory (electrodynamics, gravitation, quantum mechanics, classical mechanics)
has to emerge from it. Hence, emergence is here far more encompassing than in
collective organizational phenomena. Of course, this is a progrzlm rather than a theory,
but it has already delivered much, relative to manpower invested.

The contents of the paper reflects the fact that, some of the topics are treated in
greater detail in preprints containing our presentations in other conferences (Vargas-
Torr, 2005a,b,c,d). In section 2, we deal with that most relevant Cartan perspective of
the evolution of geometry. starting with Riemann and up to the late 1920's. We do not
know of any presentation of this perspective (expanded in Vargas-Torr, 2005c) other
than in Cartan's own papers, of renown difficulty. See in and by Gardner (1989,
Introduction). Section 3 summarizes the scarcely known formulation by Clifton (Vargas-
Ton, 1993) of the theory of Finsler bundles. It makes Finsler geometry look like pre-
Finsler geomeûy, specially if one uses differential forms rather than their components
(sy aU'rather than fo"t in ar':!p"rr|, as the latter expression is not sumciently
general for Finsler geometry; the al are non-holonomic in ûre Cartan calculus, i.e. da/*
0, except when dealing with coordinate basis fields, at":f,y,). The first part of section 4
is for the benefit of readers who are not familiar with Clifford algebra. The second part
deals with the basics of the Kâhler calculus, which is based on Clifford algebra. Not
available in English, this calculus is virtually unknown. In section 5, we summarize tlre
KK structure of the authors (Vargas-Ton,1997b), whose very definition requires some
familiarity with the Kiihler calculus. More comprehensive knowledge of that calculus is,
however, needed to fully Brasp the power and potential irnplications of equation (31),
key to the emerging physics of the accompanying paper.

2. The Evolution of Geometry

ln this section, we discuss the Cartan perspective of the evolution of the geomeûry
that is cornmon ground to all differential geometers, which thus excludes Finsler
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geometry. For completeness, let us state that synthetic (i.e. by drawn figures) and
analytic geometry are most of the time chapters in the study of what we shall define as
elementary geometries, specially, the Euclidean aod projective ones. Before we become
more precise, elementary geometries are the geometry of flat spaces. When dealing with
their generalizations, the nature of the problems that make sense and worth considering
makes their study go by the name of theory of connections.

Our aim in this section is to show how the theory of connections by Cartan relates to
the ideas by Felix Klein on groups and geometric equality through the theory of
integrabiliry of differential systems. One thus anticipates a geometry that implements
those ideas to a still greater extent. To better understand the "Klein-Cartan" perspective,
one has to understand how the basic ideas of Klein difier from those of Riemann.

The paradigm of differential geometry is due to Cartan" through his theory of
cormections, and specially of affine connections in the early 1920's (Cartân, 1923-25;
we refer the reader to his Complete Works, identifying the paper by the year and some
more information when necessary). He reconciled what appeared to be the incompatible
concepts of geometry by Riemann and Klein. Riemann's generalizations of geometry
were based on the concept of distances more general than Euclid's. His first geometric
paper, a conceptual one without equations, was his public lecture for a professorship at
Gôttingen. The title of his second and last paper on geometry (other than on minimal
surfaces) speaks of the casual development of Riemannim geometry: "Mathematical
camments which anempt to answer the question posed by the very illustrious Parisian
Academy: Find what must the caloriJic state of an indefinite homogeneous solid body so
that a system of isotherm carres at a given instant remain isotherms at ary) instant of
time and the temperature of a point may be expressed as a function of time qnd another
two independent variables" (Riemann, 1861, see his Complete Works). Riemann derives
there the curvature that now bears his name. Cartan (1936) characterized the early
Riemannian geometry as follows: "In a Jirst stage up to 1917, year of the almost
simultaneous introduction by Levi-Civita and Schoutten of the notion of parallelism,
Riemannian geometry has simply been regarded as the theory of invariants of a
quadratic diferentialform g,f,tdl of nvariables with respect to the infinite group of
analytic transformations of these vqriables". The quotation that follows speaks of the
beginning of a second stage: "II/ith the introduction of his definition of parallelism, Levi-
Civita was the first one to make the false metric spaces of Riemann become (not true
Euclidean spaces, which is impossible, but at least) spaces with Euclidean connection
..." (emphasis in original) (Cartan, 1924, in his paper on Recent Generalizations of the
Notion of Space).

Another 19tr century development of geometry is Klein's Erlangen program (Klein,
1893). According to it, a geometry is the study of properties (of figures) that remain
invariant under the transformations of a group. Cartan credits H. PoincaÉ with making
evident that the axioms of geometric equality just express the group properfy of sets of
transformations that leave unchanged the properties of corresponding geometric figures.
Speaking in particular of Euclidean geometry, Cartran (1924, in his paper Group Theory
and the Recent Researches ...) said: "...the stotement that the displacements canstitute a
group is precisely the expression in exact language of the axiom according to which two
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figures equal to a third are equal to each other". Cartan (1936) associated Klein's view
with geometric equality so deeply that the concept of geometric equality itself rather
than that of group played for him the preeminent role, as in the following
charactenzation: "Grossly speaking, Klein's point of view consists in retaining from
Euclid's geometry as fundamental notion the equality offigures" .

