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Abstract
The fourth generalization of Newton's Mechanics is considered. The oriented material
point became a principle object for the study, while in Newton mechanics it was just a
point. The space-time in new mechanics is represented by l0 dimensional fibre bundle,
where 4 translational coordinates form base and 6 anholonomic angular - a fibçe. The
principle consequence of the new mechanics is the connection between the general
relativity theory and quantum mechanics. In non relativistic approach it is possible to
establish the theoretical foundation of "jet l ike motion without rejection of mass". This
conclusion was verified by experimental results with 4-D Gyroscope.
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Introduction

For 317 years we have been applying Newton's mechanics to explain non-relativistic
mechanical experiments on the "bench table". Although Newton's mechanics has been
generalized three times: by the special relativity theory, general relativity theory, and
quantum mechanics, there remains a possibil i ty for its further generalization.

1.1 Frenet's Oriented Point

Newton's mechanics as well as all its generalizations, mentioned above, have been
based upon the concept of the material point, substituting all the material bodies in this
theory. The exception is quantum mechanics, where the material particles demonstrate
both their corpuscular and wave properties. In the three-dimensional reference frame a
material point has three degrees of freedom (according to the number of coordinates).
ln 1847 F. Frenet introduced for the first time the concept of an "oriented point" -

point to which three orthogonal unit vectors are connected. In the three-dimensional
coordinate space rc. (o:1.2.3) the oriented point has got six degrees of freedom -

three translational and three rotational [1].
In arbitrary coordinate system and in modern notations, the Frenet's motion equa-

tions for the three-dimensional oriented point could be written as [2]

"+:ruu.,ë"# or *: Lo","uo#,

a , 9 , 1 . . . :  1 , 2 . 3 .  A , 8 , C . . .  :  L , 2 , 3 ,

( l )

fnternational Journal of Computing Anticipatory Systens, Volume 19,2006
Edited by D. M. Dubois, CHAOS, Liège, Belgium,ISSN 1373-S4ll ISBN 2-930396-05-9



where o, Ê,'y... - coordinate induces and induces A,B,C... - denote vectors of the
Frenet's triad,

6s2 : goBdrod"rÊ : rl,sneA oeB u dxo d*P, Tea : ree : dias(l 1 l) (2)

- the Euclidian translational metric. D - is absolute differential with resoect to the
Christoffel svmbols 'I

lo p', : jo"'bar,', I g*,a - 9n,,)

In (l) the geometric object

(3)

TAs, : Y ,eAnef : eît eb - ffl.retefi - AAB, - lAp^, (4)

had been introduced by F. Ricci [3] and named later as the Ricci rotation coefficients
and

LAs - r :YAur+TApr :  e ! , - " i :  
# , ,  

( 5 )

- the connection of absolute parallelism geometry [4].
The Ricci rotation coefficients 7$., describes the changes of the orientation of basic

vectors ef and deiine the rotational metric [2]

tIû : ec oDeAoen 4DeA6 : TA aoTB epdr" d,t:a , (6)

Below it will be shown, that the mechanics of the oriented point can generalize
Newton's mechanics as well, allowing us:

a) To view the dynamics of the physical objects as rotation (Descartes'idea):
b) To describe the "inner" degrees ol freedom. connected with its own rotation of

the oriented point, that are not addressed in Newton's mechanics.

1.2 Clifford's Program on Geometrization ol Physics

From the equations (l) we can get the curvature rc(s) and torsion 1(s)

r u ( s )  : 7 ' i r ' ( , ) " 9 t .  r ( s ) : 7 :e \G r# ,  ( 7 )

which uniquely deline an arbitrary curve in three-dimensional space. I[ we compare
the Frenet's curve with a certain physical trajectory, then it will allow us to describe
the motion of the material point, which may change its orientation in the space. Vy'e
will call such an object as the "oriented material point". Let the curve rc(s) in the
Frenet's equations be equal to zero, then it follows from (l) the force acting upon the
oriented material point is absent and it moves straight along the l ine. Meanwhile its
orientation in the space changes. In these case equations describe own rotations of
the oriented point, affected by the rotational f ield x(s) - torsion field [2], while the
action is lorceless. The equations (l) are interesting, because they allow to find the
geometrical description lor physical interactions, which are based upon the Newton's
equations. In order to do so it wil l be sufficient to select the curvature rc(s) related
to (l). Perhaps, the similar ideas led Clifford saying in 1870 that "there is nothing
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happening in the world, except changes of the space curvature" [5]. However, being
consistent, we could refine it by saying: "there is nothing happening in the world, except
changes of the curvature and torsion oi the space". To prove it with the help of the
Frenet's equations - is impossible. These equations describe just an arbitrary curve in
the three-dimensional space. Moreover, it would be a better idea to call rc(s) and 1(s) as
the first and second torsion o[ a curve, since they are defined through the Ricci rotation
coefficients ?$" according to the relations (7). It is understood that the geometrization
of physics requires such a geometry, which has got the Riemann curvature and torsion,
created by the Ricci rotation coefficients.

L3 Ricci's Curvature on Manilold of Oriented Points

We know that Riemann applied point manifold to define the curvature tensor Rln- of
non-Euclidean space. Ricci in his work [3] finds for the first time the curvature tensor
fo; the manifold of the oriented points. To be more exact and guided by the physical
applications, let us write the principal formulas from Ricci's work [3] for the manilold
of the oriented points with 4-dimensions, using modern notations. The generalization
for a larger number of dimensions is not diff icult. Following Ricci, let us consider four
-dimensional differentiated manifold with coordinates st (, : 0, 1,2,3). In each point of
th is  mani fo ld there are -  vector  e" ;  ( i  :0 .  1,2,3)  and co vector  er ,  ( l r :  0 .  1.2.3)  rv i th
the normalization conditions

e"ud o:  5tn,  e" .e i  r :  [y .  (B)

With such a task the four coordinates ci describe the origin O of four-dimensional
oriented point (tetrad), and six independent (due to the conditions of (8)) components
oi tetrad e"1 describe its space orientation, playing the role oi angular variables.

Tetrad eo, defines the metric tensor of space

gur : q6e"nef,,rlot : rlù : diag(l - 1 - 1 - 1)

and Riemannian (translational) metric

ds2 - gal"dridrk.

\p : e" oV *e"i : -{l;i + g'^bi"Q'Î* * 9*''t);;})'

where V6 is the covariant derivative with respect to the Christoffel's symbols

and the quantity [31

Pro : 
ïs'^br*,6 

* !n*.i - gik,n),

Qfi,: ei oeltir: -|ei 
"(e"i,* 

- eo*,j) : -4rl

(e)

( 1 0 )

Moreover the covariant derivatives of eou along coordinates z; define the Ricci rotation
coefficients [3]

( l l )

( 12 )

180
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has been called by J. Schouten as an object of anholonomity [61. This name had been
justified by the fact that six angular variables, orienting the triad, are anholonomic.
Naturally, when the object of anholonomity (13) goes to zero, there will be no change
{or the orientation of a point. If the orientation ol tetrad vectors changes, then we get

the rotational metric [2]
dr2 : Ti ixTlndrkdrn, (14)

which describes the infinitesimal rotation. Further Ricci demonstrates [3] that there are
two curvature tensors lor the manilolds o[ the oriented points;

a) tensor of Riemannian curvature, deiined through Christoflel's symbols by conven-
tional way

Ri ip^: 2li iç-,xy+ 2fi1efir1*1, (15)

b) tensor of Ricci curvature, deiined through the Ricci rotation coeilicients as

P"ik ,:2Yg|9,^1l- 2TitrTi,t ,:.