The two viewpoints or prognrms were unified by Cartan. But, as Dieudonne
explained [See Gardner, 1989], this was possible by replacing in Klein's Erlangen
program groups with principal fiber bundles. In the bundles, the concept of group still
plays a very important role, though in a more sophisticated way. Thus Cartan's
unification was based on extending Klein's program, not Riemann's. If geometric
equality was so crucial, why not implement this concept to the maximum possible (other
than trivial) extent? One must be aware, however, of some Klein errors, one of which
consists in assigning an infinite Lie group to Riemannian geometry. This errot, pointed
out by Cartan (1936), still infects physical thinking (see Vargas-Ton (2005c)).

From the above, three concepts are seen to be essential in Cartan's interpretation and
generalization of Klein's progfirm: groups, geometric equality and principal fiber
bundles. We thus anticipate that the maximum implementation of these concepts will
result in a teleological geometry, i.e. as if it had a purpose. Although any development
may be viewed retrospectively (and inconectly in most cases) as if it had a purpose,
exceptional excellence, when achieved through a natural course of action, justifies the
practical use of the temr.

Cartan's ap,proach consisted in introducing the structure of generalized spaces as a
problem of integrability of types of systuns of differential equations which arise in the
study of the flat or elementary cases, and of Minkowski space in particular. Euclidean
and Minkowski spaces are specific cases of affine spaces. Consider thus the action of the
affine group on tangent tensor bases in those spaces. If we arbitrarily make one of its
points represent the zero vector, affine space can be assimilated to a vector space. A pair
(P, e) constituted by arbitrary poinr and arbitrary basis attached to it can be given as
P - Q+APap, eo: Ao'a,, (1)
where det Aru * 0, and where @ denotes a fixed point and a, denotes a fixed basis
(anything fixed is assigned zEro differential). Indices run from zero to n-,1 (hence from
zero to 3 in spacetime). V/e can represent Eq. (1) in matrix form, where the column
matrix with entries (Q, ay) is transformed into the column matrix with entries (P, e) by
the square matrix g acting on the left and whose first row and first column are (1, Au, ...,
A*I\ uÂ (1,0,0,0,...) respectively. The other entries are constitutedby the Ao"'s.

At each point P, the linear group (present in the equations s/ : Ap'a) repeats itself.
Let us just say that this family of isomorphic groups constitutes the essence of a
principal fiber space. Now as in the following, readers should keep in mind that we are
dealing here with a 1n+rf)-dimensional manifold, i.e. 20 in spacetime viewed as an
affine space and before we notice that it is endowed with a metric. The equations t}tat we
obtain differentiating (l) and replacing the fixed basis with the "moving basis" can be
written in abbreviated form as
dP: afeo, deo = {ùo'e, (2)
where the omegas constitute a set of 20 independent differential l-forms. These omegas
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are clearly well defined functions of the Ao, Az' and their differentials. Easy
computations show that the ao"s ate not closed, i.e. dar"4. They are the so call
invariant forms of the linear group. This is the system generated by the elementary
affine geometry and which constitutes the basis of its generalization.

Suppose now that we are given a set of 20 differential forms (ay', a/) which satisfies
some restricting conditions (Vargas-Ton, 1993) but is otherwise largely general. These
c'] and af wlll be just expressions (in terms of some other system of coordinates and
some other basis field) of the differential forms in eq. (2) if and only if the equations .
dat" - c,/rt ar'' : 0, d a t o " - a r L  a ( ù t " : 0 , (3)
are satisfied (As we said in the introducti on, {,)o': lu' Àal, but the lp' t axe not defined by
the metric in general, since a metric -thus a Riemannian stnrcture- may not exist in any
affine space. The system (2) will be integrable in spite of the aforementioned geqerality
and become the system (l) through integration. The system (3) constitutes the eqrations
of structure of affine space. All the foregoing applies mutis-mutandis to the Euclidean
and Poincaré groups, which are restrictions of the affine goup by êp€,: 6r, artd ere,
: %vrespectively. The a,f 's are no longer independent but restricted by the condition
bvr*  @p:0 . (4)
This restriction, whether in finite or differential form, reduces the dimensionality of the
bundle to n+[n(n-l)/2J, i.e. l0 for the Poincaé group of flat spacetime-

The generalized affine spaces are givenby any set of differential l-forms Gi, arh
which do not satisff equations (3) in general, but are quadratic differential forms in the
otQ only. In other words:
d a'' - tJ nar.' : R' ̂ af ,t c,/ 1/, d olr' - al/ tta1' : Rt' oAao Ac,] = Qp", (5)
where d is the exterior derivative and where a is the familiar exterior product. In other
words, this is the product in the Grassmann algebra, i.e. the antisymmetrized tensor
product of completely antisymmetric tensors (Lichnerowicz, 1962). More elegant is the
definition of Grassmann algebra as a quotient algebra of the general tensor algebra
(Maclane-Birkhoff, 1970). See also our simplified summary (Vargas-Torr, 2005d).

The differential forms d and {)u",h,nown as torsion and affine curvature, live in the
bundle. Excluding for simplicity valuedness indices, general differential 2-forms in the
bundle are in principle more general, namely as in
R, af a rti' * (J o' t af 'trori + Il,| o ato' aa;o. (6)
A Euclidean (also Lorentzian) connection on a manifold is an affine connection where
the oy" satisfy in addition the relation (4), the expression (6) for general differential 2-
forms remaining valid. The difference between being Euclidean and being Lorentzian
shows up when raising or lowering indexes, in equation (4) in particular.

In Riemannian (and pseudo-Riemannian) geometry, which are particular cases of
geomeûry involving Euclidean and pseudo-Euclidean connections, the R',a are all zero.
No consequences regarding the differential system (2) foltow. on the other hand, if
Rr'ol-ù, the system der:ato'eu is integrable and the integration gives of course the
rotation (respectively Lorentz hansformation) or the linear group, depending on which
case (read bundle) we are dealing with. We then have TP or path independent equality of
vectors at a distance. The distance is implicit in the metric restriction, since e, .êv:gpv
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immediately yields
dP.dP : dfeu-dxueu : g1,, df dx" Q)
in terms of arbitrary coordinate basis fields.

The differentiation of eqs. (5) together with substitution of (5) on the differentiated

equations yields the Bianchi identities. For present pu{poses, we are simply interested in

the first one. In TP. it states that the torsion's exterior covariant derivative is zero.

3. Antcipation and Teleological Geometry

The goal of this section is to develop generalized affine geometry further while
pt"r"tuing the metric contents of (pseudo-)Riemannian geometry. We proceed by

analyzing the progress that geometry has made, and identifuing what that progress is due

to. The implementation to a greater extent of what has already been successful there will

constitute the anticipated "state of geometry" for unification. In viewing our KK

structure as a state of geometry, we Inay say that this state appears to have a purpose,

i.e. it is teleological. tt is the purpose of canonical (from the horizontal invariants of

Finslerian TP) maximum implementation of geometric equality and of the use of

complexes of groups and concomitant bundles- Deâils follow-
Ai mentioned, à first step towards geometric equality in the original Riemannian

geometry was Levi-Civita's rule to compare vectors in different tangent spaces. As a

simple alternative in the plane to the standard Euclidean connection, one can have, for

instance, the TP connection with torsion where the polar coordinate lines are viewed as

having constant direction. In the punctured sphere and the torus, we have the TP

conneitions where the vertical and horizontal circles (which are not extremals) are lines

of constaft direction.
The theory of connections on Finsler bundles achieves a more profound

implementation of the role of groups and bundles than the theory of manifolds where

general lengths of curves are defined. The Lorentzian signature then emerges as the

ianonical one (Vargas-Torr, 2005c). In the old view, Lorentzian geometry is simply

pseudo-Riemannian. The geometry of the spacetime of Special Relativity (SR) is then

iepresented by the pair constituted by the Poincaré group and its Lorentz subgroup In

t6e new perspecdvé, flat Lorentzian geometry is represented by a triple consisting of a

Foup, a subgroup and a sub-subgroup. It is not a matter of fancy. It is a ma6er of

analyzing Finsler connections and seeing what groups participate in its constnrction.

lnstead of asking what is the geomety of Minkowski spacetime, one should ask what is

the elementary geometry of metric compatible Finsler cormections on pseudo-

fuemannian metrics with Lorentzian metrics. One reaches the new psrspective of SR,

but now viewed as a necessity. The corresponding bundle results from rearranging of

the inertial frames of spacetime, M, over the so called space of elements (or bundle of

directions or sphere bundle), s(M), of spacetime. In this case, S(M) is a space

comprising 3-space, time and velocity.
Undersànding the evolution of Riemannian geometry helps to understand the

difference between those two views. In the first stage in Cartan's ctnracteization of the

geometry of Riemannian, the latter's curvature lacks geometric meaning; it is just a set
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of symbols. It was only in 1917, two years after the birth of General Relativity (GR),
that Levi-Civita (LC) provided them with a geometric meaning through its namesake
connection a/ (:fo'fix';, where the l-o"tare the Christoffel symbols. But auv is an
affine connection only if used to connect bases at different points, i.e. deu:ao'e*

Because of its relevance for the accompanying paper, let us point out that the early
GR, based on the Riemannian geometry of the first stage, was roughly consistent with
other connections and, therefore, with other affine curvatures. It has not realized
generally that there are two concepts of curvature when a manifold is endowed with a
metric and compatible affine connection other than the LC connection, as the ar''s still
retain their sigrificance as differential forms from which to obtain the Riemannian or
me8ic curvature. Hence, had Cartan produced his theory of affine connections in 1916,
and had he besr immediately and thoroughly understood, GR might have adopted some
metric-compatible connection other than LC's to take care of the affine properties of the
space, while leaving unchanged its metric properties, like the separation of extremals
and the original purpose of the Riemannian curvature. When, in the late 1920's, Einstein
used TP connections to push forward the geometrization of the physics, he failed to
realize that his Einstein equations might still emerge, through the relation between affine
and metric curvatures that Cartan pointed to him and which Einstein chose to ignore
(Debever, 1930). To be precise, Cartan gave without explanation the Ricci tensor in
terms of the torsion when the connection is TP and the affine curvature is zero.