Because the sum lla+Tir iorms the connection of absolute parallelism [7]

L]6 : lj* * Tjt : eko?oi,j.

the curvature tensor of the space of absolute parallelism

9 ix,o: 2\'i6,x1+ 2Ai15Al11-1 : 0,

is equals to zero. Then, substituting (17) into (18), we wil l get the relationship

Siiç*: It j ' ,n+2VroTiwl+2Tiy,Ti1p1: P ir^* P'iv^:0' (19)

Let us note that the connection oi the geometry of absolute parallelism (17) has
torsion

aiiur :TËot : -fUi,

(16)

(17)

(18)

(20)

which we will call Ricci torsion Thus the geometry of absolute parallelism with the
Riemannian curvature (15) and Ricci torsion (20) fits most of the implementation of
Clifford's program for geometrization of physics.

1.4 Klein's "Edangen Program" and Cartan's Structural
Equations ol the Geometry ol Absolute Parallelism Aa

ln 1872 F. Klein introduced the "Erlangen Program", which aimed to construct the
basic geometrical relations for the geometry [8] specifying the group of motion of the
space. This program had been consistently developed by many famous mathematicians
with the major contribution made by Cartan. Cartan applied not a point manifold,
which was used by Riemann to construct non-Euclidian geometry, but a manifold of the
oriented points similar to Ricci. Cartan called an oriented point the "orthogonal moving
reaper", which in motion created infinitesimal translations of the origin dri (in our case
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local group ?a) as well as infinitesimal rotations of tetrad vectors de"o (local group
O(3.1)). Using Cartan's method [9], we will obtain the lollowing Cartan's structural
equations of the geometry Aa l2l

Vlreo^1 - eb y"T"p1-1 : 0 or Vioeoal : -Qol"u 
",

(2t)

R"u*- * 29 1t"Tfi14 * 2T".1aT\61^1 : 0 or ff o^:2eiYy"Y^1ei, (22)

which coincide with the Maurer-Cartan equations of the groups ?a and O(3.1) corre-
spondingly.

In the equations (21) the Ricci torsion components fl;f; represent the structural
functions of the local group f4 , satisfying lirst Jacobi's identity (or Bianchi's first
identity)

ùp Qfr + 2Q:dQ';n : s tr ffwt,:0, (23)

where Vo - the covariant derivative with respect to the connection (17). In the equations
(22) the Riemannian tensor components R9àftm represent the structural functions of the
local group O(3.1), satisfying the second Jacobi's identity

Yrrffvft*l I ff611r^Toplnl - T'utoffi.l*-l : 0, (24'l

Considering that the structural equations (21) and (22) satisfy the conditions of in-
tegration (equations (23and (24) correspondingly)[2], then the geometry of absolute
parallelism happens to become the only geometry satisfying all the requirements of
Klein's "Erlangen Program".

1.5 Inner Degrees ol Freedom of an Oriented Point and
Yang-Mills's Field Geometrization

The space of the events ol mechanics of an oriented material point has a more
complex structure, than the mechanics of a point. If the description of the dynamics
of a material point in n-dimensional space requires ru coordinates, then the description
of the oriented material point in n - dimensional space requires n(n+I)12 coordinates

[10] For example, in four dimensional space l0 coordinates define the oriented material
point: four translational coordinates fr, U, z,cf and six angular, where there are three
space angles grt gzt 93 and three space-time 0y, d2, d3 angles. The anholonomic tetrad
eo, represents the angular coordinates. The ten-dimensional manifold (four translational
coordinates xi and six "rotational coordinates e'") of the geometry of absolute parallelism
,4a can be viewed as a vector fiber bundle with the coordinates of base ri (external
space), in each point oi which there is a field of four orthonormal vectors e'o (a
=0,1,2,3)  [ l l l  forming " inner 'space.  The t ranslat ional  group A acts in  the external
spac€ o; (base) and the rotational group O(3.1) acts in the "inner" space e'o(fiber). In
the equations (21) and (22) the matrices eo,i., Tobk and FFou- are transformed in the
rotational group O(3.1) as follows