We retum to Finsler geometry. If Cartan had every reason to refer to the original
spaces of Riemann as false spaces, the same qualification applies to the original Finsler
geometry. In other words, one should avoid seeing Finsler geometry only as manifolds
where the concept of length of curves is defined. It was Y. H. clifton who, upon our
prodding (vargas-Torr, 1993), defined affine-Finsler connections for geometry on
Finsler bundles. In the latter case, one takes the set B(M4) of all tangent vector bases to a
manifold I\4q and refibrates it over the 7-dimensional manifold S(M4) constifuted by all
directions at all points (Two tangent vectors at a point represent the same direction when
they differ by d positive factor). One then introduces a connection in this (re)fibration.

In the fibers of B(lvI+)+M+, the linear group acts freely and transitively. In the Finsler
bundle, B(Ivt+)-+s(Iv[*), on the other hand, the fibers are similarly acted upon the group
that leaves a direction unchanged. The refibration is achieved by establishing an
isomorphism between tangent bases to M and bases of reduced tangent vectors to S(M)
(Vargas-Torr, 1993).In establishing the isomorphism, one takes a direction as preferred.
When one adds a metric structure through a positive definite metric, the set B(lvL) of
bases is replaced by its restriction B'(Nfu) to the frames (orthonormal bases). The group
in the fibers then becomes the rotation group O(n-l) if the metric is positive definite. If
the signature of the metric is Lorentzian, the group in the fibers is O(n-l) if the preferred
direction is time-like. otherwise it is the subgroup o(1,n-2) of o(l,n-l), in which case
one is arbitrarily singling out a subgroup of O(l,n-1) which is not distinguished. In other
words, we have found that the elementary geometry of metric-Finsler connections with
signature (1,3) is a triple of already familiar groups (Poincaré, Lorentz and o(3)), the
bundle being B'(lvIa)-+S(M4) with O(3) acting on the fibers. The Finsler fibration thus
makes a larger use of the group structure than the usual fibration. The arbitrariness in
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choosing a preferred direction in affine-Finsler geometry is removed on manifolds
endowed with a metric of Lorentzian signature. There is no reason to look into the
subgroups of O(3) and try to further extend the concept of elementary geometry by
involving still another level of (sub)groups, since there is no intrinsic consideration to
look into the subgroup O(2) of O(3). To conclude, the geometric structure of spacetime
physics should be Finslerian. Pseudo-Riemannicity should be viewed as a historical
accident at a time when one did not know of other options.

In sections of the Finsler bundle, and because the frames are adapted, the soldering
forms, of , (i.e. "the square root of the metric") are

(Notice that the oJ are of a special form, since they depend on three rather than four
independent elements of a basis of differential l-forms). It is to be noticed that these
expressions depend explicitly on the u^, even if the metric is Riemannian. This
dependence, however, cancels out for the latter metric,
ds2 = dP.dP :Zp eo fuf)2, (9)
where er:+1, depending on signature and specific value of ;r

The equation of the autoparallels is given by oJ : 0, i=1,2,3 and du=O. Since, in the
Finsler bundle, e0 = ,t (which is to say that the frames are adapted), we have du=des
:aùlei- The condition aJ:0 expresses that the curves of interest are "natural liftings" of
spacetime curves (all the differential l-forms are multiples of just one of them on
curves, and c,f =d{-u^dt=0 simply means that u'=dx^/dt). Hence, the equations of the
autoparallels are given by al:6;=9.

The equations of structure in Finsler bundles have the usual left hand sides (Vargas-
Tan, 1993), but the right hand sides have greater richness. The first one reads:

af = ldt + A.(dt -u^ dt),
0 ) ' : A ' r ( d { - f d t )

da'-c,/tta^' : R"orof nc,] + Stli r,/ao| = t/
Because of the aszumptionof TP, the curvature equation reduces to
drou'- a/rtot^" : g,

and the first Bianchi identitv to
dt/ + {y' to1r": g.
In metric compatible TP, we rewrite the second Bianchi identity as
dar" - a/a at' : d(dt u- 

P"") - (arr^-p,) t kt^'-Êr),

(8a)
(8b)

(10)

( l  t )

(12)

(13)
and set dat "-ar;t ,ta^'(afËtne curvatur€) oqual to zsro. po" is the difference between the
affine connection of spacetime ard its LC connection (we shall be interested in
Finslerian connections on pseudo-Riemannian metrics) . The contraction of the left hand
side gives the Einstein or Ricci tensor, which is automatically matched with a similar
contraction on the right hand side. In other words, eq. (13) contains a version of the
Einstein system where the right hand side is geometric, as he sought. The identification
of actual energy-momentum tensors is given briefly in our accompanying paper. For
more detail see (Vargas-Ton, 2005b).

We have given elsewhere examples of TP Finslerian connections (Vargas-Torr,
1997a). Further progress towards the anticipated structure comes from the calculus and
from the physics.
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4. The Evolution of the Calculus

By the term calculus, we mean the formalized extension of the ordinary calculus that
replaces everywhere functions with differential forms of different grades, even mixed
grades. Before Kiihler, it had been overlooked that the calculus of differential forms
need not be just an exterior calculus, even though integration and geometry requires
antisymmetry. But antisymmetry is not enough for quantum mechanics, not even enough
for a theory of harmonicity for differentials. The Laplacian fuses the exterior ("curl")
and interior (divergence) derivatives, both of which are lost in the fusion. The "Kâhlef'
calculus gives us a derivative with exterior (antisymmetric) and interior (symmetic)
parts, which do not loose their identities in their union. The annulment of this derivative
defines strict harmonic differentials. The annulment of its square gives the lesser
concept of harmonic differentials. Ignore the symmetric part of his derivative and one
gets the Cartan calculus, like ignoring the symmetric part of two quantities of grade one
in the underlying algebra of the Kâhler calculus yields the exterior product. And yet, this
calculus remains one about antisymmetric differential forms, as geomery requires, but
meeting the challenges of quantum mechanics with a vengeance.

The underlying algebra is Clifford algebra- It might as well have been called
Euclidean algebra. Indeed, the Clifford product of two vectors or two difïerential 1-
forms integmtes the dot and vector producæ of Euclidean geometry, after the spurious
element in the vector product has been removed (The vector product is an artifact of the
vector product in three dimensions; only for n:3, there is one and only one direction
perpendicular to the plane defined by two vectors).

Let us imagine that some mathematician had written in the mid twenties the pertinent
papers by Kiihler (1960, 61,62). The frne structure of the hydrogen atom was solved in
a dedicated paper (1961), and also, even more elegantly, as an exercise following his
presentation of strict harmonic differentials (Kiihler 62). Such an achievement in
physics, coming from the natural development of the exterior calculus, would have
blown Dirac out from second place in the physics rankings of the twentieth century, as
his instincts would have told him that he could not compete with such beauty. The
"Kâhler equation" would be today the foundation of quantum physics. It can be
anticipated that physics will one day remove any spuriousness due to historical accident,
and that the Kâhler calculus and equation will prevail. The right mathematics always
enriches the physics.

We proceed to illustrate the naturalness of Clifford algebra. Suppose a space of
dimension n>3 with a product of vectors other than the dot product, and which we shall
designate by juxtaposition. Until further notice, or until we add further properties, this
product could be a tensor product, or what we shall later define as Clifford product or
many other products. Suffice to notice how little structure is needed for the validity of
the first few equations that follow. We assume that our product has the distributive
property but not commutativity or anticommutativity. The identity
ab =(t/2) (ab+ba) + (l/2) (ab-ba),
gives rise to
a b = q . b * s r \ b

(14)

( ls)
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where the two terms of the right are defined as
a. b =(1/2) (ab + ba), anb = (l/2) (ab - ba) (16)
and are respectively synmetric and antisymmetric. Under the assumption tlrat the
product is distributive (the tensor product is known to be so, and such is also the case
with the Clifford product), we readily get
(ap1 + af z * aj€ j * 44st * ...) n (bÉt + b2e2 * $ jsj * b&t * ...) :

= Z.datbt- aib) eirci Q1)
One recognizes that when the indices run from one to three, the right hand side is like
the vector product, except that e4ei now plays the role of er, where (ij,k) is a cyclic
permutation of (1,2,3). Thus the rvedge product so defined makes reference to the
oriented plane of the vectors in the product, not to the vectors perpendicular to those
planes. The vector product of linear algebra in 3 dimensions is a wedge product
followed by another operation called Hodge duality, but only in three dimensions does
one get back a vector in this way. Because of the point we wanted to make, we ended up
with a basis of antisymmetric products on the right hand side of Eq. (17). If aô were
specifically the tensor product, a&, we could have also given the right hand side in
terms of ei&j, since the antisymmety of the coeffrcients (a1b,-a1b) picks the
antisymmetri c part of aEb.