€o ' i :  l \oo 'eo i
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r"Lo: Loo'T-bktbb, + Loo' Lob,.k, Âi' e o(3.1), (25)

Rd6, 1r* : Lo"' ffbkn|b b,,

while Ricci rotation coefficients ?"ou perform as potentials of the gauge Iield ,R"66.
Dropping the matrices indices, let us write the equations (22) and (24) in the form of
geometrized Yang-Mills equations

with the gauge group O(3.1). We have introduced the notation for the dual Riemannian

tensor -â4m: |e"p6-Rii"r. Adding the structural equation of the translational group
(21) to the geometrisized Yang-Mills equations (26) and (27)

Vlr€ ,,1 - e 1xT -l :0, (28)

we will get the extended system of geometrized Yang-Mills equations.

1.6 Equality ol the Newman-Penrose Equations with Geometry
Aa Structural Equations

Clifford's program on the geometrization of physics started from Einstein's work,
who had shown that the relativistic gravitational fields and gravitational interactions
can be described by the definite relationships of Riemannian geometry U2l. A. Einstein
especially remarked, that a purely geometrical description of the gravitational f ields
could be given by Einstein's vacuum equations

Ër t  : 0 (2e)

and these equations" represent the only rational lundamental case for the field theory
that may pretend for strict approach. . . " [121. Einstein was right and the Einstein's
gravitational theory can be proven by the experiments, based upon the solutions of
the Einstein's vacuum equations (29). In 1962 the mathematicians E.Newman and R.
Penrose proposed a new method to search for the solutions of the Einstein's vacuum
equations [13]. In the coordinates of the base rt and with the accepted notations the
basic equations of Newman-Penrose formalism can be viewed as follows

Rkn, : 29 67l4 + lT*, T1ol,

v^ hr"+ ho"T, - T* ho' - o,

(26)

(27)

V1refi + Tft,ye"o: g.

(2.7 N P)

(2.e NP)

(2.11 ,^{P)

The numbers in the right part oi the equations correspond to the numbers in Newman's
and Penrose's work [13]. The comparison of these equations with the system (21)- (24)

R' i** * 2Y ç*Ti"1,o1 * 2\i1"Tf1^1 : 0,

V 6 R1l41n*1 * r?j16^l*t"1 - {"i, Â10"1r"-1 : 0'
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shows that Newman-Penrose formalism use the structural Cartan's equations of the
geometry An [21. If we wish to obtain nerv solutions of Einstein's vacuum equations
(29), there is no need to solve them now. It wil l be sufficient to find (or "construct")

such a solution of the structural Cartan's equations o[ the geometty Aa (21) and (22),

which satisfy to ,R;p :0. Thus, such famous solutions as Schwarzschild It3]' NUT [14]
arrd Kerr [15] had been found for Einstein's vacuum equations.

Geometrization of Energy-Momentum Tensor in
Einstein's Equations and Tensor Current in
Yang-Mills Equations

After successful çometrization of gravitational interactions, A.Einstein introduced
in theoretical physics the Unified Field Program that implied the geometrization of all
other physical iields, which form of the material energy-momentum tensor in Einstein's
eouations

7 9r ( !
Rp-  ) snR=fT i , , .

(30)

In order to do so, Einstein used various generalizations o[ Riemannian geometry, in-

cluding the geometry of absolute parallelism A4 [161. Although Einstein had actively
corresponded with Cartan about the geometry of absolute parallelism [17], he was not

aware at that time of Cartan's structural equations (21) and (22) oT his geometry. Mean-
while the problem of geometrization of the right part of Einstein's equations (30) can
be solved with the help of Cartan's structural oi the equations geometry Aa. Let us
write the equations (2.7 N P) as