A Clifford algebra, like a Grassmann algebra, is an algebra whose elements axe sums
of totally antisymmetric tensors of different grades. Both algebras are quotients by ideals
ofthe general tensor algebra consffucted over a vector space or, more generally, over a
module. With one ideal, we get exterior algebra, and we get Clifford algebra with
another ideal. The difference is in the multiplication rules (Lounesto, 2002). See also our
simplified summary (Vargas-Torr, 2005d). In both cases, one is performing tensor
products and then reducing the expressions in different ways. Of course, there are rules
to operate without going through the tensor products. The symbol used indicates what
rules apply. Clifford multiplication is performed most easily by using orthonormal bases
of vectors. The rules are then the same as for matrix multiplication of linear
combinations of products of gamma matrices. Except for what would be just a minor
subtlety here, the algebras of the sigma and Dirac matrices are Clifford algebras. The
complex numbers can also be viewed as constituting an algebra (Lounesto, 2002), and
not just as a field. The complex numbers, the quatemions, the Pauli matrices and their
products, and the ganrma matrices and their products constitute examples of Clifford
algebras coresponding to vector spaces of respective dimensions l, 2, 3 and 4- The
multiplication rules are the same in Clifford algebra, but one does not need to have
rnatrices. These may simply constitute a particular representation for some Clifford
algebra.

Let us give some more of the flavor of these algebras. An r-multivector, 1,, is an
antisymmetric tensor of grade r, usually referred to as an r-vector. It can be viewed as an
antisymmetric tensor product of a number r of vectors. An equation of the type ( I 5) also
holds in Clifford algebra (the Clifford product then being denoted by the symbol rz )
when one of the factors is a vector and the other one is an r-vector. l":
avAr:  aA,  *  ga4,
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where juxtaposition now denotes specifically the Clifford product and where
atA,: (1/2)[avA,+ (I)'A,vaJ, aA, : (I/2)[avA,- (1)'A,vaJ. ( le)
The Clifford quantities aA, and aM, are of respective grades r-l and r+1. A
decomposition like in (la) is not of significance when at least one of the two factors is
not a vector. The productA,uB, will rather have parts of grades r*s, r*s-2, r*s-4, ...,
lr-s | . the part of grade r+s is A,'t&,. In the calculus of gamma matrices, A, and B,

would be represented by sums of products involving r gamma matrices each
(representing A) and by sums of products involving s gamma matrices each (8,),
products which cannot each be reduced into products of smaller numbers of factors.
After the appropriate reductions in the product of A, and 8" by the usual rules of gamma
matrices, we would have a sum of terms which are (when not zerc) irreducible products
of r+5, r*s-2, r*s-4, ... and I r-s I gam-a matrices-

Kâhler constructed a Clifford algebra of differential forms defined by the relation
af v at" * dt"v af : 2rf', (20)
which contains the equations afna':-a'aaf and af .dt':f', where the rf" are the
elements of the diagonal matrix with diagonal (1, -1,-1,-l) in the spacetime case. To be
precise, Kiihler used coordinate bases, namely
df vdr" + dx'vdf :2{'. (2t)
This is a serious drawback far beyond the obvious, both for computations (Vargas-Torr,
2005a) and for further evolution of the Kâhler calculus (Vargas-Ton, 2005b). Equation
(21) has to be seen in the contextthat df n dx' is anelement of a basis for an integrand,
normally written as df dxu, where this could be the dxdy, or d@0, etc. There is an
accompanying tangent tensor algebra in his first paper in the subject (Kâhler, 1960). An
example for illustration would be a differential r-form up, of (l,l) valuedness, rvhich is
compact notation for his more detailed notation up, 1..dxt,t...rtdi for the same
quantities.

Kiihler defined (his) "covariant derivatives", d4l. with which he used in tum to
introduce other "derivatives"
âlr: dxo vd4lu: dxoada./',+ dxo.ddtt'r: drl'r+ ùlr. (22)
our first use of inverted commas has to do with the fact thzt fuP , , dup , and âtP , also are
covariant expressions. The second use has to do with the fact that, although daup,and
drl"satisfytheLeibnttzrule,â/',andâl ,donot. Thederivative duq,,i.e.dxo nddtpu,
recovers the exterior covariant derivative, i.e. the d(uf æu@e') of the theory of moving
frames, and becomes the exterior derivative if there are no tensor indices (scalar-
valuedness). In order to avoid details, let us simply state that âis the generalization of
the co-derivative. However, in spite of the Leibnitz rule issue, we prefer to use the term
interior derivative, as it helps realize that â is not the interior derivative when the
connection is not the LC connection. Readers are warned that we use the symbol y'
where Kâhler uses the symbol â He does not introduce a symbol that would correspond
to our â we shall not reproduce here Kâhler's cumbersome formulas defining d;up.
which he introduces as an ansatz. Some details about our natural alternative approach to
âf ,will be provided in the next section.

The equation
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Q t = a v u  Q 3 )
is known as the Kiihler (1960) equation. Both a (input) and u (output) are
inhomogeneous differential forms and may be tensor-valued. As in the original, we drop
indices to avoid clutter. The symbol rzrefers only to the algebra of differential forms. Up
to constants, a is simply m+eA for a padicle in an electromagnetic field (læ is mass, e is
charge and I is the 4-potential differential form). Specializing to the Coulomb case,
Kâhler (1961) solved the hydrogen atom's fine structure in a paper dedicated to this
topic. An improved presentation of his calculus later led to an improved solving of that
atom in the same paper (Kâhler,1962).