Crjx^ + 9i1r"R4i * gil"Rai + llg4^gr,t + 2Vp"Tii'^1 + 27i:1"T,161 -- 0. (31)

where Ci5p^- Weyl's tensor, Ai- -nilci tensor, B- scalar curvature. These equations
split into l0 equations [8]

ntu - lg tuR:  uTim, Q2)

similar to Einstein's equations, but wltiigeometrized right part, defined as

, l
Ti* : -i{FbT11*) lT"41T\16) - 

roi^ow(V1iT'1p1,1 
* T""6T"pp4)} (33)

and l0 equations
C oj n- + 2Y pTpl^\ + 2T;"y,Ti7^1 : -u J ;.jk^,

similar to Yang-Mills equations, but with geometrized tensor current

J niwn : 2gp,1.iTi1*1 - 
lr 

go6sulr,

(34)

(35)
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where T-trace of tensor (33). Defining the material density as

p - gr^Tin,/c2,

and applying energy-momentum tensor (33) we have

(36)

o:2ffFtr .Ti  1i1n,1aTi " i ,7" i i61) (37)

Certainly the equations (32) principally differ from the Einstein's equations (30),

because they:
a) represent the natural generalization of vacuum equations (29) and as well as the

equations (29) do not contain any physical constant;
b) are completely geometrized and describe the material lields through Ricci torsion

(20);
c) are self-complying with geometrized Yang-Mills equations (34) and " coordinate"

equations (2.lIN P).
For example, instead of Einstein's vacuum equations (29), from the equations (21),

(22) we will get the system
9 gejt + Tfi"ite"; :0.

(l ir* * 2Y pTii61'l 2\i pTfi 6t : 0

(38)

(3e)
E. Newman, R. Penrose and others have been finding the solution of this particular
system lor Einstein's vacuum. With the chosen coordinate system ri, as a searched
Iunction it includes components oI Weyl's tensor C'rr-, components oi Ricci rotation
coefficients 45 as well as the components of tetrad e!. For example, the solution with
Schwarzschild's metric

ar, : (t- '*o) 
c2dtz - (t - ?4)-' dr2 - r21rt02+ sin2 Érrp2;.

\  r /  \  r  )

in the coordinates cs - d, r, x2 : 0 13 : I and in spinor presentation [13] it can be
viewed lor:

l. Components ol Newman-Penrose symbols:

ofo :  (0 '  1,0,0),  oi i :  (L,4 0,0),  ai i  :  P(0,0, P, iP),

oP :  ( t ,0 ,0 ,0 ) ,  o l i  :  ( -1J .1 ,0 ,0 ) .  
"? '  

:  -# (0 ,0 ,  f  .  i ) ,

U :  - t l2+] iJof r ,  P :  (2)-r /2(t  + Ce lq,  Ç: 12 +ir3,

!Ûo : conSt.

2. Spinor components of Ricci rotation coefficients:

p: -11r,  o:  -B :  -60 l r ,  7 :  to l2r,

pr: -€o /r i 2Vo f r2,oo : C/4.
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3. Spinor components of Weyl's tensor:

t : -{to lr3.

The received solution of new vacuum equations has got physical sense, if we set

Va: MGlc2. (40)

The principle difference of the equations (38) and (39) from Einstein's vacuum
equations (29) is that, if Ricci torsion (consequently of Ricci rotation coefficients as
well) in the equations (38) and (39) goes to zero, than we will get the flat space.

3 Motion Equations of Oriented Point. Physical
Interpretation ol the Ricci Rotation Coellicients

The motion equations of four-dimensional oriented point

d?iu .i ^, d# , ^ ^, dro ô
É  

- f : ke r "  
ds  

* \ r e t " ^ :0 .  ( 41 )

follows from the definition (17) of the connection of Aa geometry.
From 16 "rotational" equations (41), with the normalization condition (8), there

remains 6 independent equations. These equations describe the change of the orientation
of the oriented point. It is possible to add 4 motion equations of the "origin" of oriented
point, which represent the geodesic equations of the space Aa

d2/ ^. drj d,:rk rf ri ^, drj d* -, drj d#

dr r '  
A lu , t "  