In the case a:0, we have Qt=O, which defines the so called strict harmonic
differential forms. Less special are the harmonic difierential forms, satisfuing ââu:0.
The solutions of the equation dnc:0 are particular strict harmonic differential forms
known as constant differentials. They have the property ttÊt,if êttl = av ty, then

dyuc) = av (ryvc).
Examples of important constant
hanslaton symmetries are

- ltidxt v dx)
T '  = - ,

2

(24)
differentials, related to the rotational and time

6 : =
I+idt (2s)

They are instnmrental in relating the solutions of the Kâhler and Dirac equations.
The equation ât = av u in itself and through its special case Qt:O, constifutes the

cornerstone of the Kâhler calculus. It supersedes the Dirac equation (Vargas-Torr,
2005a), which is apillar e$ultion of the physics.

5. The Juncture of Geometry and Calculus

One is led to anticipate some confluence of geometry and calculus from the foregoing
considerations about how their key equations relate to two pillar equations of the
physics, combined with the widespread expectation for physical unification. It will
certainly be justified to speak of unification if the structure of some geometric space is
given by a KD equation. Retrospectively, this looks particularly feasible in TP, since the
affine cunrature is then zero and so is the exterior (covariant) derivative of the torsion. It
seems that only the interior (covariant) derivative remains to be determined. Unlike the
exterior derivative, there is not an "interior structure" where the interior derivative could
be defined. This is so because grading, which is ofthe essence ofexterior and interior
derivatives, is inimical to algebras of symmetric products. Even in Clifford algebra, the
usual grading is induced: any Clifford product can be written as a sum of terms which
are exterior products, each with a definite grading but which may vary from one term to
another. Fortunately, one does not need more than that. lt is then a matter of either
constructing a Clifford algebra in our TP Finsler space, or in some other space directly
relaled to it. A KD equation for the torsion would constitute an equation of structure of
that space. There are a few steps in getting to the sought KD equation.

The original Kiihler calculus, developed for the LC connection, has to be adapted to
arbihary metric compatible affine connection. This requires deriving the expression for
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the covariant derivative. The process is very clear for scalar-valued differential l-forms.
Using the first equation of structure, we get
d(aoaf) = ap,ra'v r,f + a2da/ = av A [ar,, * a{RA,o- f/"ll ot, (26)
(comma represents coefficients in the expansion of a differential form with respect to the
af, and with respect to the dru in particular). It is to be noticed that the factor ar"at the
front of the last expression comes, in the case of the term dao af , from dco (the
alternative, wrong, would be -o" 't da). Similar considerations apply to the other factoç
under similar argument (Vargas-Torr,2005a). From eq. (26), we get:
d,(auof): [ap,, + at(R",p- f,i")] ,'f, e7'l
Dot multiplication by aru yields:
6(aoaf )=  sv ,v -a t fn^ r . (28)

Consider next the same issue of defining an interior derivative in the Finsler bundle.
The differentiation produces now differential forms dx'and, dui. we will need a dot
product in the 7-dimensional module of differential forms spanned by d*'and dni. No
such dot product exists. Thus, there is no way to implement the Kiihler rules on the
manifold s(M). TP, however, suggests awîy out. In this case, al cm be chosen to be
zero on sections of the Finsler bundle, B(M)-+ S(M). Equivalently al can be chosen to
be the invariant forms of SO(3) (in the spacetime case). Hence, all the information that
is specific to individual TP Lorentz-Finsler connections is n (af,oil). In addition, the
Finsler bundle fits the Lorentzian signafure, but it does not seem that physical frelds
need depend on the velocity coordinates. This suggests the following course of action
(Vargas-Torr, l9'97b).

Given that a/ determines des(dee:afiei-y, it determines dn, since e6u (the frames are
adapted in the Finsler bundle). Furthermore, z is dual to proper time. The form
dp = dP + dru : ûfeu+ dtu. (2e)
spans a 5-dimensional manifold. It is a kind of Kaluza-Klein (KK) space rhat may be
viewed as a sum of spacetime and a l-dimensional manifold spanned by the unit vector
u representing the particles. At this point, the spacetime part of the connection de, can
be chosen to be zero (constant spacetime frame fietd). The torsion d(d e) then involves
the dof and the differential forms a.rar (A=0,1,...4) that, grossly speaking, now play the
role of the ail . W e shall ignore interesting issues that arise here, like the meaning of a/ .

This KK space is endowed with a dot product of differential forms. we have
ûr'-ao - û/ -ûj - d.ûl - at.ûrt - drdr: 0, (30)
where the meaning of the different terms in Eq. (3 I ) can be inferred by reference to the
fact that this equation is the clifford form of ds2:a/. rurthermore, c,f .of =0, if AÆ.