. t ,  
:  

î " ,  
+ I i *  

a "  .1 ,  
+  I1x  

*  *  
:u ' (42)

Let us remark, that:
1) the equations (42) could be obtained from variation principle [2];
2) the equations (42) could be obtained from the equations of the oriented point (41),

ii we chose vector e!0) as elo) : d,x,f ds.
Il we multiply the equations (42) by mass rn of the oriented point, then we wil l

get the motion equations of its center of mass. In nonrelativistic approximation the
equations (42) wil l be viewed as

J2-a
^tr - -rnc2fo6o -mêT"*.

Applying the solution of vacuum equations (38) and (39) with Schwarzschild's metric,
where the source function ù0 is defined by the relation (40), we will obtain in quazi-
Descartesian coordinates

F3: -môtfo*: *#r', Fi : -*87.1o: -*!!5r". (44)

Evidently, the first of these forces F$ - Newtonian gravitational force. The force .F7*
is equal in its absolute value to the gravitational force I$, but directed in the opposite

(43)
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side. We may naturally interpret it as an inertial force, which acts locally in the

accelerated reference frame and compensates gravitational force, creating a weightless

condition in free falling Einstein's lift. Correspondingly the Ricci rotation coefiicients
?"rr interpreted as intensity of the inertial f ietd [19]. Thus, the inertial f ield T'rr

represents the torsion field, originated by the torsion of absolute parallelism geometry.

The connection between rotation oi matter and torsion (13) of ,44 geometry was outlined

by Cartan in 1922 [21], although without a direct analyticalreasoning. This iact created

a stir in the research world. The reason was ,that a few years later Cartan introduced

a torsion , based upon the point manifold. It dil lers irom Ricci torsion (13), because it

does not depend upon the angular variables. I could not i ind any analytical prooi ol the

connection ol Cartan torsion (not Ricci torsion (13)) with real physical rotation.

4 Inertial Mass in Descartesian Mechanics.
Four-Dimensional Gyroscope

The inertial rest mass oi an obiect in Descartesian mechanics is defined as

,),,,(/): I ot_-ù'r'atr: ft lenlt' ' {d^ (vior,o,,-:)+To"vTt:itu))}dv, (45)

where
g : det gi,, d.l/ : drldÊd:t3,

and the density p is defined according to (37). The relationships show that the inertial

rest mass in Descartesian mechanics represents the measure of the inertial field. Since

the inertial f ield ?'tro originated by the rotation of the matter (according to E. Cartan),

then the inertial pioperties of the rest mass depend on the conditions oi the rotation

of the matter, forming the discussed system. For example, by changing the angular

velocity o[ the separate mass parts of the system rns(t) according to a certain law, then

\ve can create a "jet-like motion without rejecting the mass" according to the motion

equations
d . d

moft)* ft'") : *r-îr.nro(t). (46)

The mechanical device, where the center oi mass moves according to the equations
(46), has been called a four-dimensional gyroscope (4-D -gyroscope) (see iig. l). Atl

the elements oi the conventional 3-dimensional gyroscope rotate in the spatial angle

O in the planes, perpendicular to the axis oi rotation. À 4-D gyroscope consists ol

three connected masses (see fig. l), two ol which (masses nr.) rotate synchronously in

difierent directions in the spatial angle O(f) around axis 01, set on the central mass M.

The central mass ,ri.f itsell oscillates along axis of symmetry a: with the acceleration

(47)

where d - pseudo-Euclidean angle. Lagrangian T of free 4-D gyroscope can be presented

AS

*,:ry : c&ho,): r4IL#9,

, : nt 
t'^ (u! + t'(r - k2 sinz ô)u,') : 

yY 
(u! + s'r,t)

IvI +r2ïn 
i2 (4g)
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3 - D Gyroscope

Cù

4 - D Gyroscope

Center of mass

-./

E Eû u

Figure l: The 3-D and 4-D gyroscopes

where

'tr: ru)t k2 :Zrnl(hI +2m). uc:1, - l;2wsinq, g' : k2(1 - Â;2sin2 p') -- ÈlJ.