It may be said that the spacetime manifold interacts with a l-dimensional manifold,
representing individual particles. Needless to say that different particles may be seen as
interacting through their direct interactions with the 4-dimensional manifold at different
parts of the latter. One is now able to define an interior covariant derivative, the details
not being needed here. This KK space is the teleological structure to which we have
been referring. We use the circumflex to refer to quantities in the KK space, as in â=
ôvû.It is not needed over Q since the fields do not depend on the coordinates of the
particle, i.e. on r(The traditional KK space also has characteristics along these lines).
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We have shown, both in the Finsler bundle (Vargas-Ton,1999\ and in the KK space
(Vargas-Torr, 2005b), that the torsion which makes the autoparallels become the
equations of the motion of SR with Lorentz force is d2: -Fu (= -Feo in the Finsler
bundle). Since a spans the fifth dimension (for which we use the subscript 4), we have
fl:-p. When this torsion is used in the contracted curvature equation, the energy-
momentum tensor also comes to be what one expects it to be, except for an interesting
discrepancy. It is then clear that, in the unification of geometry and calculus, the KD
equation should have as input differential form something ltke d p, ot dPvdru, etc.

We now change the approach to structure in the KK space canonically associated
with Finslerian TP. Instead of speciffing a torsion that will satisf the first Bianchi
identity (i.e. that its exterior covariant derivative is zero), we view that specification as
taking place through a KD equation playing the role of a field equation for the torsion
(actually for the connection through the torsion). Hence, apart from annulment of the
affine curvature, viewed as a statement relating metric curvature and torsion, the
stmcture of the KK space is constituted by

Qtt: ôv tt, (3 1)
where ffis the torsion of the KK space and where d is dp or dPvdru, or even uvdP.
Of great interest is the intimate relation between ffand any of these d's. For eq. (31) to
work, one should recover that the exterior covariant derivative of (at least) the
spacetime part of the torsion is zero. But this is for the accompanying paper.

6. Conclusions

This paper has been a tour the force taking us from the original Riemannian concept
to the junction of geometry and calculus, both at extremely specialized points of
development. Consequently it may be difficult for many readers to realize what has
been achieved. In the heart of the geometry, whose upper and lower halves are the two
equations of structure, we have replaced the ventricles with the pump of the calculus of
differential forms, namely the Kiihler equation with torsion as output differential form-
Lack of rejection is guaranteed by the fact that the input differential is constituted by the
same differential forms in terms of which (and their derivatives) torsion and curvature
are defined. Thus the curvature specification, (13), now considered in the KK space,
together with the new torsion equation, (31), constinrte a very sophisticated closed
geometric systern, comprising gravitation and quantum physics. Not surprisingly, the
front interaction in the quantum half is the electromagnetic one. The strong and weak
ones appear to be disguised in the technical details.

We have shown that realistic anticipation by physicists with the required knowledge
of the evolution of mathernatics and mathematical ability could have got thern very fast
from point Riemann through the two Einstein passes to point Cartan-Kâhler in KK
space. Our journey between those two points was largely guided by anticipation, but it
is possible to do even better than we did. Anticipate that our mathematical tool kit will
become better and that the different problems of unification will one day be solvedo
solving in the process fundamental problems like the impossibility at present of
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integrating vector-valued differential forms in GR. As explained in the introduction, one
is then lead to anticipate a junction of geometry and calculus. Let us start enumerate
some of those anticipations, in case they have escaped the readers attention.

There is no path-independent equality of vectors at a distance in GR based on the LC
connection. Hence, anticipate that there is, which is the same as to postulate TP (first
Einstein pass). Since the theory of Finsler bundles tells us that the Lorentzian signature
is canonical, anticipate the Finslerian perspective for the underlying geometry of the
anticipated gravitation, hence postulate Finslerian TP. Express that the affine curvature
is zero in terms of metric and torsion and discover Einstein equations with torsion as
source. Obtain the equations of the autoparallels in Finsler geomefy and discover in it
the gravitational and Lorêntz conhibutions. Thus anticipate the logical homogeneity of
physics and geomeûry (second Einstein pass), i.e. that the equations of structure become
the field equations. The first Bianchi identity of TP already specifies that the exterior
covariant derivative of the torsion is zero. Thus, anticipate a geometnc formulation of
quantum mecharics and that the specification of the torsion will be given by a Kâhler
equation in a forrmrlation of geometry . Anticipate, further and therefore, that there is an
alternative way of interpreting how one has to view the differential invariants that
define a TP Finsler bundle, required for a Kiihler equation. The alternative is easily
found- It is our KK space. In the process, one identifies what specific torsion has to be
identified with the electromagnetic field at the level of linear (Maxwell)
electrodynamics. Solve the hydrogen atom to veri$ that the Kâhler equation works.
That pennits one to anticipate the input differential form for the Kâhler equation that
constitutes the first equation of what we called our teleological geometry (If there was
any doubt as to the appropriateness of this terrn, there should not be any more). Check
that the exterior part of the Kiihler equation in our KK space indeed contains the
homogeneous Maxwell's equations and anticipate that the full Maxwell system is a
degraded version of the Kiihler equation for the torsion. The proof is in the pudding, to
be prepared in the accompanying paper. The authors beg for empathy of the readers,
given the extreme youth of the art of in implementing anticipation in the formulation of
physical theory.
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