Here u, - velocity of the center of masses, u - the velocity oi the central mass ,1,1, ,r : ô
- angular velocity of the rotation of small masses, r - distance lrom C)1 to small masses
m.

Let us consider that the motion of the center oi masses ol free 4-D gyroscope occurs
according to the motion equations of Descartesian mechanics

&xi ^; dtr drk

, t s ,  + A ' r u a ,  
È : 0 '  

i ' 7 ' k ' :  l ' 2 .

where
Li  is  

:  l i  i1 ,  *  T i  ix  
:  e i  o€oj . t .

4,2 : s,,d'xid',: : 
ffiat', i, i :1,2.

n,,  :  
(à 

| ,  )  

:  ! \oteoiêbi ,  ^" ,  :  
(  â Î  )

and can be viewed as

u,o(,t(t)): ( j:,,1, #:xî), ,,.(?(,)): (

(4e)

The orthogonal diad e"o for the given metric tensor connected with the variables

u.( l )  :  cos4(t)3, 1f  y 'uf t) :  s in4(t) . i .

(50)

(51)

- s i n r 7  
\

n  Gcosn  ) '

cos ri
-f sin
\/ s'
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After the corresponding calculations, the motion equations will become

where

du. 2mr - dr^

l :  i7;*r, or (u +zm)ff:2mr(but,

d u  . o  o  s i l t d c o s ô  1 -

E 
-  k 'd ' I  

k \æA:  
- ;Quc '

o(,): -##

| - 2k2r2u(ô)lC
- 1
0

0
0

-k2(1 - k2 sin2 @)

(52)

(53)

(54)

) '  

( 5 b )

(57)

(58)

- function, created by Ricci torsion and 2mrûa - lorce of inertia. If function iD(t) goes
to zero, then the equations (52) and (53) will coincide with the motion equations of 4-D
gyroscope, which follow from Newtonian mechanics.

4.1 Control ol Ricci Torsion and Riemann Curvature ol Local
Space

When 4-D gyroscope is not free Descartesian mechanics requires four-dimensional
coordinate space for the description of 4-D gyroscope, even for velocity much less than
the speed of light

I O :  C t ,  l t :  l t  1 2 :  U t  f i 3 :  Z .

It follows irom the fact that translational acceleration in Descartesian mechanics is
deduced to the rotation in the space-time planes, for example, as in our case, according
to the formuta (af. That is why for a more consistent description oi 4-D gyroscope we
have to apply the coordinates

' , O :  C t ,  î l :  X . ,  f Z :  f Q .

lVe will select the nretric tensor ol the following type

,":(l
where the "potential"

u(ô): Ir *or (56)

is created by controlled angular acceleration N : Ll2mr2 of small masses m, L(t) '
external angular momentum, created by motor-brake. Using the motion equations (42)
and field equations (19) we find

du.
dt

: rlç2lba,

03,: -o?o : --r++*6

r89
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^ : -*$ffi - k2uog:4cos Ô - W,
n-: -{fra**,

where

ô:,^@lE'  - \ / l - / c 2 s i n 2 ô ' k ' '

and u" - velocity of the center of masses of the 4-D gyroscope.

(5e)

(60)

and while sus-

and while sus-

5 Experimental Investigationsol Four-Dimensional
Gyroscope

For the experimental research of the 4-D gyroscope mechanics, its space -time
precession, we created ll models of the 4-D gyroscopes with the mechanical and elec-
trical motor-breaks. Some of them have been operated by the computer software. Vy'e
constructed the experimental bench-stand, consisting of the horizontal surface, the mea-
suring system to register the translational coordinate r(t) (Ar : *.0.5mm) and angular
coordinate ô(t) (Lô t0.5'). The special software allowed us to calculate the l inear
and angular velocities in real time. The corresponding graphs have been monitored and
observed during the experiments. We have researched the following:

1) space-time precession of the 4-D gyroscope,
2) absolute elastic external collision of the gyroscope's body against the wall, which

allowed us to observe:
a) transiormation of the translational inertia into rotational;
b) transformation of the rotational inertia into translational;
c) multiple impacts of the 4-D gyroscope;
3) singular internal coll isions ol the 4-D gyroscope (on the cart

pended);
4) multiple internal coll isions oi the 4-D gyroscope (on the cart

pended):
5) changes of the direction of the 4-D gyroscope's motion without changes of the

direction of the rotation of its small masses m.
These experiments demonstrated that the motion of the center of masses of a 4-D

gyroscope cannot be explained by Newtonian mechanics. The controllable operation
oi the motion of its center mass is explained by the space-time precession that is
understandable from the point of view of Descartesian mechanics. However, perhaps,
it is the first attempt of the scientific foundation of new mechanics and more detailed
investigations are required.

5.1 The Model with Computerized Motion Control

Since the character of motion of the center of masses of 4-D gyroscope is fully
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defined by the law of the change of the iD(t) function ( or the lrequency of the rotation
of small masses), then it should be a good idea to operate it via computer. Moreover,
if we wish to exclude the influence of the friction forces on the motion ol the center
of masses of the system forward, it is required to operate the motion of the gyroscope
body and, consequently, of its supporting wheels forward only. In this case the friction
forces will always obstruct the motion of the center of masses forward, slowing down
its motion.

Figure 2: 4-D gyroscope with the computerized motion control

r"Â
l , / \"r
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l . *

Figure 3: The experimental graphs of the 4-D gyroscope with computerized motion
control; u6 - body's velocity, u" -velocity of the center of mass

Fig. 2 presents 4-D gyroscope with servomotor (motor with feed back). The
operation ol this motor is performed via computer and special software. The program
allows us to accelerate and slow down the rotation oî small masses in the required
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segments. The graph of motion velocities (fig.3) for the body and center of masses
shows that the body moves only forward. Accordingly, the wheels, supporting it, move
only forward, while the friction forces, between the wheels and surface of motion. work
against the motion and could not cause the motion forward.

6 Conclusion

The Fourth Generalization of Newtonian mechanics has become possible with regards
that Descartesian mechanics has been based upon the following:
l) clifford-Einstein proposal ior geometrization of physics (unified Field rheory).
2) Klein's "Erlançn Program".
3) Cartan's idea about the connection of the torsion of space with phvsical rotation.
4) Descartesian idea about rotational nature of any motion.
In this article we have adhered to the experimental verifications for some of the
conclusions of new mechanics, using the known phenomenon [24], where the main role
belonç to lields and forces of inertia - one of the great physical enigma from Newton's
times. The Descartesian mechanics allows us to create the theoretical foundation ior
the experiments that Newton's mechanics could not explain. This experiments
demonstrate "jet-l ike motion without rejection of mass" [231. The simplest model of
the mechanical propulsion system, which propels in space in jet-like motion, although
without rejection of mass, had been created by a talented Russian engineer Vladimir
Tolchin [2a]. We have continued the experiments with Tolchin's mechanical devices
and discovered that they deviated from Newton mechanics, when the center oi mass
had been affected by uncompensated forces of inertia, causing the phenomenon of
space-time precession. We have observed that the phenomenon of space-time
precession of four-dimensional gyroscope allows us to control its inertial mass. In the
near future it will allow the creation of the Universal Propulsion System, which witl be
able to move in all the media: on earth, on water, under water, in air and in space. The
4-D Engine, with a hermetically sealed body, using space-time precession, wiil have
quite a number of advantages and benefits, compared to any other engine: it will be
ecologically clean, economic and universal. It should gradually replace the existing
engines in many branches of contemporary technologies.
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